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Abstract In this paper we analyze a greedy procedure to approximate a linear func-
tional defined in a Reproducing Kernel Hilbert Space by nodal values. This procedure
computes a quadrature rule which can be applied to general functionals.

For a large class of functionals, that includes integration functionals and other
interesting cases, but does not include differentiation, we prove convergence results
for the approximation by means of quasi-uniform and greedy points which generalize
in various ways several known results. A perturbation analysis of the weights and
node computation is also discussed.

Beyond the theoretical investigations, we demonstrate numerically that our al-
gorithm is effective in treating various integration densities, and that it is even very
competitive when compared to existing methods for Uncertainty Quantification.
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1 Introduction

Given a strictly positive definite kernel K : Ω ×Ω → R on a bounded, measurable
set Ω ⊂ Rd and a linear and continuous functional L ∈H ′ in the dual of the as-
sociated reproducing kernel Hilbert space H , we are interested in the construction
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of quadrature-like formulas (or nodal approximants) that approximate L( f ) for all
f ∈H . This means that we look for pairwise distinct centers X := {xi}n

i=1 ⊂Ω and
weights W := (wi)

n
i=1 ∈ Rn such that

QX ,W,L( f ) :=
n

∑
i=1

wi f (xi)≈ L( f ) for all f ∈H .

We measure the approximation quality of QX ,W,L by means of the worst case error on
the unit ball of H , i.e.,

eH (QX ,W,L) := sup
‖ f‖H ≤1

|QX ,W,L( f )−L( f )| .

In terms of this error measure, for a given set X there exist optimal weights W ∗ :=
W ∗(X), i.e.,

W ∗ := argmin
W∈Rn

eH (QX ,W,L) ,

and we use the notation QX ,L := QX ,W ∗,L for the weight-optimal quadrature formula.
We will discuss in the following (see Proposition 2.3) how these weights can be

computed explicitly, but here we anticipate in particular that, if vL ∈H is the Riesz
representer of L, and if ΠX (vL) is the H -orthogonal projection of vL into V (X) :=
span{K(·,x) : x ∈ X} ⊂H , then it holds that

ΠX vL =
n

∑
i=1

w∗i K(·,xi)

and eH (QX ,L) = ‖vL−ΠX vL‖H .
Since it is well known that ΠX vL coincides with the interpolant of vL on the points

X , this means that the optimal weights can be easily computed via standard kernel-
based interpolation, and the worst-case error coincides with the H -norm interpola-
tion error of vL on X .

Assuming that these optimal weights are used, the question of selecting the cen-
ters remains open, and the goal of this paper is to analyze a particularly simple greedy
algorithm to do so. The algorithm has been introduced in [37], although we give here
a more explicit characterization. It starts from an empty set of centers and iteratively
chooses a point among the ones that guarantee the maximal reduction of the worst-
case error. This allows to distribute adaptive and possibly non uniform centers tai-
lored to the specific L, and this property is particularly attractive especially in high
dimensions.

We show that the algorithm is in fact the f/P-greedy algorithm of [24] known
in kernel interpolation, and applied to the Riesz representer vL of L. In particular we
recall how it can be efficiently described and implemented in terms of the Newton
basis as in [25, 31].

We then prove two types of error estimates for the approximation of a special
class of functionals L ∈H ′, namely those which are continuous on H also with
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respect to the Lq(Ω) norm for some 1≤ q≤ ∞, i.e., such that there exists 1≤ q≤ ∞

and cL ≥ 0 with

|L( f )| ≤ cL ‖ f‖Lq(Ω) for all f ∈H . (1.1)

Observe that this characterization rules out differentiation operators.
First, for certain translational invariant kernels we provide convergence orders for

weight-optimal quadrature rules with quasi-uniform sets of centers. These results are
a direct consequence of the error rates known for kernel interpolation, and the result-
ing speed of convergence depends on the input dimension d, the value of q, and the
smoothness of the kernels. In particular, smoother kernels lead to faster convergence.
For some specific functionals, which are included in our analysis, this result coincides
with the ones of [18].

Second, for fairly general kernels we prove convergence with rate n−1/2 for the
new greedy algorithm, where n is the number of centers. Although various experi-
ments suggest that this rate is far from optimal, it is nevertheless dimension indepen-
dent and it applies to a wide class of kernels, namely, continuous kernels on bounded
domains. Moreover, also for translational invariant kernels this rate is strictly better
than the one for quasi-uniform points for a range of values of d, q, and of the smooth-
ness of the kernel. This gap between the two rates is quite small, but it holds for a
wider range of kernels for increasing d if q is fixed.

The motivation for the study of the class of functionals (1.1) comes from inte-
gration functionals L( f ) :=

∫
Ω

f (x)gL(x)dx, where gL ∈ Lp(Ω) for some 1≤ p≤ ∞.
Indeed, in this case we can take q such that 1

p +
1
q = 1 and cL := ‖gL‖Lp(Ω), since

|L( f )| ≤
∫

Ω

| f (x)| |gL(x)|dx≤ ‖gL‖Lp(Ω) ‖ f‖Lq(Ω) .

In this case QX ,L is a quadrature formula in the classical sense. Observe in particular
that this class includes also the case of gL ∈ Lp(Ω) \ L∞(Ω) for some 1 ≤ p < ∞,
which is not covered in [18].

However, our analysis comprises other interesting examples that will be discussed
in Section 2. In particular, we can consider functionals L which represent any quadra-
ture rule with bounded weights, including Monte Carlo ones. In this case, construct-
ing a quadrature rule QX ,L via the greedy algorithm means to find an approximated
quadrature with possibly fewer centers, or a compression of the quadrature L.

Moreover, given the equivalence between the weight-optimal quadrature of L and
the interpolation of vL, and the equivalence between the new greedy algorithm for
quadrature and the f/P-greedy algorithm for interpolation, our analysis alternatively
applies to the interpolation via f/P-greedy of the class of functions that are Riesz
representers of functionals satisfying the condition (1.1). The convergence results
will then be also be convergence results in H for interpolation. These results are
potentially very interesting, as we remark that for general functions v ∈H , the error
‖v−ΠX v‖H can decay arbitrarily slowly even for nicely chosen X (see e.g. [15,
Section 8.4.2]). Instead, for this class of functions, rates of convergence are obtained
here for interpolation with both quasi-uniform and greedy points.

Several examples of functionals in this class are discussed in Section 2.
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On the computational side we remark that both the selection of the greedy points
and the computation of the optimal weights can be performed by the sole knowledge
of the Riesz representer vL. As we will recall, this can be computed rather efficiently
and explicitly and, when it needs instead to be approximated, we give stability bounds
on the resulting perturbed quadrature formula. This easiness of computation is very
advantageous if the quadrature rule is then applied to the approximation of L( f ) for
a given f whose evaluation is expensive. This is the case for example for Uncer-
tainty Quantification, where an integration functional is used to estimate the mean
and variance of f . Alternatively, when only few evaluations are available it can be
advantageous to leverage the well-known equivalence between kernel interpolation
and Gaussian process regression [9, Chapter 17] and view QX ,L( f ) as a Gaussian
random variable whose standard deviation, equal to the worst case error, attempts to
quantify the epistemic uncertainty in the approximation QX ,L( f ) ≈ L( f ). This ap-
proach has been especially popular in integration, where it is known as the Bayesian
quadrature [5, 23, 30]. The greedy algorithm we study here is sometimes called the
sequential Bayesian quadrature in this context [14].

We mention also that other data-based algorithms to approximate linear func-
tionals exists in different settings, and are actively investigated e.g. in the setting of
empirical interpolation and reduced order modelling [1, 6, 12, 46].

The paper is structured as follows. In Section 2 we recall some basic facts on ker-
nel spaces, list some properties of linear and continuous functionals on these spaces,
and recall the computation and properties of weight-optimal quadrature rules and
their connection with interpolation. Section 4 introduces the greedy algorithm and
discusses its equivalence with the f/P-greedy algorithm for interpolation. The con-
vergence results for quasi-uniform points and translational invariant kernels are dis-
cussed in Section 3, while the ones for greedy points and general kernels are presented
in Section 5. Some stability results are shown in Section 6, providing in particular
bounds on the worst case error of a quadrature rule obtained from a perturbed Riesz
representer. Finally, the greedy method is tested on both synthetic examples and on a
benchmark problem in Uncertainty Quantification in Section 7.

2 Kernels and approximation of linear functionals

We recall some basics of kernel theory, and for a more general treatment we refer
e.g. to [10, 42]. A strictly positive definite (s.p.d.) kernel on Ω ⊂ Rd is a symmetric
function K : Ω ×Ω → R such that for all n ∈ N and for all sets Xn := {xi}n

i=1 ⊂
Ω of pairwise distinct points, the kernel matrix A := A(K,Xn) ∈ Rn×n defined by
Ai j := K(xi,x j) is positive definite. We assume this condition in the following, and
additionally that Ω ⊂ Rd is bounded and Lebesgue measurable, and K is continuous
in both variables.

Each s.p.d. kernel is uniquely associated to a reproducing kernel Hilbert space
(RKHS) H := HK(Ω) with inner product 〈·, ·〉H , which is usually called native
space of K on Ω , and which is a Hilbert space of functions f : Ω → R such that
K(·,x) ∈H for all x ∈Ω and 〈 f ,K(·,x)〉H = f (x) for all x ∈Ω and f ∈H .
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These two properties mean in particular that the function vδx(·) := K(·,x) is an
element of H for all x∈Ω , and that it is the Riesz representer of the linear functional
δx : H → R, δx( f ) := f (x), which is thus continuous, i.e., δx ∈H ′. Actually also
the converse holds, i.e., any Hilbert space H of functions f : Ω → R where the set
{δx : x ∈Ω} is contained in H ′ is an RKHS, and the corresponding kernel is strictly
positive definite whenever the elements of this set are also linearly independent.

Observe that for these particular functionals the Riesz representer vδx can be ob-
tained by applying the functional δx to one of the two variables of the kernel, i.e.,
vδx = K(·,x) = (δx)

y (K(·,y)), where the upper index denotes the variable with re-
spect to which the functional is applied. This is actually always the case, as we recall
in the next proposition.

Proposition 2.1 (Riesz representer [42, Theorem 16.7]) Let L ∈H ′ be a linear
and continuous functional on H . Then the Riesz representer vL ∈H of L is given
by vL(·) = Ly(K(·,y)).

Strictly positive definite kernels allow especially to solve interpolation problems,
as stated in the following proposition, which is a collection of various classical results
(see e.g. [42])

Proposition 2.2 (Kernel interpolation) For an s.p.d. kernel K and a set X := {xi}n
i=1⊂

Ω of pairwise distinct points, we denote as V (X) := span{K(·,x) : x ∈ X} the sub-
space of H spanned by the kernel translates at X, and as ΠX : H → V (X) the
H -orthogonal projector into V (X).

Then for each v ∈H the function ΠX v interpolates v at X. Moreover, we have

ΠX v =
n

∑
i=1

αiK(·,xi), (2.1)

where α ∈ Rn is the unique solution of the linear system Aα = (v(x1), . . . ,v(xn))
T

with A the kernel matrix of K on X.

This proposition implies in particular that the interpolant of an arbitrary function
in H can be computed on arbitrary pairwise distinct points. Moreover, this inter-
polant coincides with the orthogonal projection into V (X), and it is thus an optimal
approximant with respect to the H -norm. As mentioned in the introduction, these
properties can be translated to the approximation of a linear functional. Indeed, if
L ∈H ′ and X := {xi}n

i=1 ⊂Ω are pairwise distinct points, for a given set of weights
W := (wi)

n
i=1 ∈ Rn we can define

QX ,W,L( f ) :=
n

∑
i=1

wi f (xi), f ∈H ,

and the corresponding worst-case error eH (QX ,W,L) := sup‖ f‖H ≤1 |QX ,W,L( f )−L( f )|.
Now L has a representer vL ∈H so that L f = 〈 f ,vL〉H and by the Riesz repre-

sentation theorem, which provides an isometry between H and H ′ , we have

distH ′
(
L,span{δx j : x j ∈ X}

)
= distH (vL,V (X)) ,
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and thus the H ′-optimal quadrature formula for samples on X ⊂ Ω is given by the
H -orthogonal projector ΠX onto V (X), which happens to be the interpolation oper-
ator. The weight-optimal quadrature formula is thus

QX ,L( f ) = 〈 f ,ΠX vL〉H = L(ΠX f ).

This proves the following proposition.

Proposition 2.3 (Weights-optimal quadrature) There exist unique weights W ∗ =
(w∗1, . . . ,w

∗
n)

T that minimize the worst case error given L and X, i.e.,

W ∗ := argmin
W∈Rn

eH (QX ,W,L) , (2.2)

and they are the coefficients of the orthogonal projection of vL into V (X), i.e.,

ΠX vL =
n

∑
i=1

w∗i K(·,xi). (2.3)

Moreover, ΠX vL is the Riesz representer of the functional QX ,L := QX ,W ∗,L ∈H ′, it
holds

QX ,L( f ) = L(ΠX f ) for all f ∈H , (2.4)

and

eH (QX ,L) = ‖vL−ΠX vL‖H . (2.5)

Observe that this proposition implies that in practice the quadrature weights can
be found just by computing the interpolant of vL at the points X , and, according to
Proposition 2.2, this corresponds to the solution of a linear system. Moreover, (2.4)
proves that applying the quadrature formula is equivalent to exactly applying L to the
interpolant, or that QX ,L is exact on V (X).

Remark 2.1 (Positive definite kernels) The results of this section can be formulated
also for positive definite kernels, i.e., those for which the kernel matrix is required to
be only positive semidefinite. However, in this case some complications arise since
the kernel matrix can be singular also for pairwise distinct points X , and in particular
the elements K(·,xi) do not need to be linearly independent, and thus they span V (X)
without being a basis. Nevertheless, the same results can be derived if more attention
is paid, for example by showing that different representations (2.1) can describe a
unique function. More importantly, we do not explicitly extend the current presenta-
tion to positive definite kernels since it is not clear if the greedy algorithm of the next
section, which is the main topic of this paper, can be run without producing singular
matrices (and thus an early termination) in the case of (non strictly) positive definite
kernels.
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Although the construction of QX ,L and the greedy algorithm that we will introduce
work for any L ∈H ′, we recall that our error analysis will apply only to functionals
that satisfy (1.1) for some 1≤ q≤ ∞ and cL ≥ 0. Observe that this definition is well
posed, since H ⊂ Lq(Ω) for all 1≤ q≤ ∞ and for all f ∈H since Ω is assumed to
be bounded and K continuous.

Now that the equivalence between worst-case quadrature with optimal weights
and interpolation has been detailed, we conclude this section with a more precise
discussion of some relevant examples of functionals satisfying the condition (1.1).

Example 2.1 If L( f ) :=
∫

Ω
f (x)gL(x)dx with gL ∈ Lp(Ω) for some 1 ≤ p ≤ ∞, we

can take q such that 1
p +

1
q = 1 and we have cL := ‖gL‖Lp(Ω) since

|L( f )| ≤
∫

Ω

| f (x)| |gL(x)|dx≤ ‖gL‖Lp(Ω) ‖ f‖Lq(Ω) .

In this case QX ,L is a classical quadrature rule.

Example 2.2 If L( f ) := ∑i∈I ρi f (zi) where I ⊂ N is a countable index set, {ρi}i∈I ⊂
R, {zi}i∈I ⊂ Ω , and if ρ := {ρi}i∈I ∈ `1(I), then we can take q := ∞ and cL :=
‖ρ‖`1(I) = ∑i∈I |ρi| since

|L( f )| ≤∑
i∈I
|ρi| | f (zi)| ≤

(
max
i∈I
| f (zi)|

)
‖ρ‖`1(I) ≤ ‖ f‖L∞(Ω) ‖ρ‖`1(I) .

This includes for example any quadrature formula with weights ρ := {ρi}i∈I ∈ `1(I)
and nodes {zi}i∈I ⊂Ω . This is the case for example of quadrature rules with positive
and bounded weights, and in particular of any Monte Carlo quadrature with M := |I|,
since ∑i∈I ρi = ∑

M
i=1 |Ω |/M = |Ω |.

In this case QX ,L can be understood as a compression of the quadrature rule, if
|X | ≤ |I|. Or, even for |X |= |I|, QX ,L is weight-optimal and thus can provide a strictly
better worst-case error than L.

Considering instead functions which are Riesz representers of functionals satis-
fying (1.1), we have the following examples.

Example 2.3 Given a number B > 0, the functions in the class

HB :=

{
v := ∑

i∈I
αiK(·,xi) : ∑

i∈I
|αi| ≤ B

}
⊂H

are the Riesz representers of functionals of Example 2.2 with ‖ρ‖`1(I) ≤ B. This set is
commonly used to study convergence rates of greedy algorithms (see e.g. [2, 7, 41]),
and for this set our results on the greedy algorithm coincide with the rates obtained
in [44] for the f/P-greedy algorithm.

Example 2.4 Under the present assumptions (see [40] for a general analysis) the ker-
nel is a Mercer kernel, and it can be proven (see e.g. [42, Chapter 10]) that the operator
T : L2(Ω)→ L2(Ω) given by

T ( f ) :=
∫

Ω

K(x,y) f (y)dy,
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is compact and self adjoint. It has a sequence {λ j} j∈N of non increasing and positive
eigenvalues and corresponding L2(Ω)-orthonormal eigenvectors {ϕ j} j∈N such that
{λ 1/2

j ϕ j} j∈N is an H -orthonormal basis of H . The image IT := T (L2(Ω)) is dense
in H , and every function v ∈ IT is the Riesz representer of a functional L which
satisfies (1.1). Indeed, if u ∈ L2(Ω) is such that T (u) = v, it can be proven that for all
f ∈H it holds 〈 f ,T (u)〉H = 〈 f ,u〉L2(Ω) , and thus

|L( f )| : = |〈 f ,v〉H |= |〈 f ,T (u)〉H |=
∣∣∣〈 f ,u〉L2(Ω)

∣∣∣
≤ ‖u‖L2(Ω) ‖ f‖L2(Ω) for all f ∈H .

It follows that (1.1) holds with cL := ‖u‖L2(Ω) and q := 2.
These functions are the easiest example of the class analyzed in [36, 38] to study

superconvergence phenomena in H , i.e., functions for which kernel interpolation
with quasi-uniform points leads to an improved convergence order.

We conclude this general section by stating in the following proposition an obvi-
ous fact that will be useful later.

Proposition 2.4 (Restriction of L) Assume that L∈H ′, and assume that there exists
1 ≤ q ≤ ∞ such that L is continuous w.r.t. the Lq-norm on Lq(Ω)∩H , with norm
bounded by cL. Then for any H -closed subspace V ⊂H also the functional LV :=
L◦ΠV is continuous on Lq(Ω)∩H , with norm cLV ≤ cL.

Proof Since L is continuous from Lq(Ω)∩H to R with constant cL, i.e.,

sup
f∈H , f 6=0

|L( f )|
‖ f‖Lq(Ω)

= cL,

then

cLV := sup
f∈H , f 6=0

|LV ( f )|
‖ f‖Lq(Ω)

= sup
f∈H , f 6=0

|L(ΠV ( f ))|
‖ f‖Lq(Ω)

= sup
f∈V, f 6=0

|L( f )|
‖ f‖Lq(Ω)

≤ sup
f∈H , f 6=0

|L( f )|
‖ f‖Lq(Ω)

= cL,

which is the desired bound.

3 Convergence for quasi-uniform points and translational invariant kernels

We first analyze convergence rates for quadrature formulas that use quasi-uniform
points on spaces generated by translational invariant kernels. In this section we thus
assume that K(x,y) := φ(x− y) for some φ : Rd → R, and that φ has a Fourier trans-
form φ̂ such that there exists τ > 0, and c,C > 0 with

c
(

1+‖ω‖2
2

)−τ

≤ φ̂(ω)≤C
(

1+‖ω‖2
2

)−τ

for all ω ∈ Rd . (3.1)
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If additionally Ω has a Lipschitz boundary and it satisfies an interior cone condition,
then H is norm equivalent to the Sobolev space W τ

2 (Ω), and in particular there exists
a constant cE > 0 such that

‖u‖W τ
2 (Ω) ≤ cE ‖u‖H for all u ∈H . (3.2)

Observe that this norm equivalence is possible only if τ > d/2, since it implies in
particular that W τ

2 (Ω) is an RKHS (see e.g. Chapter 10 in [42]). In fact, in the fol-
lowing we only need the continuous embedding of H into W τ

2 (Ω) to hold with a
norm inequality (3.2), and for this it is sufficient to assume the validity of the upper
bound in (3.1).

For functions in Sobolev spaces we can use the following inequality from [26,
Theorem 1.1], that bounds the Lq-norm of a function with scattered zeros. Observe
that bounds for general Sobolev norms are also proven in the same Theorem 1.1.

Here and in the following we denote (x)+ := max(x,0) for x ∈ R and, for u :
Ω → R, ‖u‖`∞(X) denotes the maximum absolute value of u evaluated on X ⊂ Ω .
Moreover, we use the fill distance hX and the separation distance qX , defined by

hX := sup
x∈Ω

min
y∈X
‖x− y‖2 , qX :=

1
2

min
xi 6=x j ,xi,x j∈X

∥∥xi− x j
∥∥

2 ,

to quantify the distribution of the points X in Ω .

Theorem 3.1 (Norm inequality [26]) Let Ω ⊂ Rd be bounded and satisfy an inte-
rior cone condition. Let 1≤ q≤ ∞ and τ ∈ R be such that τ > d/2. Then there exist
cS > 0 and h0 > 0 such that if X ⊂ Ω is finite and hX ≤ h0, then for all u ∈W τ

2 (Ω)
with u = 0 on X it holds

‖u‖Lq(Ω) ≤ cShτ−d(1/2−1/q)+
X |u|W τ

2 (Ω) . (3.3)

For general point sets, a geometric constraint implies that there exists a constant
c > 0 depending only on Ω such that hX ≥ cn−1/d . If one uses a quasi-uniform
sequence {Xn}n∈N ⊂ Ω , |Xn| = n, of points, i.e., such that there exists a constant
c > 0 with hXn ≤ cqXn for all n ∈ N, then it can be proven that there exists a sec-
ond constant cQ independent of n, and an index n0 ∈ N such that for all n ≥ n0 it
holds hXn ≤ cQn−1/d . We refer for example to Chapter 2 in [24] for explicit estimates
of these constants. Moreover, observe that this requirement applies to sequences of
scattered points, i.e., the sets {Xn}n∈N do not need to have any grid structure. Using a
sequence of quasi-uniform sets allows to rewrite any bound expressed in terms of hX
as a bound involving only the number of points n = |X |.

With these tools in hand we can prove the following result. The proof follows
a standard procedure used in combination with a sampling inequality to derive an
error bound, with the only difference that the Lq-continuity of L will guarantee that
the error bound is in the H -norm. We remark that the same idea has been used
in [3, 17, 18], as well as most other work on error estimates for kernel and Bayesian
quadrature rules, to derive error bounds for the integration functionals of Example
2.1 with gL ∈ L∞(Ω).
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Theorem 3.2 (Convergence rates for quasi-uniform points) Assume that the ker-
nel is translational invariant and that it has a Fourier transform that satisfies the
upper bound in (3.1). Under the assumptions of Theorem 3.1, let L ∈H ′ be a linear
functional such that there exist 1≤ q≤ ∞ and cL ≥ 0 such that

|L( f )| ≤ cL ‖ f‖Lq(Ω) for all f ∈H ,

and let vL ∈H be its Riesz representer.
Then, if X ⊂Ω is a set of pairwise distinct points with hX ≤ h0, it holds

eH (QX ,L) = ‖vL−ΠX vL‖H ≤ cScEcLhτ−d(1/2−1/q)+
X . (3.4)

In particular, if {Xn}n∈N ⊂ Ω is a sequence of sets of pairwise distinct points for
which there exists cQ > 0 such that hXn ≤ cQn−1/d for all n ∈ N, then for all n ∈ N
with n≥ n0 := (cQ/h0)

d it holds

‖vL−ΠXnvL‖H ≤ cU n
− τ

d +
(

1
2−

1
q

)
+ , (3.5)

where the constant cU := cLcScEc
τ−d(1/2−1/q)+
Q depends on L only via q and cL.

Proof For any f ∈H , equation (2.4) and the continuity of L on Lq(Ω) give

|L( f )−QX ,L( f )| = |L( f )−L(ΠX f )| = |L( f −ΠX f )|
≤ cL ‖ f −ΠX f‖Lq(Ω) .

Now, since u := f −ΠX f vanishes on X , the bound of Theorem 3.1 and the norm
inequality (3.2) give

|L( f )−QX ,L( f )| ≤ cL ‖ f −ΠX f‖Lq(Ω)

≤ cLcShτ−d(1/2−1/q)+
X | f −ΠX f |W τ

2 (Ω)

≤ cLcShτ−d(1/2−1/q)+
X ‖ f −ΠX f‖W τ

2 (Ω)

≤ cLcScE hτ−d(1/2−1/q)+
X ‖ f −ΠX f‖H

≤ cLcScE hτ−d(1/2−1/q)+
X ‖ f‖H ,

and it follows from (2.5) that

‖vL−ΠX vL‖H = sup
‖ f‖H ≤1

|L( f )−QX ,L( f )| ≤ cLcScE hτ−d(1/2−1/q)+
X .

To obtain (3.5) we can just bound hX from above with cQn−1/d and obtain that for all
hX ≤ h0, i.e., for all n≥ (cQ/h0)

d , holds

‖vL−ΠX vL‖H ≤ cLcScE cτ−d(1/2−1/q)+
Q n−τ/d+(1/2−1/q)+ .
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Observe that the proof is just a consequence of the Lq-continuity of L and of the
fact that the quadrature rule is an exact application of the functional to the interpolant
(see (2.4)). It is clear that similar results can be obtained for any other kernel for
which error estimates in the Lq-norm are available for interpolation (and we give an
example at the end of this section). Moreover, the rate of convergence just comes from
the fact that quasi-uniform points give a good error for interpolation with translational
invariant kernels, and in particular the bound makes no distinction between different
functionals.

It remains open to investigate if approximation by L-adapted points can achieve a
better approximation rate. We expect this to be the case, and also that these rates can
be achieved by adaptive quadratures via greedy algorithms. An example supporting
this claim is discussed in Section 7.2.

Remark 3.1 (Superconvergence) As a consequence of the theorem, for some class
of functions we can derive superconvergence with respect to Lr-norms in the sense
of [36, 38], i.e.,a rate of convergence of kernel interpolation which is better than the
one for generic functions in H .

Namely, taking 1≤ r ≤ ∞, for the interpolation of a generic function u ∈H the
application of the inequality of Theorem 3.1 gives the standard error estimate

‖u−ΠX u‖Lr(Ω) ≤Ch
τ−d( 1

2−
1
r )+

X ‖u−ΠX u‖H ≤Ch
τ−d( 1

2−
1
r )+

X ‖u‖H . (3.6)

On the other hand, for any function v such that the functional L := 〈v, ·〉H satisfies
the assumptions of Theorem 3.2 for some q, the theorem gives

‖v−ΠX v‖H ≤Ch
τ−d

(
1
2−

1
q

)
+

X ,

and thus (3.6) can be improved to

‖v−ΠX v‖Lr(Ω) ≤Ch
2τ−d

(
( 1

2−
1
r )++

(
1
2−

1
q

)
+

)
X .

In the case of L2-approximation, which is mainly addressed in [36, 38], this means
that this class of functions can be approximated with an order of 2τ−d (1/2−1/q)+
instead of τ−d (1/2−1/q)+. In particular, for the class of functions of Example 2.4
this result coincides with the one of [36], even if more general function classes are
included in our analysis.

Remark 3.2 (Further characterization of the admissible functionals) Observe that
in the case of the kernels and native spaces discussed in this section, the condi-
tion L ∈H ′ ∩ (Lq(Ω))′ may be equivalent to certain smoothness assumptions on
the Riesz representer vL. Nevertheless, we do not have a satisfactory and complete
characterization of this relation, so we leave this point open for future investigations.

Finally, we mention that there are other translational invariant kernels that are
comprised in this analysis, and for which there are error statements for interpolation
which are completely analogous to the ones of Theorem 3.1 but prove faster decay of
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the error. For example, for the Gaussian and Inverse Multiquadric kernels the error
estimates of [32] allow to prove exponential rates of convergence for the approxima-
tion with sequences of quasi-uniform points. Since the proof is completely analogous
to that of Theorem 3.2, we omit it here. Nevertheless, we remark that a similar su-
perconvergence as in Remark 3.1 happens also in this case, since the H -norm of the
error can be bounded by a term decaying (exponentially) with hX .

4 The greedy algorithm

We can now define and discuss the greedy algorithm. We assume only that K is an
s.p.d. kernel on a set Ω and that L ∈H ′ is a linear functional. We recall that the
notation QX ,L denotes the fact that optimal weights are used, and in particular the
algorithm is completely determined just by the selection of the set of points.

Definition 4.1 (Greedy algorithm) Let X0 := /0 and QX0,L( f ) := 0 for all f ∈H .
For any n ∈ N, the greedy algorithm selects a point

xn ∈ argmin
x∈Ω\Xn−1

eH

(
QXn−1∪{x},L

)
with Xn := Xn−1∪{xn}.

Observe that thanks to Proposition 2.3 the algorithm is equivalent to the iterative
selection of points to interpolate the Riesz representer vL with a greedy selection rule
given by

xn ∈ argmin
x∈Ω\Xn−1

eH

(
QXn−1∪{x},L

)
= argmin

x∈Ω\Xn−1

∥∥vL−ΠXn−1∪{x}(vL)
∥∥

H
, (4.1)

i.e., the new point provides the locally H -optimal update of the interpolant of vL.
The locally optimal selection rule is known to be the f/P-greedy selection, as

shown in [24,44]. Although well known, we prove this fact and also give the complete
definition of the algorithm to stress the fact that it can be efficiently implemented in
an iterative way. To this end, we first recall that the interpolation error can be bounded
similarly as the worst-case quadrature error. Indeed, in the case of interpolation it is
common to define the power function

PXn(x) := sup
‖ f‖H ≤1

| f (x)− (ΠXn f )(x)| , (4.2)

and, in the language of this paper, it is clear that this is the worst-case error for the
weight-optimal quadrature of the functional L := δx. In fact it holds also that

PXn(x) = ‖K(·,x)−ΠXnK(·,x)‖H ,

since K(·,x) is the Riesz representer of the point-evaluation functional. This implies
in particular that the power function is continuous in x ∈ Ω , it vanishes if and only
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if x ∈ Xn, and P/0(x) =
√

K(x,x) for all x ∈ Ω . Moreover, if {vi}n
i=1 is any H -

orthonormal basis of V (Xn), by the definition of orthogonal projection we clearly
have

ΠXnv =
n

∑
i=1
〈v,vi〉H vi for all v ∈H , (4.3)

and in particular

PXn(x) =

∥∥∥∥∥K(·,x)−
n

∑
i=1
〈K(·,x),vi〉H vi

∥∥∥∥∥
H

=

√
K(x,x)−

n

∑
i=1

vi(x)2. (4.4)

In the following we write Pn instead of PXn to simplify the notation.
Using this power function, we can now recall that the f/P-greedy rule (4.1) se-

lects a new point as

xn ∈ argmax
x∈Ω\Xn−1

∣∣v(x)− (ΠXn−1 v)(x)
∣∣

Pn−1(x)
, (4.5)

and it is thus clear that the name of this selection rule is indeed given by the fact that
it selects a point that maximizes the ratio between the function interpolation residual
(the “ f ” component) and the power function (the “P” component).

Remark 4.1 (P-greedy) We recall that the same greedy algorithm for interpolation,
but using the P-greedy selection rule (i.e., select at each iteration one of the points
which maximize the power function in (4.2)) has been shown to produce sequences
of points with hXn ≤ cn−

1
d (1−ε) for all ε > 0 in [35]. This has been refined to hold

also for ε = 0 in [43], i.e., actually the P-greedy algorithm selects sequences of points
which satisfy hXn ≤ cn−

1
d , and it follows that quadrature based on centers selected by

the P-greedy algorithm give exactly the approximation order of Theorem 3.2.

To proceed and describe any iterative algorithm that works with nested sequences
of interpolation (or quadrature) points, it is convenient to use the following Newton
basis, which is an instance of an H -orthonormal basis.

Proposition 4.1 (Newton basis [25, 31]) Given a sequence of nested sets {Xn}n∈N
of pairwise distinct points in Ω with X0 := /0 and Xn+1 := Xn ∪ {xn+1}, the New-
ton basis is a sequence {vk}k∈N ⊂ H such that for all n ∈ N the set {vk}n

k=1 is
an H -orthonormal basis of V (Xn). This means that V (Xn) = span{vi}n

i=1 and that〈
vi,v j

〉
H

= δi j for all i 6= j and for all n ∈ N. Moreover, the Newton basis property
vi(x j) = 0 for all 1≤ j < i≤ n is satisfied.

The basis can be constructed by a Gram-Schmidt procedure over {K(·,xi)}i∈N,
which gives

v1 =
K(·,x1)

P0(x1)
, vn =

K(·,xn)−∑
n−1
k=1 vk(xn)vk

Pn−1(xn)
, n ∈ N. (4.6)

Using this Newton basis it becomes easy to describe the efficient update of the
interpolant for an increasing set of points (see [24, 31]), and also to prove the local
optimality of the f/P-greedy selection (see [44]).
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Proposition 4.2 (Efficient update and f/P-greedy [24, 31, 44]) Let v ∈H , Xn :=
{xi}n

i=1 := Xn−1∪{xn} ⊂Ω , and let {vk}n
k=1 be the Newton basis of V (Xn).

Then the interpolant and the power function can be updated as

ΠXnv = ΠXn−1v+ 〈v,vn〉H vn = ΠXn−1v+
〈
v−ΠXn−1v,vn

〉
H

vn, (4.7)

Pn(x)2 = Pn−1(x)2− vn(x)2. (4.8)

Moreover, the locally H -optimal selection rule is given by the f/P-selection rule,
i.e.,

argmin
x∈Ω\Xn−1

∥∥v−ΠXn−1∪{x}v
∥∥

H
= argmax

x∈Ω\Xn−1

∣∣v(x)− (ΠXn−1v)(x)
∣∣

Pn−1(x)
. (4.9)

This proposition and Proposition 2.3 clearly show that the greedy algorithm of
Definition 4.1 coincides with the f/P-greedy algorithm for the interpolation of vL. In
particular, the update rule (4.7) can be used to incrementally construct the interpolant
by computing only a new Newton basis element and the corresponding coefficient
each time a point is added. Moreover, this update of the interpolant and the formula
(4.8) for the power function allow the efficient update of the selection rule (4.9).

Remark 4.2 (Change of basis) Observe that, once the selection of the points is com-
pleted, it is convenient to express the interpolant back from the Newton basis to the
standard basis {K(·,xi)}n

i=1 to compute the quadrature of a function f . Indeed, for
ΠXn (vL) = ∑

n
i=1 w∗i K(·,xi) it holds

QXn,L( f ) = 〈 f ,ΠXnvL〉H =
n

∑
i=1

w∗i 〈K(·,xi),v〉H =
n

∑
i=1

w∗i f (xi),

i.e., the computation of QXn,L( f ) requires only the knowledge of the weights and the
evaluations of f on Xn. Using instead ΠXnvL = ∑

n
i=1 〈vL,vi〉H vi we have

QXn,L( f ) =
n

∑
i=1
〈vL,vi〉H 〈vi, f 〉H ,

where the terms 〈vi, f 〉H are not directly accessible.
Computing this change of basis is trivial, since the matrix of change of basis is

lower triangular (see [31]). We remark moreover that an efficient implementation of
the whole greedy approximation process to compute Xn and {w∗i }n

i=1 (or {αi}n
i=1, as

in Proposition 2.2) via f/P-greedy is available in Matlab [33] and in Python [34].

Finally, for later use we remark also that it can be proven that for all Xn := Xn−1∪
{xn} there is a splitting of the interpolation error in the form

‖v−ΠXnv‖2
H =

∥∥v−ΠXn−1v
∥∥2

H
−
(

v(x)− (ΠXn−1v)(x)
Pn−1(x)

)2

, (4.10)

which represents a kind of energy splitting between the interpolant and the residual.
This last formula was in fact the starting point for the introduction of the f/P-greedy
algorithm in [24], but we followed a different route in the presentation to highlight
instead the local optimality of the selection rule.
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5 Convergence for greedy points and continuous kernels

For the greedy algorithm of Definition 4.1, or equivalently the f/P-greedy algorithm
applied to vL, we can now derive convergence results. The proof follows the lines
of the one of Theorem 3.7 in [7], and in particular it makes use of the following
proposition.

Proposition 5.1 (Lemma 3.4 in [7]) If {an}n∈N is a sequence of non-negative num-
bers such that for a given A > 0 it holds a1 ≤ A and an+1 ≤ an(1− an/A), then
an ≤ An−1 for all n ∈ N.

The theorem proves that the worst case error converges to zero at least as n−1/2.
As we will explain when running numerical experiments in Section 7, this has to
be understood as a preliminary result, since faster convergence is often observed in
practice. Nevertheless, this speed of convergence is independent of the input space
dimension and, as we will comment later, it is better than the one that we proved for
quasi-uniform points in certain cases.

We remark that convergence of kernel-based integral approximations based in-
stead on P-greedy points has been recently analyzed in [16].

Theorem 5.1 (Convergence rates for greedy quadrature) For any continuous s.p.d.
kernel on a bounded and Lebesgue measurable set Ω ⊂ Rd , let L ∈H ′ be a linear
functional such that there exists 1≤ q≤ ∞ and cL ≥ 0 such that

|L( f )| ≤ cL ‖ f‖Lq(Ω) for all f ∈H ,

and let vL ∈H be its Riesz representer.
Then, for the sequence of points {Xn}n∈N selected by the greedy algorithm it holds

eH (QXn,L) = ‖vL−ΠXnvL‖H ≤ cGn−1/2 for all n ∈ N,

where cG := max
{
‖vL‖H ,cL |Ω |1/q max

x∈Ω

√
K(x,x)

}
.

Proof For notational simplicity we denote the residual by rn := vL−ΠXnvL. We as-
sume that rn 6= 0 for any finite n, otherwise we are done. Then equation (4.10) for vL
reads

‖rn‖2
H = ‖rn−1‖2

H −
|rn−1(xn)|2

Pn−1(xn)2 = ‖rn−1‖2
H

(
1− |rn−1(xn)|2

Pn−1(xn)2 ‖rn−1‖2
H

)
, (5.1)

and by the definition (4.1) of the f/P-greedy selection we have that

|rn−1(xn)|
Pn−1(xn)

= max
x∈Ω\Xn−1

|rn−1(x)|
Pn−1(x)

. (5.2)

Now let x̄ ∈Ω be such that

x̄ := argmax
x∈Ω

|rn−1(x)|= argmax
x∈Ω\Xn−1

|rn−1(x)| , (5.3)
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where the two maxima are equal since rn−1 = 0 on Xn−1 and thus x̄ /∈ Xn−1. Since
x̄ /∈ Xn−1 it also holds Pn−1(x̄) 6= 0, and then using (5.2) and (5.3) we have

|rn−1(xn)|
Pn−1(xn)

= max
x∈Ω\Xn−1

|rn−1(x)|
Pn−1(x)

≥ |rn−1(x̄)|
Pn−1(x̄)

=
‖rn−1‖L∞(Ω)

Pn−1(x̄)
≥
‖rn−1‖L∞(Ω)

‖Pn−1‖L∞(Ω)

. (5.4)

Moreover, since Id−ΠV = ΠV⊥ for any closed subspace V ⊂H , and using again
the fact that orthogonal projections are self adjoint, we have

‖rn−1‖2
H = 〈rn−1,rn−1〉H =

〈
vL−ΠXn−1vL,rn−1

〉
H

=
〈

ΠV (Xn−1)⊥
vL,rn−1

〉
H

=
〈

vL,ΠV (Xn−1)⊥
rn−1

〉
H

=
(

L◦ΠV (Xn−1)⊥

)
(rn−1).

Using Proposition 2.4 we have that also the functional L ◦ΠV (Xn−1)⊥
is continuous

with respect to the Lq-norm on Lq(Ω)∩H , with norm bounded by cL. Using this
fact, and since the boundedness of Ω implies ‖rn−1‖Lq(Ω) ≤ ‖rn−1‖L∞(Ω), we can
thus control the norm of the residual as

‖rn−1‖2
H ≤ cL◦ΠV (Xn−1)

⊥ ‖rn−1‖Lq(Ω) ≤ cL ‖rn−1‖Lq(Ω) ≤ cL |Ω |1/q ‖rn−1‖L∞(Ω) ,

i.e., ‖rn−1‖L∞(Ω) ≥ ‖rn−1‖2
H /(cL |Ω |1/q). Combining this bound and inequality (5.4)

we can continue to obtain

|rn−1(xn)|2

Pn−1(xn)2 ‖rn−1‖2
H

≥
‖rn−1‖2

L∞(Ω)

‖Pn−1‖2
L∞(Ω) ‖rn−1‖2

H

≥ ‖rn−1‖4
H

‖Pn−1‖2
L∞(Ω) ‖rn−1‖2

H c2
L |Ω |

2/q

=
‖rn−1‖2

H

‖Pn−1‖2
L∞(Ω) c2

L |Ω |
2/q .

Now we can set An−1 := ‖Pn−1‖2
L∞(Ω) c2

L |Ω |
2/q and, since Pn is non increasing in n,

we have

An−1 ≤ A0 = c2
L |Ω |

2/q ‖P0‖2
L∞(Ω) = c2

L |Ω |
2/q max

x∈Ω

K(x,x),

and thus the last inequality reads

|rn−1(xn)|2

Pn−1(xn)2 ‖rn−1‖2
H

≥ ‖rn−1‖2
H

A0
.

Inserting this result in (5.1) and defining A := max
{
‖vL‖2

H ,A0

}
, we finally have

‖rn‖2
H ≤ ‖rn−1‖2

H

(
1− ‖rn−1‖2

H

A0

)
≤ ‖rn−1‖2

H

(
1− ‖rn−1‖2

H

A

)

and ‖r0‖2
H = ‖vL‖2

H ≤ A, and thus the result follows by applying Lemma 5.1 with
an := ‖rn−1‖2

H .
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Before discussing some consequences of this result, we show in the following
corollary that the same proof idea applies also to other greedy interpolation strategies
which are commonly used in kernel interpolation and quadrature.

Corollary 5.1 (Convergence for other selection rules) Under the same hypotheses
of Theorem 5.1, the same convergence result holds if the f/P-greedy selection rule
(4.5) is replaced by one of the following ones:

a) The f -greedy selection rule, i.e.,

xn ∈ argmax
x∈Ω\Xn−1

∣∣v(x)− (ΠXn−1v)(x)
∣∣ .

b) The selection rule of Algorithm 4 on p. 93 in [29], i.e.,

xn ∈ argmax
x∈Ω\Xn−1

∣∣v(x)− (ΠXn−1v)(x)
∣∣√

K(x,x)
.

Proof The proof of Theorem 5.1 depends on the f/P-greedy selection rule only via
equation (5.4) (and on equation (5.2), which is nevertheless used only to derive the
latter). We thus only need to show how to obtain the same bound as in (5.4) with
these other selection rules:

a) In this case, by the definition of xn, it immediately holds that

|rn−1(xn)|
Pn−1(xn)

=
‖rn−1‖L∞(Ω)

Pn−1(xn)
≥
‖rn−1‖L∞(Ω)

‖Pn−1‖L∞(Ω)

.

b) For this selection rule, using the same argument as in the proof of Theorem 5.1
one obtains

|rn−1(xn)|
Pn−1(xn)

≥
‖rn−1‖L∞(Ω)∥∥∥√K(x,x)

∥∥∥
L∞(Ω)

in place of (5.4), and then the following of the proof is simplified since
√

K(x,x)=
P0(x) for all x ∈Ω .

Remark 5.1 (Improvement over existing f -greedy convergence results) Observe that
existing convergence results for f -greedy are quite weaker. Indeed, the two results of
rates of convergence are both from [24], where it is shown (see Corollary 3.3.8) that
for K ∈C2 and for all v ∈H it holds

min
1≤i≤n

‖v−ΠXnv‖L∞(Ω) ≤Cn−1/d ,

which can be improved to n−2/d if K ∈ C4 and if it is verified a posteriori that all
the points are selected in the interior of Ω . Alternatively, Proposition 3.2.2 in [24]
states that for any continuous kernel and for each v ∈H there exists a subsequence
{mn}n∈N ⊂ N such that

‖v−ΠXmn v‖L∞(Ω) ≤Cm−1/2
n .
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Although Corollary 5.1 applies only to some functions v and not to the entire H , it
gives nevertheless a bound on the error in the H -norm, which is stronger than the
L∞-norm, and it works for the entire sequence of interpolants.

Remark 5.2 (Other selection criteria) We remark that the proof does not directly
apply instead to the power scaled residual greedy selection (psr-greedy) which has
been recently introduced in [8]. In this case the new point is selected as

xn ∈ argmax
x∈Ω\Xn−1

Pn−1(x)
∣∣v(x)− (ΠXn−1v)(x)

∣∣ .
The present approach fails in this case. Indeed, following the same idea, one needs to
bound from below the ratio Pn−1(x̄)/Pn−1(xn−1), where x̄ is defined as in (5.3), and
this quantity may be arbitrarily small.

Theorem 5.1 is a first result on the convergence of the algorithm, and it has the ad-
vantage of providing rates of convergence that do not depend on the input dimension.
Nevertheless, it is far from optimal in the sense that the ideal result that one can aim
for in the setting of adaptive algorithms is rather the following: Given a functional L
such that there exist a sequence of possibly unknown (or not computable) point sets
{X̄n}n∈N, and t,C > 0 such that∥∥vL−ΠX̄n

vL
∥∥

H
≤Cn−t for all n ∈ N,

find a constructive algorithm that selects points {Xn}n∈N such that

‖vL−ΠXnvL‖H ≤C′n−t for all n ∈ N,

with a possibly larger constant C′ ≥C. There is no reason to expect that this can be
achieved by greedy algorithms in particular, but this is actually the case for other
types of greedy algorithms (see e.g. [4]), and they are furthermore particularly attrac-
tive for their easiness of implementation.

In the direction of this optimal expectation, it should also be mentioned that our
algorithm is closely related to the greedy algorithms of [41], where a dictionary in
a generic Hilbert space H is used to approximate a single function f ∈ H. In this
case, the paper [7] proves that for every Hilbert space there exist a dictionary and a
function in the class of Example 2.3 such that the rate of n−1/2 can not be improved.
Nevertheless, in the case of the current paper we are using not a generic dictionary, but
rather the particular one that is generated by translates of the reproducing kernel, and
thus there is no reason to believe that the result of Theorem 5.1 can not be improved.

Despite being not optimal, we remark that also the rates of convergence proved
here are better than the ones of Theorem 3.2 in certain cases. Observe that this of
course does not mean, even in this case, that greedy points are better than quasi-
uniform points, but only that the estimate is better.

Proposition 5.2 (Comparison of the rates for greedy and quasi-uniform points)
Under the assumptions of Theorem 3.2, let r :=−τ/d +(1/2−1/q)+ be the rate of
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convergence for quadrature with quasi-uniform points. Then the rates of convergence
of Theorem 5.1 are better than the ones of Theorem 3.2 if q > 2 and

d
2
< τ < d

(
1− 1

q

)
,

and in this case it holds− 1
2 < r <− 1

q , i.e., the improvement is at most of order n−1/2.
If L is an integration functional as in Example 2.1, the condition on τ is equivalent

to requiring that d/2 < τ < d/p if gL ∈ Lp(Ω).

Proof Since τ > d/2, the proved rate of convergence of the greedy algorithm is better
if

−1
2
<− τ

d
+

(
1
2
− 1

q

)
+

, (5.5)

and this can happen only if
(

1
2 −

1
q

)
+
> 0, i.e., q> 2. In this case we have (1/2−1/q)+=

1/2−1/q ∈ (0,1/2], and then (5.5) guarantees that the greedy estimate is better for
all d and τ such that

d
2
< τ <

d
2
+

d
2
− d

q
= d

(
1− 1

q

)
.

When substituted into r, these two bounds give the values −1/2 and −1/q.
In the particular case of integration functionals, this is equivalent to require that

d/2 < τ < d/p if gL ∈ Lp(Ω).

We conclude this section with some remarks on the results.

Remark 5.3 (Almost optimal rate when τ ≈ d/2) If Ω ⊂ Rd is sufficiently regular, it
is known that the rate n−τ/d is optimal for approximation of L( f ) :=

∫
Ω

f (x)dx for
functions in the Sobolev space W τ

2 (Ω) with τ > d/2. That is, there is no sequence
of quadrature rules whose worst case error decays faster than this; see [27, Sec-
tion 1.3.11] and [28, Section 4.2.4]. Theorem 5.1 therefore shows that the greedy
quadrature algorithm is almost optimal if τ is close to d/2.

Remark 5.4 (Integration on manifolds) We remark that both Theorem 3.2 and Theo-
rem 5.1 remain valid also for certain sets Ω which are not flat subsets of Rd .

Namely, Theorem 5.1 only assumes that Lp spaces can be defined over Ω , and
this is a fairly general assumption. Otherwise, the space H is treated as a generic
Hilbert space, without particular links to the structure of the underlying subset of Rd .

Theorem 3.2, on the other hand, makes use of the error estimate of Theorem 3.1,
which holds for Ω ⊂ Rd . Nevertheless, similar results exist for more general sets
such as for manifolds embedded in Rs (see e.g. [11]), and in this case the error rates
depend on the dimension d of the manifold. These kind of results can be used in the
proof of the theorem, and we analyze an example of this setting in Section 7.3.
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6 Perturbations of the Riesz representer

The construction of both a generic weight-optimal quadrature formula, and the greedy
selection of the centers, are based on the interpolation of the Riesz representer vL. The
whole algorithm is thus based on the availability of evaluations of vL, and this can be
an unrealistic assumption in some cases. In particular, since vL = Ly(K(·,y)), we need
to have an efficient and exact way to compute the functional on the kernel, which is
often not possible for example in the case of integration on arbitrary sets Ω .

Instead, we can assume to have an accurate but expensive approximation L̃ of L,
which can be evaluated but is too expensive to be practical when the evaluation of
the integrand f is expensive. Since the evaluation of the kernel is instead cheap, we
can compute the exact Riesz representer of L̃, i.e., ṽL := L̃yK(·,y), and use it as an
approximation of the exact Riesz representer vL.

For example, L̃ can be in the form of a high-accuracy quadrature rule L̃( f ) :=
∑

M
i=1 ρi f (zi) where M is very large. In this case computing L̃( f ) for a function f

which is expensive to evaluate is not a viable option, while we can construct ṽL :=
∑

M
i=1 ρiK(·, z̃i).

As a first step, the following proposition states that the worst case error of the
weight-optimal quadrature is stable with respect to the use of an approximated Riesz
representer, provided that also the perturbed functional is continuous. Observe that
the result is a s consequence of the fact that kernel-based interpolation is a continuous
process in Hilbert space, being a projector.

Similar results appear in [5, Appendix B] and [39, Section 2] for numerical inte-
gration, although they are less sharp. For example, the former has

√
nε2

L in the place
of ε2

L in the upper bound.

Proposition 6.1 (Stability) Let L, L̃∈H ′ be two functionals with Riesz representers
vL, ṽL ∈H , where L̃ is a perturbation of L with

εL := sup
‖ f‖H ≤1

∣∣L( f )− L̃( f )
∣∣ .

Let X ⊂ Ω and let QX ,L and Q̃X ,L := QX ,L̃ be the weight-optimal quadrature rules
obtained by the interpolation on X of vL and ṽL, respectively.

Then the error obtained by using the wrong Riesz representer ṽL to approximate
L can be bounded as

sup
‖ f‖H ≤1

∣∣L( f )− Q̃X ,L( f )
∣∣2 = eH (QX ,L)

2 + ε
2
L .

Proof By linearity we have that δL := vL− ṽL ∈H is the Riesz representer of the
functional L− L̃ ∈H ′, and by assumption ‖δL‖H = εL. We can then rewrite the
worst-case error of the statement as required, i.e.,

sup
‖ f‖H ≤1

∣∣L( f )− Q̃X ,L( f )
∣∣2 = ‖vL−ΠX (ṽL)‖2

H = ‖vL−ΠX vL +ΠX δL‖2
H

= ‖vL−ΠX vL‖2
H +‖ΠX δL‖2

H +2〈vL−ΠX vL,ΠX δL〉H
= eH (QX ,L)

2 + ε
2
L +2〈vL−ΠX vL,ΠX δL〉H

= eH (QX ,L)
2 + ε

2
L ,
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where in the last step we used the fact that ΠX δL ∈V (X) and vL−ΠX vL ∈V (X)⊥.

We remark that if L̃ is a quadrature rule, then εL is merely the worst-case error
of this quadrature rule, and can thus be estimated. Moreover, for e.g. ρi and z̃i the
weights and points of an inexpensive (quasi) Monte Carlo rule, εL decays with a
well-known rate when M increases.

This result is useful to quantify the error introduced by an approximated know-
ledge of vL only if X is fixed. If instead the greedy algorithm is used, then also the
points X themselves depend crucially on vL, and thus perturbations of the Riesz rep-
resenter lead to different sequences of quadrature centers. To deal with this case we
have the following result. In this case we need to assume that L̃, and not L, is contin-
uous on Lq(Ω)∩H , since it is the one used to run the greedy algorithm.

Proposition 6.2 (Stability of the greedy quadrature) Let L, L̃ ∈H ′ be two func-
tionals with Riesz representers vL, ṽL ∈H , where L̃ is a perturbation of L with

εL := sup
‖ f‖H ≤1

∣∣L( f )− L̃( f )
∣∣ .

Assume furthermore that there exists 1≤ q≤ ∞ and c̃L > 0 such that L̃ is continuous
on Lq(Ω)∩H with norm bounded by c̃L.

Let Xn := Xn(L̃)⊂Ω be the set of points selected after n iterations of the greedy
algorithm applied to ṽL, and let Q̃Xn,L := QXn,L̃ be the corresponding weight-optimal
quadrature rule. Then for n sufficiently large it holds

sup
‖ f‖H ≤1

∣∣L( f )− Q̃Xn,L( f )
∣∣2 ≤ 3εLcGn−1/2 + ε

2
L ,

where cG := max
{
‖ṽL‖H , c̃L |Ω |1/q max

x∈Ω

√
K(x,x)

}
.

Proof For simplicity of notation we set X := Xn, since n is fixed here. Defining δL as
in the previous proposition we have

sup
‖ f‖H ≤1

∣∣L( f )− Q̃X ,L( f )
∣∣2 = ‖vL−ΠX ṽL‖2

H = ‖ṽL +δL−ΠX ṽL‖2
H

= ‖ṽL−ΠX ṽL‖2
H +‖δL‖2

H +2〈ṽL−ΠX ṽL,δL〉H
≤ ‖ṽL−ΠX ṽL‖2

H +‖δL‖2
H +2‖ṽL−ΠX ṽL‖H ‖δL‖H

= ‖ṽL−ΠX ṽL‖H (‖ṽL−ΠX ṽL‖H +2‖δL‖H )+‖δL‖2
H ,

and inserting the estimate of Theorem 5.1 for the functional L̃ gives the result, pro-
vided that n is large enough to guarantee that cGn−1/2 ≤ εL.



22 Gabriele Santin et al.

7 Numerical experiments

In this section we test the greedy algorithm on various integration test problems. We
start by an example where greedy points provide the same rate of convergence of
the worst case error as quasi-uniform points, but possibly with an arbitrarily better
constant, and then we analyze a case where also the rate is strictly better for greedy
points. Then, we show how the algorithm performs on a manifold, and finally we test
the method on an Uncertainty Quantification benchmark problem.

The experiments are run by executing the f/P-greedy algorithm using the Riesz
representer vL as a target function, where, as it is customary, the maximization is
performed on a discrete training set Xtr ⊂Ω , which is described in each example. All
the experiments use the Python implementation [34] of the f/P-greedy algorithm.

In the first three examples the functionals are as in Example 2.1 for some Ω

and some function gL which are defined in each example. The Riesz representers
vL can not be computed exactly, so we use an approximation vL̃ constructed using a
quadrature rule given by Ñ ∈ N nodes {x̃i}Ñ

i=1 ⊂ Ω and weights {w̃i}Ñ
i=1 ⊂ R. This

approximation gives

L̃( f ) :=
Ñ

∑
i=1

w̃i f (x̃i)gL(x̃i), f ∈H , vL̃(x) =
Ñ

∑
i=1

w̃igL(x̃i)K(x, x̃i).

The quadrature rule QXn,L̃ is constructed by computing its representer, i.e., the in-
terpolant ΠXnvL̃(x) = ∑

n
i=1 w∗i K(x,xi), where Xn are either quasi-uniform or greedy

points. In any case, the worst case error is computed as

eH

(
QXn,L̃

)
= ‖vL̃−ΠXnvL̃‖H =

(
‖vL̃‖

2
H −‖ΠXnvL̃‖

2
H

)1/2

=

(
Ñ

∑
i, j=1

w̃iw̃ jgL(x̃i)gL(x̃ j)K(x̃i, x̃ j)−
n

∑
i, j=1

w∗i w∗jK(xi,x j)

)1/2

.

To simplify the interpretation of the errors, we always scale vL̃ to have unit norm.
To obtain the worst case error with respect to the exact L, one should consider the
perturbation error εL as in Proposition 6.1 and Proposition 6.2. Observe that in this
step, to reduce the value of εL a quadrature rule with a possibly very large number of
centers Ñ may be used (e.g., a Monte Carlo quadrature), since the formula has to be
applied only once to the kernel to obtain vL̃.

This step requires anyhow some care. Indeed, as long as a formula with a fixed set
of nodes is used, it may happen that L̃ ∈H ′ even if L is unbounded. This is the case
for example of the functional of Section 7.2 if α ≥ 2 and {x̃i}Ñ

i=1 ∈Ω \{0}. It should
thus be taken into account that this approach produces in any case an approximation
of L̃, which may be very far away from L if the wrong approximation is chosen.

7.1 Integration with a compactly supported density

We consider the unit square Ω := [0,1]2⊂R2 as input domain and a quadratic Matérn
kernel, which is defined as K(x,y) := φ(‖x−y‖) with φ(r) := e−γr

(
3+3γr+(γr)2

)
,
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with a free parameter which is set to the value γ = 1 in this experiment. The kernel
corresponds to a value of τ = 4 for the decay of the Fourier transform in (3.1) (see
e.g. Appendix D in [10]).

We consider the integration functional as in Example 2.1 where gL is the indi-
cator function of the square [0.3,0.5]× [0.6,0.8] ⊂ Ω . One would expect that opti-
mal quadrature points for this functional are uniformly distributed inside the support
of gL. As discussed at the beginning of Section 7, we approximate L with a tensor
product Gaussian quadrature with M := 1002 points scaled to the square [0.3,0.5]×
[0.6,0.8].

The greedy algorithm is run by selecting points from a uniform grid Xtr of 104

points in Ω , and it is terminated when 500 points are selected, or when the maximal
absolute interpolation error on Xtr is below the tolerance 10−12. In this way, n = 358
points are selected, and they are shown in Figure 7.1, left. The points are colored
according to the magnitude of the corresponding weight, and they are overlapped to
the contour lines of the density gL.

The greedy algorithm selects almost all points inside the support of the density,
which is the behavior one would expect from an optimal algorithm. Nevertheless,
some points are selected in the area where gL = 0, even if the corresponding weights
are relatively small. The fact that the centers are selected almost only in the support
of gL seems to be an interesting feature of the greedy method, and it is an open issue
to prove whether or not it is the case that optimal points (non necessarily greedy) are
localized in this way. If this is the case, the selection of a few centers outside of the
support may be caused by the use of the approximate Riesz representer. Moreover,
most of the weights are positive, and the negative ones are mostly of small magnitude.

In Figure 7.1, right, we show the worst-case error w.r.t. L̃ obtained with these
greedy points. Since the points are nested, it is possible to show the decay of the worst
case error as a function of the number of centers. As a comparison, we report also
the decay of the worst case error for the optimal quadrature rule which uses uniform
grids of points of increasing cardinality. The figure suggests that both approximation
errors decay as n−τ/d , and in particular, after an initial phase, the convergence of the
greedy error is faster than n−1/2, and this suggests that indeed the rate of Theorem 5.1
is in general suboptimal. Moreover, although the rate of convergence is the same for
the two distributions of points in the asymptotic regime, the greedy error is smaller
and the ratio ρ between the two errors is roughly constant as a function of the num-
ber of points. This is due to the fact that the uniform points are filling the full Ω ,
while the greedy ones fill only the support of gL. We remark that this ratio ρ can be
made arbitrarily small by reducing the support of gL, but no improvements should be
expected in the rate of convergence by using greedy methods.

7.2 Integration with a singular density

We consider here Ω := [0,1]2 ⊂ R2 and L as in Example 2.1, and set gL(x) = ‖x−
xc‖−α with α ≥ 0 and xc := [0.5,0.5]T .

To obtain the best rate of convergence of the error in Theorem 3.2, one should
choose the smallest possible q that satisfies the hypotheses of the theorem for a given
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Fig. 7.1 Results of the greedy algorithm in the example of Section 7.1. The left figure shows the contour
plot of the density gL (bold grayscale line), and the position of the points selected by the algorithm, which
are colored according to the magnitude of the corresponding positive (circles) or negative (crosses) weight.
The right figure shows the decay of the worst-case error as a function of the number of points for the greedy
points and for a grid of equally spaced points, and rates of decay scaled to the greedy error.

L. Indeed, if q is sufficiently small the term (1/2− 1/q)+ vanishes in the exponent.
In this case, we can choose the smallest q such that gL ∈ Lp(Ω) with 1/p+1/q = 1,
and since gL ∈ Lp(Ω) if and only if p < d/α = 2/α , it follows that the limiting value
is q = 2/(2−α), which gives (1/2− 1/q)+ = (α/2− 1/2)+. Since the integral is
well defined if and only if p ≥ 1, this implies also that we need to require 1 < d/α ,
i.e., α < d = 2, to have a bounded functional.

We thus consider values α ∈{1,3/2,2−10−10}, and run the experiments with the
same kernel, and the same setting of the greedy algorithm as in Section 7.1. The inte-
gral defining L is approximated by a Monte Carlo approximation L̃ that uses M := 104

uniformly randomly distributed points on the unit square. The results are reported in
Figure 7.2, where the points and weights of the greedy approximation are shown, to-
gether with the rate of convergence of the greedy and uniform quadrature as functions
of the number of points.

The figure clearly shows that the greedy points are increasingly concentrated
around the singularity of gL as α increases, with weights which are larger. More-
over, the rates of convergence show that quadrature rules with uniform points have a
worst case error converging to zero as n−τ/d+(α/2−1/2)+ , which is strictly slower than
n−τ/d for α > 1. The greedy algorithm, on the other hand, selects non uniform points
and it provides a convergence like n−τ/d .

In other words, quasi-uniform points are sub-optimal for too skewed linear func-
tionals.

7.3 Integration on a manifold

A similar experiment as in Section 7.1 is repeated on the sphere Ω := S2 ⊂ R3. As-
suming Ω is represented in Cartesian coordinates, we consider the integration func-
tional as in Example 2.1 where gL(x) := exp

(
(x− xc)

T Σ(x− xc)
)
, xc := [0,−1,0]T ,

and Σ is the diagonal matrix with diagonal [−5,−5,−3]T . The approximation L̃ of
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Fig. 7.2 Results of the greedy algorithm in the example of Section 7.2 for values of α ∈ {1,3/2,2−
10−10} (from top to bottom). The left plot shows the position of the points selected by the algorithm,
which are colored according to the magnitude of the corresponding positive (circles) or negative (crosses)
weight (left column). The right plot shows the decay of the worst-case error as a function of the number of
points, both for greedy and equally spaced points. The rates of decay are scaled by a constant.

L is similarly realized with a Monte Carlo approximation with M := 104 uniformly
random points. We use the same setting as in Section 7.1 for the kernel, its parame-
ters, the greedy algorithm and the termination criteria, with the only difference that
the points are selected starting from a set of uniformly random points on the sphere.

Moreover, we compare the greedy points with sets of minimal energy points (see
e.g. [13]). For each n, these sets Xn := {xi}n

i=1 are defined as minima on (S2)n of the
Riesz energy

E(Xn) :=
n

∑
i=1

n

∑
j=i+1

∥∥xi− x j
∥∥−2

.

We use here the precomputed points from [45], which are found by numerical mini-
mization of this functional.
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In this case the density is not constant and does not have compact support, and this
is reflected in the fact that the points selected by the greedy algorithm are more spread
over the entire Ω (see Figure 7.3, left). Nevertheless, the points are more concentrated
in the area where the density gL is larger, and the weights are accordingly larger. Also
in this experiment, a few weights of small magnitude are negative.

Again, the convergence of the worst-case error (see Figure 7.3, right) shows that
the greedy algorithm produces quadrature weights with a worst-case error decaying
like n−τ/d , if one sets d = 2 as the dimension of Ω as an embedded manifold in R3.
This is in accordance with known error estimate for kernel interpolation on manifolds
(see [11] and Remark 5.4). The same behavior is clearly observed with integration
with the minimal energy points.
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Fig. 7.3 Results of the greedy algorithm in the example of Section 7.3, represented in spherical coordi-
nates. The left figure shows the contour plot of the density gL (grayscale lines), and the position of the
points selected by the algorithm, which are colored according to the magnitude of the corresponding pos-
itive (circles) or negative (crosses) weight. The right figure shows the decay of the worst-case error as a
function of the number of points for the greedy points and for sets of minimal energy points, and rates of
decay scaled to the greedy error. Observe that d is the dimension of the manifold, and not of the embedding
space.

7.4 An Uncertainty Quantification example

As a final example we test the greedy algorithm on the benchmark Uncertainty Quan-
tification (UQ) problem described in [21].

We briefly describe the setting of the problem, and we refer to the cited paper
for a thorough discussion. We have a Partial Differential Equation (PDE) modelling
a two-phase flow in a porous medium, which depends on three input parameters (the
injection rate, the relative permeability degree, and the reservoir porosity) and repre-
sents the saturation of some carbon dioxide which is injected into a one-dimensional
aquifer over a time interval [0,T ].

The aquifer is discretized into 250 equal sized cells, and for a fixed value of
the parameter triple θ := [θ1,θ2,θ3]

T ∈ R3, a time-dependent numerical solution of
the PDE can be computed by the Finite Volume (FV) method. We denote as s(θ) ∈
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R250 the nodal values of the numerical solution at the final time T computed with
parameters θ , and thus the FV discretization defines a map θ ∈ R3 7→ s(θ) ∈ R250.

Instead than just computing the solution for a fixed value, in this case one is
interested to quantify the effect on the solution s(θ) of an uncertain knowledge of the
input parameters. In particular, each parameter triple θ := [θ1,θ2,θ3]

T is assumed to
represent a sample from three random variables with known distributions, and thus
the solution s(θ) itself is a random variable with values in R250. The goal of the
benchmark problem is to estimate the mean µs ∈ R250 and the standard deviation
σs ∈ R250 of this random vector using as few solutions of the PDE as possible.

The benchmark includes also a dataset [22] which contains a spatial discretiza-
tion of the input parameters into N := 10000 points, i.e., a set X := {θi}N

i=1 ⊂ R3

representing independent samples of the parameters drawn accordingly to the respec-
tive distributions, and an implementation of the FV solver to compute the values
Y := {yi := s(θi)}N

i=1 ⊂ R250. Moreover, the mean and standard deviation vectors
computed by the various methods analyzed in [21] are also available for compari-
son. As a reference solution, the paper uses the integral computed by a Monte Carlo
approximation which uses the full set of nodes X .

In this case, we run the greedy algorithm with the same Matérn kernel and γ :=
1/2. Following [21], the points are selected from X itself, since this discretization
incorporates information of the distribution of the parameters and this is assumed to
be a known information. The resulting quadrature rule is applied to each of the 250
entries of the solution vector. Namely, if we assume that the points selected by the
greedy algorithm are the subset Xn := {θi1 , . . . ,θin} ⊂ X , we obtain an approximated
mean vector µ̃s ∈ R250 as

(µ̃s) j := QXn(s j) =
n

∑
k=1

w∗k(yik) j,

where (yik) j is the j-th component of the ik-th output vector. Similarly, the approxi-
mated standard deviation is the vector σ̃s ∈ R250 with

(σ̃s) j :=

(
n

∑
k=1

w∗k(yik)
2
j − (µ̃s)

2
j

)1/2

,

where we used the fact that the variance is the difference between the mean of the
square and the square of the mean.

Observe that this process is actually extracting a compressed quadrature rule from
the reference Monte Carlo one.

For these approximated vectors, we can compute the `2 errors with respect to
the reference mean and standard deviation provided by the Monte Carlo quadrature.
Following [21], these are computed as

Eµ :=
1

250
‖µs− µ̃s‖ , Eσ :=

1
250
‖σs− σ̃s‖ .

The values of Eµ , Eσ are reported in Figure 7.4 for increasing values of the number
of quadrature points. We also report the same errors obtained in the cited paper using
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some state-of-the-art methods, namely arbitrary polynomial chaos expansion (aPC),
spatially adaptive sparse grids (aSG), P-greedy kernel interpolation (PGreedy), and
Hybrid stochastic Galerkin (HSG). It is clear that the present method yields compa-
rable results, and it even outperforms them if sufficiently many centers are used.

We remark that in the plot (and in the paper) for each of the methods two given
parameter values are tested. Also in the case of the algorithm of this paper, a quite
high sensitivity to the parameter γ of the kernel was observed, even if we report only
the results for a representative value.
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Fig. 7.4 Errors Eµ (approximation of the mean, left plot) and Eσ (approximation of the standard deviation,
right plot) as functions of the number of points obtained by the greedy algorithm in the example of Section
7.4. The results are compared with the ones obtained with arbitrary polynomial chaos expansion (aPC),
spatially adaptive sparese grids (aSG), P-greedy kernel interpolation (PGreedy), and Hybrid stochastic
Galerkin (HSG) from [21].

8 Future work

The numerical experiments strongly suggest that the theoretical rates obtained for
the greedy points are suboptimal, and this behavior would deserve additional inves-
tigation. This is particularly evident in cases when the target function or functional
has some localized features. In this case, greedy methods seem to be able to localize
the interpolant (or quadrature formula), giving a clear advantage over quasi-uniform
points. An understanding of this effect beyond numerical evidence is still not avail-
able.

In more general terms, it is not clear how to characterize functions or functionals
for which optimal quadrature or interpolation points are localized. The experiment
of Section 7.1 seems to suggest that this is the case for integration functionals with
densities with localized support, but a proof of this fact is missing.

Future work should focus also on the study of the sign of the weights, and on a
stability analysis of the greedy quadrature formulas.

Moreover, the sensitivity of the results on the parameter of the kernel (e.g. as
observed in Section 7.4) calls for efficient techniques for the estimation of γ , which
in this kind of application need especially to rely on few or no additional samples of
the expensive function to be integrated. In this setting, a viable and promising option
is to use Bayesian methods based on the maximization of a likelihood of the model
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give the data. Recently, investigations of these techniques from a deterministic point
of view have been published (see [19, 20]). It is anyhow not yet clear how these can
be coupled with greedy, or generally adaptive methods.
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