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It is known that the membership in a given reproducing kernel Hilbert space (RKHS) of the samples of a Gaussian
process X is controlled by a certain nuclear dominance condition. However, it is less clear how to identify a “small”
set of functions (not necessarily a vector space) that contains the samples. This article presents a general approach
for identifying such sets. We use scaled RKHSs, which can be viewed as a generalisation of Hilbert scales, to define
the sample support set as the largest set which is contained in every element of full measure under the law of X
in the σ-algebra induced by the collection of scaled RKHS. This potentially non-measurable set is then shown to
consist of those functions that can be expanded in terms of an orthonormal basis of the RKHS of the covariance
kernel of X and have their squared basis coefficients bounded away from zero and infinity, a result suggested by
the Karhunen–Loève theorem.
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1. Introduction
Let K : T × T → R be a positive-semidefinite kernel on a set T and consider any Gaussian process
(X(t))t∈T with mean zero and covariance K , which we denote (X(t))t∈T ∼ GP(0,K). Let H(K) be the
reproducing kernel Hilbert space (RKHS) of K equipped with inner product 〈·, ·〉K and norm ‖·‖K . It is
a well-known fact, apparently originating with Parzen [28], that the samples of X are not contained in
H(K) if this space is infinite-dimensional. Furthermore, Driscoll [9]; Fortet [12]; and Lukić and Beder
[24] have used the zero-one law of Kallianpur [15] to show essentially that, given another kernel R and
under certain mild assumptions,

P
[
X ∈ H(R)

]
= 1 if R � K and P

[
X ∈ H(R)

]
= 0 if R� K,

where R � K signifies that R dominates K (i.e., H(K) ⊂ H(R)) and, moreover, that the dominance is
nuclear (see Section 4.1 for details). This Driscoll’s theorem is an exhaustive tool for verifying whether
or not the samples from a Gaussian process are contained in a given RKHS. A review of the topic can
be found in [13, Chapter 4]. Two questions now arise:

• How to construct a kernel R such that R � K?
• Is it possible to exploit the fact that P[X ∈ H(R1) \ H(R2)] = 1 for any kernels such that R1 � K

and R2 � K to identify in some sense the smallest set of functions which contains the samples
with probability one?

Answers to questions such as these are instructive for theory and design of Gaussian process based
learning [11,40], emulation and approximation [18,41], and optimisation [3] methods. For simplicity
we assume that the domain T is a complete separable metric space, that the kernel K is continuous and
its RKHS is separable, and that the samples of X are continuous. Although occasionally termed “rather
restrictive” [9, p. 309], these continuity assumptions are satisfied by the vast majority of domains
and Gaussian processes commonly used in statistics and machine learning literature [31,35], such as
stationary processes with Gaussian or Matérn covariance kernels. Our motivation for imposing these
restrictions is that they imply that RKHSs are measurable.
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1.1. Contributions

First, we present a flexible construction for a kernel R such that R � K . For any orthonormal basis
Φ = (φn)∞n=1 of H(K) the kernel K can be written as K(t, t ′) =

∑∞
n=1 φn(t)φn(t

′) for all t, t ′ ∈ T . Given a
positive sequence A = (αn)∞n=1 such that

∑∞
n=1 αnφn(t)

2 <∞ for all t ∈ T , we define the scaled kernel

KA,Φ(t, t ′) =
∞∑
n=1

αnφn(t)φn(t ′). (1.1)

This is a significant generalisation of the concept of powers of kernels which has been previously used
to construct RKHSs which contain the samples by Steinwart [36]. We call the sequence A a Φ-scaling
of H(K). If αn → ∞ as n → ∞, the corresponding scaled RKHS1, H(KA,Φ), is a proper superset of
H(K), though not necessarily large enough to contain the samples of X . We show that convergence of
the series

∑∞
n=1 α

−1
n controls whether or not samples are contained in H(KA,Φ). If

∑∞
n=1 α

−1
n converges

slowly, we can therefore interpret H(KA,Φ) as a “small” RKHS which contains the samples.
Main Result I (Theorem 4.3). Let Φ = (φn)∞n=1 be an orthonormal basis of H(K) and A = (αn)∞n=1
a Φ-scaling of H(K). If KA,Φ is continuous and dK (t, t ′) = ‖K(·, t) − K(·, t ′)‖K is a metric on T, then
either

P
[
X ∈ H(KA,Φ)

]
= 0 and

∞∑
n=1

1
αn
=∞ or P

[
X ∈ H(KA,Φ)

]
= 1 and

∞∑
n=1

1
αn

<∞.

In Section 5, we use this result to study sample path properties of Gaussian processes defined by
infinitely smooth kernels. These appear to be the first sufficiently descriptive results of their kind.
An example of an infinitely smooth kernel that we consider is the univariate (i.e., T ⊂ R) Gaussian
kernel K(t, t ′) = exp(−(t − t ′)2/(2�2)) with length-scale � > 0 for which we explicitly construct several
scaled kernels R whose RKHSs are “small” but still contain the samples of (X(t))t∈T ∼ GP(0,K).
In Section 6, Theorem 4.3 is applied to provide an intuitive explanation for a conjecture by Xu and
Stein [41] on asymptotic behaviour of the maximum likelihood estimate of the scaling parameter of the
Gaussian kernel when the data are generated by a monomial function on a uniform grid.

Secondly, we use Theorem 4.3 to construct a “small” set which “almost” contains the samples. This
sample support set is distinct from the traditional topological support of a Gaussian measure; see the
discussion at the end of Section 2. Let C(T) denote the set of continuous function on T .
Main Result II (Theorems 4.8 and 4.11). Let Φ = (φn)∞n=1 be an orthonormal basis of H(K) and
suppose there is a Φ-scaling A = (αn)∞n=1 such that

∑∞
n=1 α

−1
n <∞ and KA,Φ is continuous. Let S(R)

be the σ-algebra generated by the collection of scaled RKHSs consisting of continuous functions and
SR(K) the largest subset of C(T) that is contained in every H ∈ S(R) such that P[X ∈ H] = 1. Suppose
that dK (t, t ′) = ‖K(·, t) − K(·, t ′)‖K is a metric on T. Then SR(K) consists precisely of the functions
f =

∑∞
n=1 fnφn such that

lim inf
n→∞

f 2
n > 0 and sup

n≥1
f 2
n <∞. (1.2)

Furthermore, for every H ∈ S(R) such that P[X ∈ H] = 1 there exists F ∈ S(R) such that SR(K) is a
proper subset of F and F is a proper subset of H.

1These spaces are not to be confused with classical Hilbert scales defined via powers of a strictly positive self-adjoint operator;
see [10, Section 8.4] and [20].
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The set SR(K) may fail to be measurable. The latter part of the above result is therefore important
in demonstrating that it is possible to construct sets which are arbitrarily close to SR(K) and contain
the samples using countably many elementary set operations of scaled RKHSs. At its core this is a
manifestation of the classical result that there is no meaningful notion of a boundary between conver-
gent and divergent series [19, § 41]. The general form of the Karhunen–Loève theorem is useful in
explaining the characterisation in (1.2). If (φn)∞n=1 is any orthonormal basis of H(K), then the Gaussian
process can be written as X(t) =

∑∞
n=1 ζnφn(t) for all t ∈ T , where ζn are independent standard normal

random variables. The series converges in L2(P), but if almost all samples of X are continuous, con-
vergence is also uniform on T with probability one [1, Theorem 3.8]. Because ‖X(t)‖2

K =
∑∞

n=1 ζ
2
n and

E[ζ2
n ] = 1 for every n, the Karhunen–Loève expansion suggests, somewhat informally, that the samples

are functions f =
∑∞

n=1 fnφn for which the sequence ( f 2
n )∞n=1 satisfies (1.2).

1.2. On measurability and continuity

Suppose for a moment that T is an arbitrary uncountable set, K a positive-semidefinite kernel on T
such that its RKHS H(K) is infinite-dimensional, and (X(t))t∈T ∼ GP(0,K) a generic Gaussian process
defined on a generic probability space (Ω,A,P). Let RT be the collection of real-valued functions on
T and B̃ the σ-algebra generated by cylinder sets of the form { f ∈ RT : ( f (t1), . . . , f (tn)) ∈ Bn} for
any n ∈ N and any Borel set Bn ⊂ Rn. Let ΦX (ω) = X(·,ω). Then μ̃X = P ◦ Φ−1

X is the law of X on
the measurable space (RT , B̃). Consequently, P[X ∈ H] = μ̃X

(
{ω ∈ Ω : X(·,ω) ∈ H}

)
for H ∈ B̃. Let

(RT , B̃0, μ̃X ,0) be the completion of (RT , B̃, μ̃X ) and R : T × T → R a positive-semidefinite kernel and
H(R) its RKHS. The following facts are known about the measurability of H(K) and H(R):

• In general, H(R) � B̃. For example, if T is equipped with a topology and R is continuous on T ×T ,
then H(R) ⊂ C(T). However, no non-empty subset of C(T) can be an element of B̃.

• LePage [21, p. 347] has proved that H(K) ∈ B̃0 and μ̃X ,0(H(K)) = 0, a claim which originates with
Parzen [27, 28]. A version which requires separability and continuity appears in [16].

• If the RKHS H(R) is infinite-dimensional and R� K , then H(R) ∈ B̃0 and μ̃X ,0(H(R)) = 0. This
result is contained in the proof of Theorem 7.3 in [24]. See also [13, Proposition 4.5.1].

• LePage [21, Corollary 2] has proved a dichotomy result which states that if G ⊂ RT is an additive
group and G ∈ B̃0, then either μ̃X ,0(G) = 0 or μ̃X ,0(G) = 1. Furthermore, μ̃X ,0(G) = 1 implies that
H(K) ⊂ G. This is a general version of the zero-one law of Kallianpur [15, Theorem 2].

It appears that not much more can be said without imposing additional structure or constructing ver-
sions of X , as is done in [24].

Suppose that (T,dT ) is a complete separable metric space, that the kernel K is continuous, and that
almost all samples of (X(t))t∈T ∼ GP(0,K) are continuous, which is to say that the (B̃0, μ̃X ,0)-outer
measure of C(T) is one. Define the probability space (C(T),B, μX ) as

B =C(T) ∩ B̃0 and μX (C(T) ∩ H) = μ̃X ,0(H) for H ∈ B̃0. (1.3)

The rest of this article is concerned with (C(T),B, μX ) and it is to be understood that P[X ∈ H] stands
for μX (H) for any H ∈ B. In this setting Driscoll [9, p. 313] has proved that H(R) ∈ B if R is continuous
and positive-definite. By using Theorem 1.1 in [12] (Theorem 4.1 in [24]) one can generalise this result
for a continuous and positive-semidefinite R; see the proof of Theorem 7.3 in [24].
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1.3. Notation and terminology

For non-negative real sequences (an)∞n=1 and (bn)∞n=1 we write an � bn if there is C > 0 such that
an ≤ Cbn for all sufficiently large n. If both an � bn and bn � an hold, we write an � bn. If an/bn → 1
as n →∞, we write an ∼ bn. For two sets F and G we use F � G to indicate that F is a proper subset
of G. A kernel R : T ×T → R is positive-semidefinite if

N∑
i=1

N∑
j=1

aiajR(ti, tj) ≥ 0 (1.4)

for any N ≥ 1, a1, . . . ,aN ∈ R and t1, . . . , tN ∈ T . In the remainder of this article positive-semidefinite
kernels are simply referred to as kernels. If the inequality in (1.4) is strict for any pairwise distinct
t1, . . . , tN , the kernel is said to be positive-definite.

1.4. Standing assumptions

For ease of reference our standing assumptions are collected here. We assume that (i) (T,dT ) is a
complete separable metric space; (ii) the covariance kernel K : T × T → R is continuous and positive-
semidefinite on T × T ; (iii) the RKHS H(K) induced by K is infinite-dimensional and separable2;
and (iv) (X(t))t∈T ∼ GP(0,K) is a zero-mean Gaussian process on a probability space (Ω,A,P) with
continuous paths. The law μX of X is defined on the measurable space (C(T),B) which was constructed
in Section 1.2. Some of our results have natural generalisations for general second-order stochastic
processes; see [24], in particular Sections 2 and 5, and [36]. We do not pursue these generalisations.

2. Related work
Reproducing kernel Hilbert spaces which contain the samples of (X(t))t∈T ∼ GP(0,K) have been con-
structed by means of integrated kernels in [23], convolution kernels in [5] and [11, Section 3.1], and,
most importantly, powers of RKHSs [39] in [17, Section 4] and [36]. Namely, let T be a compact metric
space, K a continuous kernel on T × T , and ν a finite and strictly positive Borel measure on T . Then
the integral operator Tν , defined for f ∈ L2(ν) via

(Tν f )(t) =
∫
T

K(t, t ′) f (t ′)dν(t ′), (2.1)

has decreasing and positive eigenvalues (λn)∞n=1, which vanish as n →∞, and eigenfunctions (ψn)∞n=1 in
H(K) such that (

√
λnψn)∞n=1 is an orthonormal basis of H(K). The kernel has the uniformly convergent

Mercer expansion K(t, t ′) =
∑∞

n=1 λnψn(t)ψn(t
′) for all t, t ′ ∈ T . For θ > 0, the θth power of K is defined

as

K(θ)(t, t ′) =
∞∑
n=1

λθnψn(t)ψn(t ′). (2.2)

The series (2.2) converges if
∑∞

n=1 λ
θ
nψn(t)2 < ∞ for all t ∈ T . Furthermore, H(K(θ2)) � H(K(θ1)) if

θ1 < θ2 and P[X ∈ H(K(θ))] = 1 if and only if
∑∞

n=1 λ
1−θ
n < ∞ [36, Theorem 5.2]. When it comes to

2Most famously, separable RKHSs are induced by Mercer kernels, which are continuous kernels defined on compact subsets of
R
d [29, Section 11.3].
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sample properties, the power kernel construction has two significant downsides: (i) The measure ν is
a nuisance parameter. If one is only interested in sample path properties of Gaussian processes this
measure should not have an intrinsic part to play in the analysis and results. (ii) The construction is
somewhat inflexible and unsuitable for infinitely smooth kernels. Because H(K(θ)) consists precisely
of the functions f =

∑∞
n=1 fnλ

1/2
n ψn such that

∑∞
n=1 f 2

n λ
1−θ
n < ∞ and λn → 0 as n → ∞, how much

larger H(K(θ)) is than H(K) = H(K(θ=1)) is determined by rate of decay of the eigenvalues. Power
RKHSs are more descriptive and fine-grained when the kernel is finitely smooth and its eigenvalues
have polynomial decay n−a for a > 0 (e.g., Matérn kernels) than when the kernel is infinitely smooth
with at least exponential eigenvalue decay e−bn for b > 0 (e.g., Gaussian): the change the decay condi-
tion

∑∞
n=1 f 2

n <∞ for the coefficients ( fn)∞n=1 to
∑∞

n=1 f 2
n n−a(1−θ) <∞ is arguably less substantial than

that from
∑∞

n=1 f 2
n <∞ to

∑∞
n=1 f 2

n e−b(1−θ)n <∞. Indeed, as pointed out by Kanagawa et al. [17, Sec-
tion 4.4], when the kernel is Gaussian every H(K(θ)) with θ < 1 contains the samples with probability
one, which renders powers of RKHSs of dubious utility in that setting because H(K(θ=1)) = H(K) does
not contain the samples. The relationship between powers of RKHSs and scaled RKHSs is discussed
in more detail at the end of Section 3. In Section 5 we demonstrate that scaled RKHSs are more useful
in describing sample path properties of Gaussian processes defined by infinitely smooth kernels than
powers of RKHSs.

To the best of our knowledge, the question about a “minimal” set which contains the samples with
probability one has received only cursory discussion in the literature. Perhaps the most relevant digres-
sion on the topic is an observation by Steinwart [36, pp. 369–370], given here in a somewhat applied
form and without some technicalities, that the samples are contained in the set( ⋂

r<s

Wr
2 (T)

)
\W s

2 (T) (2.3)

with probability one if H(K) is norm-equivalent to the fractional Sobolev space W s+d/2
2 (T) for s > 0

on a suitable domain T ⊂ Rd . In the Sobolev case the samples are therefore “d/2 less smooth” than
functions in the RKHS of K . Because W s

2 (T) = ∪r≥sWr
2 (T), the set in (2.3) has the same form as the

sample support set in (4.2). This observation is, of course, a general version of the familiar result that
the sample paths of the Brownian motion, whose covariance kernel K(t, t ′) = min{t, t ′} on T = [0,1]
induces the Sobolev space W1

2 ([0,1]) with zero boundary condition at the origin, have regularity 1/2 in
the sense that they are almost surely α-Hölder continuous if and only if α < 1/2. That is, there is C > 0
such that, for almost every ω ∈ Ω, |X(t,ω) − X(t ′,ω)| ≤ C |t − t ′|α for all t, t ′ ∈ [0,1] and any α < 1/2.
However, Lévy’s modulus of continuity theorem [26, Section 1.2] improves this to |X(t,ω) − X(t ′,ω)| ≤
C
√

h log(1/h) when h = |t − t ′| is sufficiently small. Since the Sobolev space W s
2 (T) consists of those

functions f : T → R which admit an L2(Rd)-extension fe : Rd → R whose Fourier transform satisfies∫
Rd

(
1 + ‖ξ‖2 ) s | f̂e(ξ)|2 dξ <∞, (2.4)

Lévy’s modulus of continuity theorem suggests replacing the weight in (2.4) with, for example,
(1 + ‖ξ‖2)s log(1 + ‖ξ‖) so that the resulting function space is a proper superset of W s

2 (T) and a proper
subset of Wr

2 (T) for every r < s and hence a proper subset of the set in (2.3). Some results and discus-
sion in [18, Section 4.2] and [34] have this flavour.

Finally, we remark that classical results about the topological support of a Gaussian measure are
distinct from the results in this article. Let C(T) be equipped with the standard supremum norm ‖·‖∞.
The topological support, suppC(T )(μX ), of the measure μX is the set

suppC(T )(μX ) = { f ∈ C(T) : μX (B( f ,r)) > 0 for all r > 0},
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where B( f ,r) is the f -centered r-ball in (C(T), ‖·‖∞). It is a classical result [16, Theorem 3] that
suppC(T )(μX ) = H(K), where H(K) is the closure of H(K) in (C(T), ‖·‖∞). In other words, the topolog-
ical support of μX contains every continuous function f such that for every ε > 0 there exist gε ∈ H(K)
satisfying ‖ f − gε ‖∞ < ε. Now, recall that a kernel R is universal if H(R) is dense in C(T) [37, Sec-
tion 4.6]. Most kernels of interest to practitioners are universal, including Gaussians, Matérns, and
power series kernels. But, by definition, the closure of the RKHS of a universal kernel equals C(T).
Therefore suppC(T )(μX ) = H(K) =C(T) if K is a universal kernel. This result does not provide any in-
formation about the samples because we have assumed that the samples are continuous to begin with.
See [2, Section 3.6] for further results on general topological supports of Gaussian measures.

3. Scaled reproducing kernel Hilbert spaces
For any orthonormal basis Φ = (φn)∞n=1 of H(K) the kernel has the pointwise convergent expansion
K(t, t ′) =

∑∞
n=1 φn(t)φn(t

′) for all t, t ′ ∈ T . By the standard characterisation of a separable Hilbert space,
the RKHS consists of precisely those functions f : T → R that admit an expansion f =

∑∞
n=1 fnφn

for coefficients such that
∑∞

n=1 f 2
n < ∞. The Cauchy–Schwarz inequality ensures that this expansion

converges pointwise on T . For given functions f =
∑∞

n=1 fnφn and g =
∑∞

n=1 gnφn in the RKHS the
inner product is 〈 f ,g〉K =

∑∞
n=1 fngn.

Definition 3.1 (Scaled kernel and RKHS). We say that a positive sequence A= (αn)∞n=1 is aΦ-scaling
of H(K) if

∑∞
n=1 αnφn(t)

2 <∞ for every t ∈ T . The kernel

KA,Φ(t, t ′) =
∞∑
n=1

αnφn(t)φn(t ′) (3.1)

is called a scaled kernel and its RKHS H(KA,Φ) a scaled RKHS.

See [30,42,43] for prior appearances of scaled kernels under different names and not in the context
of Gaussian processes. Although many of the results in this section have appeared in some form in the
literature, all proofs are included here for completeness.

Proposition 3.2. Let Φ = (φn)∞n=1 be an orthonormal basis of H(K) and A = (αn)∞n=1 a Φ-scaling of
H(K). Then (i) the scaled kernel KA,Φ is positive-semidefinite, (ii) the collection (√αnφn)∞n=1 is an
orthonormal basis of H(KA,Φ), and (iii) the scaled RKHS is

H(KA,Φ) =
{

f =
∞∑
n=1

fnφn : ‖ f ‖2
KA,Φ

=

∞∑
n=1

f 2
n

αn
<∞

}
, (3.2)

where convergence is pointwise, and for any f =
∑∞

n=1 fnφn and g =
∑∞

n=1 gnφn in H(KA,Φ) its inner
product is

〈 f ,g〉KA,Φ
=

∞∑
n=1

fngn
αn

. (3.3)

Proof. By the Cauchy–Schwarz inequality and
∑∞

n=1 αnφn(t)
2 <∞ for every t ∈ T ,

∞∑
n=1

|αnφn(t)φn(t ′)| ≤
( ∞∑
n=1

αnφn(t)2
) 1/2 ( ∞∑

n=1

αnφn(t ′)2
) 1/2

<∞
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for any t, t ′ ∈ T . This proves that the scaled kernel in (3.1) is well-defined via an absolutely conver-
gent series. To verify that KA,Φ is positive-semidefinite, note that, for any N ≥ 1, a1, . . . ,aN ∈ R, and
t1, . . . , tN ∈ T ,

N∑
i=1

N∑
j=1

aiajKA,Φ(ti, tj) =
∞∑
n=1

αn

N∑
i=1

N∑
j=1

aiajφn(ti)φn(tj ) =
∞∑
n=1

αn

( N∑
i=1

aiφn(ti)
) 2

is non-negative because each αn is positive. Because

∞∑
n=1

| fn
√
αnφn(t)| ≤

( ∞∑
n=1

f 2
n

) 1/2 ( ∞∑
n=1

αnφn(t)2
) 1/2

<∞ for every t ∈ T

if
∑∞

n=1 f 2
n <∞, the space defined in (3.2) and (3.3) is a Hilbert space of functions with an orthonormal

basis (√αnφn)∞n=1. Since KA,Φ(t, t ′) =
∑∞

n=1 αnφn(t)φn(t
′), the scaled kernel is the unique reproducing

kernel of this space [e.g., 25, Theorem 9].

A scaled RKHS depends on the ordering of the orthonormal basis of H(K) used to construct it. For
example, let Φ = (φn)∞n=1 be an orthonormal basis of H(K) and suppose that αn = n defines a Φ-scaling
of H(K). Define another ordered orthonormal basis Ψ = (ψn)∞n=1 by setting ψ2n+1 = φ2n for n ≥ 0
and interleaving the remaining φn to produce Ψ = (φ1, φ3, φ2, φ5, φ4, φ6, φ8, φ7, φ16, . . .). The function
f =

∑∞
n=0 φ2n �

∑∞
n=1 fΦ,nφn is in H(KA,Φ) because

‖ f ‖2
KA,Φ

=

∞∑
n=1

f 2
Φ,n

αn
=

∞∑
n=0

1
2n

<∞

but not in H(KA,Ψ) because f =
∑∞

n=0 φ2n =
∑∞

n=0 ψ2n+1 �
∑∞

n=1 fΨ,nψn and therefore

‖ f ‖2
KA,Ψ

=

∞∑
n=1

f 2
Ψ,n

αn
=

∞∑
n=0

1
2n + 1

=∞.

In practice, the orthonormal basis usually has a natural ordering. For instance, the decreasing eigenval-
ues specify an ordering for a basis obtained from Mercer’s theorem (see Section 2) or the basis may
have a polynomial factor, the degree of which specifies an ordering (see the kernels in Sections 5.2
and 5.3).

The following results compare sizes of scaled RKHSs: the faster αn grows, the larger the RKHS
H(KA,Φ) is. A number of additional properties between scaled RKHSs can be proved in a similar
manner but are not needed in the developments of this article. Some of the below results or their
variants can be found in the literature. In particular, see [42, Section 6] and [43, Section 4] for a version
of Proposition 3.5 and some additional results.

Proposition 3.3. Let Φ = (φn)∞n=1 be an orthonormal basis of H(K) and A = (αn)∞n=1 and B = (βn)∞n=1
two Φ-scalings of H(K). Then H(KB,Φ) ⊂ H(KA,Φ) if and only if βn � αn. In particular, H(K) ⊂
H(KA,Φ) if and only if infn≥1 αn > 0.

Proof. If βn � αn, then for any f =
∑∞

n=1 fnφn ∈ H(KB,Φ) we have

‖ f ‖2
KA,Φ

=

∞∑
n=1

f 2
n

αn
=

∞∑
n=1

βn
αn

f 2
n

βn
≤ ‖ f ‖2

KB ,Φ
sup
n≥1

βn
αn

<∞. (3.4)
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Consequently, H(KB,Φ) ⊂ H(KA,Φ). Suppose then that H(KB,Φ) ⊂ H(KA,Φ) and assume to the contrary
that supn≥1 α

−1
n βn = ∞ so that there is a subsequence (nm)∞m=1 such that α−1

nm βnm ≥ 2m. Then f =∑∞
m=1 2−m/2√βnmφnm ∈ H(KB,Φ) \ H(KA,Φ) since

‖ f ‖2
KB ,Φ

=

∞∑
m=1

(√
βnm

2m/2

) 2 1
βnm
=

∞∑
m=1

2−m = 1 but ‖ f ‖2
KA,Φ

=

∞∑
m=1

2−m
βnm
αnm

≥
∞∑

m=1

1 =∞,

which contradicts the assumption that H(KB,Φ) ⊂ H(KA,Φ). Thus supn≥1 α
−1
n βn < ∞. The second

statement follows by setting βn = 1 for every n ∈ N and noting that then H(KB,Φ) = H(K).

Two normed spaces F and G are said to be norm-equivalent if they are equal as sets and if there exist
positive constants C1 and C2 such that C1 ‖ f ‖F ≤ ‖ f ‖G ≤ C2 ‖ f ‖F for all f ∈ F. From (3.4) it follows
that H(KA,Φ) and H(KB,Φ) are norm-equivalent if and only if αn � βn.

Corollary 3.4. Let Φ = (φn)∞n=1 be an orthonormal basis of H(K) and A = (αn)∞n=1 and B = (βn)∞n=1
two Φ-scalings of H(K). Then H(KA,Φ) and H(KB,Φ) are norm-equivalent if and only if αn � βn.

Proposition 3.5. Let Φ = (φn)∞n=1 be an orthonormal basis of H(K) and A = (αn)∞n=1 and B = (βn)∞n=1
two Φ-scalings of H(K). Then H(KB,Φ)� H(KA,Φ) if and only if supn≥1 αnβ

−1
n =∞ and βn � αn.

Proof. Assume first that supn≥1 αnβ
−1
n = ∞ and βn � αn. Since βn � αn, Proposition 3.3 yields

H(KB,Φ) ⊂ H(KA,Φ). Thus H(KB,Φ) is a proper subset of H(KA,Φ) if H(KA,Φ) is not a subset of
H(KB,Φ). But, again by Proposition 3.3, H(KA,Φ) ⊂ H(KB,Φ) if and only if αn � βn, which contra-
dicts the assumption that supn≥1 αnβ

−1
n =∞. Hence H(KB,Φ) is a proper subset of H(KA,Φ).

Assume then that H(KB,Φ)� H(KA,Φ). Then βn � αn by Proposition 3.3. If supn≥1 αnβ
−1
n =∞ did

not hold, there would exist C > 0 such that αn ≤ Cβn for all n ∈ N, which is to say αn � βn. But by
Proposition 3.3 this would imply that H(KA,Φ) ⊂ H(KB,Φ), which would contradict the assumption that
H(KB,Φ) is a proper subset of H(KA,Φ). This completes the proof.

Remark 3.6. Let H(R) be another separable RKHS of functions on T . The RKHSs H(K) and H(R)
are simultaneously diagonalisable if there exists an orthonormal basis (φn)∞n=1 of H(K) which is an
orthogonal basis of H(R). That is, (‖φn‖−1

R φn)∞n=1 is an orthonormal basis of H(R) and consequently
H(R) = H(KA,Φ) for the scaling with αn = ‖φn‖−2

R .

We conclude this section by demonstrating that scaled RKHSs generalise powers of RKHSs. We
say that a Φ-scaling Aρ = (αn)∞n=1 of H(K) is ρ-hyperharmonic if αn = nρ for some ρ ≥ 0. The RKHS
H(KAρ ,Φ) is a ρ-hyperharmonic scaled RKHS. Recall from Section 2 that if T is a compact metric
space, K is continuous on T × T , and ν is a finite and strictly positive Borel measure on T , then the
integral operator in (2.1) has eigenfunctions (ψn)∞n=1 and decreasing positive eigenvalues (λn)∞n=1 and
Ψ = (

√
λnψn)∞n=1 is an orthonormal basis of H(K). For θ > 0 the kernel K(θ)(t, t ′) =

∑∞
n=1 λ

θ
nψn(t)ψn(t ′)

is the θth power of K and its RKHS H(K(θ)) the θth power of H(K). These objects are well-defined if∑∞
n=1 λ

θ
nψn(t) <∞ for all t ∈ T . We immediately recognise that K(θ) equals the scaled kernel KA,Ψ for

the scaling A = (λθ−1
n )∞

n=1 because

KA,Ψ(t, t ′) =
∞∑
n=1

λθ−1
n λnψn(t)ψn(t ′) =

∞∑
n=1

λθnψn(t)ψn(t ′) = K(θ)(t, t ′).
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Polynomially decaying eigenvalues (λn � n−p for some p > 0) are an important special case. For ex-
ample, this holds with p = −2s/d if T ⊂ Rd and H(K) is norm-equivalent to the Sobolev space W s

2 (T)
for s > d/2 [36, p. 370]. If λn � n−p and ρ = p(1 − θ), the ρ-hyperharmonic scaled RKHS is norm-
equivalent to the power RKHS H(K(θ)) by Corollary 3.4 since nρλn � n−θp � λθn.

4. Sample path properties

This section contains the main results of the article. First, we consider a specialisation to scaled RKHSs
of a theorem originally proved by Driscoll [9] and later generalised by Lukíc and Beder [24]. Then we
define general sample support sets and characterise them for σ-algebras generated by scalings of H(K).

4.1. Domination and generalised Driscoll’s theorem for scaled RKHSs

A kernel R on T dominates K if H(K) ⊂ H(R). In this case there exists [24, Theorem 1.1] a unique
linear operator L : H(R) → H(K), called the dominance operator, whose range is contained in H(K)
and which satisfies 〈 f ,g〉R = 〈L f ,g〉K for all f ∈ H(R) and g ∈ H(K). The dominance is said to be
nuclear, denoted R � K , if H(R) is separable and the operator L is nuclear, which is to say that

tr(L) =
∞∑
n=1

〈Lψn,ψn〉R <∞ (4.1)

for any orthonormal basis (ψn)∞n=1 of H(R).3

Define the pseudometric dR(t, t ′) = ‖R(·, t) − R(·, t ′)‖R =
√

R(t, t) − 2R(t, t ′) + R(t ′, t ′) on T . If R
is positive-definite, dR is a metric. However, positive-definiteness is not necessary for dR to be a
metric. For example, the Brownian motion kernel R(t, t ′) = min{t, t ′} on T = [0,1] is only positive-
semidefinite because R(t,0) = 0 for every t ∈ T but nevertheless yields a metric because dR(t, t ′) =√

t − 2 min{t, t ′} + t ′ vanishes if and only if t = t ′. See [24, Section 4] for more properties of dR. Injec-
tivity of the mapping t �→ R(·, t) is equivalent to dR being a metric.

By the following theorem, a special case of the zero-one law of Kallianpur [15,21] and a gen-
eralisation by Lukić and Beder [24, Theorem 7.5] of an earlier result by Driscoll [9, Theorem 3],
the nuclear dominance condition determines whether or not the samples of a Gaussian process
(X(t))t∈T ∼ GP(0,K) lie in H(R). In particular, the probability of them being in H(R) is always ei-
ther one or zero.

Theorem 4.1 (Generalised Driscoll’s Theorem). Let R be a continuous kernel on T ×T with separa-
ble RKHS and (X(t))t∈T ∼ GP(0,K). If dR is a metric, then either

P
[
X ∈ H(R)

]
= 0 and R� K or P

[
X ∈ H(R)

]
= 1 and R � K .

Proof. Theorem 7.5 in [24] is otherwise identical except that R is not assumed dT -continuous and the
samples of X are assumed dR-continuous. However, when R is dT -continuous, dT -continuity of the
samples, which one of our standing assumptions, implies their dR-continuity.

Summability of the reciprocal scaling coefficients controls whether or not a scaled RKHS contains
the sample paths.

3A change of basis shows that tr(L) does not depend on the orthonormal basis.
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Lemma 4.2. Let Φ = (φn)∞n=1 be an orthonormal basis of H(K) and A = (αn)∞n=1 a Φ-scaling of H(K).
Let R = KA,Φ. If dK is a metric, then so is dR.

Proof. Because dK is a metric, dK (t, t ′)2 = K(t, t)−2K(t, t ′)+K(t ′, t ′) =
∑∞

n=1[φn(t)−φn(t
′)]2 vanishes

if and only if t = t ′. Since dR(t, t ′)2 =
∑∞

n=1 αn[φn(t) − φn(t
′)]2 and αn are positive, we conclude that

dR(t, t ′) = 0 if and only if t = t ′.

Theorem 4.3. Let Φ = (φn)∞n=1 be an orthonormal basis of H(K), A = (αn)∞n=1 a Φ-scaling of H(K),
and (X(t))t∈T ∼ GP(0,K). If KA,Φ is continuous and dK is a metric, then either

P
[
X ∈ H(KA,Φ)

]
= 0 and

∞∑
n=1

1
αn
=∞ or P

[
X ∈ H(KA,Φ)

]
= 1 and

∞∑
n=1

1
αn

<∞.

Proof. Assume first that the scaling is such that H(K) ⊂ H(KA,Φ). It is easy to verify using Propo-
sition 3.2 that the dominance operator L : H(KA,Φ) → H(K) is given by L f =

∑∞
n=1 fnα−1

n φn for any
f =

∑∞
n=1 fnφn ∈ H(KA,Φ). Because (√αnφn)∞n=1 is an orthonormal basis of H(KA,Φ) and L(√αnφn) =

1/√αn, the nuclear dominance condition (4.1) is

tr(L) =
∞∑
n=1

〈√
αnLφn,

√
αnφn

〉
KA,Φ

=

∞∑
n=1

〈φn, φn〉KA,Φ
=

∞∑
n=1

1
αn
,

and the claim follows from Theorem 4.1 since Lemma 4.2 guarantees that dR for R = KA,Φ is a metric.
Assume then that H(K) � H(KA,Φ). It is trivial that KA,Φ � K . Thus P[X ∈ H(KA,Φ)] = 0. If we had∑∞

n=1 α
−1
n <∞, then it would necessarily hold that supn≥1 α

−1
n <∞ and consequently H(K) ⊂ H(KA,Φ)

by Proposition 3.3, which is a contradiction. Therefore
∑∞

n=1 α
−1
n =∞.

4.2. Sample support sets

Theorems 4.1 and 4.3 motivate us to define the sample support set of a Gaussian process with respect
to a collection of kernels as the largest set on the “boundary” between their induced RKHSs of prob-
abilities one and zero. Let R be a collection of continuous kernels R on T for which dR is a metric
and H(R) the corresponding set of RKHSs. Every element of H(R) is a subset of C(T). By the gener-
alised Driscoll’s theorem each element of H(R) has μX -measure one or zero, depending on the nuclear
dominance condition. Define the disjoint sets

R1(K) = {R ∈ R : R � K} and R0(K) = {R ∈ R : R� K}

which partition R. We assume that both R1(K) and R0(K) are non-empty and introduce the notion of a
sample support set.

Definition 4.4 (Sample support set). Let S(R) = σ(H(R)) be the σ-algebra generated by H(R). The
sample support set, SR(K), of the Gaussian process (X(t))t∈T ∼ GP(0,K) with respect to R is the
largest subset of C(T) such that SR(K) ⊂ H for every H ∈ S(R) such that μX (H) = 1.

Proposition 4.5. It holds that

SR(K) =
⋂

R1∈R1(K)
H(R1) \

⋃
R0∈R0(K)

H(R0). (4.2)
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Proof. Suppose that there is f ∈ SR(K) which is not contained in the set on the right-hand side
of (4.2). That is, we have either f � ∩R1∈R1(K)H(R1) or f ∈ ∪R0∈R0(K)H(R0). In the former case
there is R1 ∈ R1(K) such that f � H(R1). But because μX (H(R1)) = 1 and SR(K) ⊂ H(R1) by def-
inition, this violates the assumption that f ∈ SR(K). In the latter case there is R0 ∈ R0(K) such
that f ∈ H(R0). As μX (H(R0)) = 0, we have for any R1 ∈ R1 that μX (H(R1) \ H(R0)) = 1. But
since f � H(R1) \ H(R0), the assumption that f ∈ SR(K) is again violated and we conclude that
SR(K) ⊂ ∩R1∈R1(K)H(R1) \ ∪R0∈R0(K)H(R0).

Since all elements of H(R) are either of measure zero or one, so are those of S(R). It is therefore
clear that ∩R1∈R1(K)H(R1) \ ∪R0∈R0(K)H(R0) is contained in every H ∈ S(R) such that μX (H) = 1.
Consequently, ∩R1∈R1(K)H(R1) \ ∪R0∈R0(K)H(R0) ⊂ SR(K). This concludes the proof.

The sample support set is the largest set which is contained in every set of probability one under the
law of X that can be expressed in terms of countably many elementary set operations of the RKHSs
H(R) for R ∈ R. The larger R is, the more precisely SR(K) describes the samples of X . But there is
an important caveat. If R is countable, the sample support set is in the σ-algebra B, defined in (1.3),
and has μX -measure one. However, when R is uncountable and does not contain countable subsets
R′

1(K) ⊂ R1(K) and R′
0(K) ⊂ R0(K) such that⋂

R1∈R1(K)
H(R1) =

⋂
R1∈R′1(K)

H(R1) and
⋃

R0∈R0(K)
H(R0) =

⋃
R0∈R′0(K)

H(R0),

it cannot be easily determined if SR(K) is an element of B.
We are mainly interested in sample support sets with respect to R which consist of all scaled kernels

(and will in Theorem 4.8 characterise this set). It is nevertheless conceivable that one may want to or
be forced to work with less rich set of kernels—scaled or not—and with such an eventuality in mind
we have introduced the more general concept of a sample support set. If R is a collection of scaled
kernels, the sample support set takes a substantially more concrete form. For this purpose we introduce
the concept an approximately constant sequence, which is inspired by the results collected in [19, § 41].

Definition 4.6 (Approximately constant sequence). Let Σ be a collection of non-negative sequences.
A non-negative sequence (an)∞n=1 is said to be Σ-approximately constant if for every (bn)∞n=1 ∈ Σ the
series

∑∞
n=1 bn and

∑∞
n=1 anbn either both converge or diverge.

We mention two properties of approximately constant sequences: (i) If (an)∞n=1 and (a′
n)∞n=1 are

two Σ-approximately constant sequences, then so is their sum. (ii) The larger Σ is, the fewer Σ-
approximately sequences there are. That is, if Σ1 and Σ2 are two collections of non-negative sequences
such that Σ1 ⊂ Σ2, then a non-negative sequence is Σ1-approximately constant if it is Σ2-approximately
constant.

For the RKHS H(K) and any of its orthonormal basis Φ = (φn)∞n=1 we let R(Σ,Φ) denote the set
of all functions f =

∑∞
n=1 fnφn such that the series converges pointwise on T and ( f 2

n )∞n=1 is a Σ-
approximately constant sequence. The following theorem provides a crucial connection between sam-
ple support sets with respect to scaled kernels and functions defined as orthonormal expansions with
approximately constant coefficients.

Theorem 4.7. Let Φ = (φn)∞n=1 be an orthonormal basis of H(K) and ΣΦ a collection of Φ-scalings of
H(K) such that the corresponding scaled kernels are continuous. Suppose that dK is a metric and let
R = {KA,Φ : A ∈ ΣΦ}. Then SR(K) = R(ΣΦ,Φ).
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Proof. Note first that, by Lemma 4.2, dR is a metric for every R ∈ R. Because every scaling of H(K)
has an orthonormal basis that is a scaled version of (φn)∞n=1, every f ∈ SR(K) can be written as f =∑∞

n=1 fnφn for some real coefficients fn. Let Σ1(K) and Σ0(K) stand for the collections of (αn)∞n=1 ∈ ΣΦ
such that

∑∞
n=1 α

−1
n < ∞ and

∑∞
n=1 α

−1
n = ∞, respectively. Then, by Theorem 4.3, KA,Φ ∈ R1(K) if

A ∈ Σ1(K) and KA,Φ ∈ R0(K) if A ∈ Σ0(K). Because, by definition, SR(K) ⊂ H(KA,Φ) for any A ∈ Σ1(K)
and SR(K) ∩ H(KA,Φ) =∅ for any A ∈ Σ0(K) it follows that for every f ∈ SR(K) and any (αn)∞n=1 ∈ ΣΦ
we have

∞∑
n=1

f 2
n

αn
<∞ and

∞∑
n=1

1
αn

<∞ or
∞∑
n=1

f 2
n

αn
=∞ and

∞∑
n=1

1
αn
=∞.

That is, ( f 2
n )∞n=1 is a ΣΦ-approximately constant sequence and thus SR(K) ⊂ R(ΣΦ,Φ). Conversely, if

f ∈ R(ΣΦ,Φ), then f ∈ H(KA,Φ) for every A ∈ Σ1(K) and f � H(KA,Φ) for every A ∈ Σ0(K). Hence
f ∈ SR(K) and thus SR(K) = R(ΣΦ,Φ).

Next we use Theorem 4.7 to describe the sample support set more concretely.

4.3. Sample support sets for scaled RKHSs

Let Σ be the set of all positive sequences. Then the collection of Σ-approximately constant sequences
is precisely the collection of non-negative sequences (an)∞n=1 such that

lim inf
n→∞

an > 0 and sup
n≥1

an <∞. (4.3)

For suppose that there existed a Σ-approximately constant sequence (an)∞n=1 that violated (4.3). If
lim infn→∞ an = 0, then there is a subsequence (anm )∞m=1 such that anm ≤ 2−m for all m ∈ N. Let
(bn)∞n=1 ∈ Σ be a sequence such that bn = 2−na−1

n for n � (nm)∞m=1 and bnm = 1 for m ∈ N. Then
∑∞

n=1 bn
diverges but

∞∑
n=1

anbn =
∑

n�(nm)∞
m=1

anbn +
∞∑

m=1

anm bnm ≤
∑

n�(nm)∞
m=1

2−n +
∞∑

m=1

2−m <∞,

which contradicts the assumption that (an)∞n=1 is a Σ-approximately constant sequence. A similar argu-
ment (with anm ≥ 2m, bn = 2−n, and bnm = 2−m) shows the second condition in (4.3) cannot be vio-
lated either; thus every Σ-approximately constant sequence satisfies (4.3). A sequence satisfying (4.3) is
trivially Σ-approximately constant because the conditions imply the existence of constants 0 < c1 ≤ c2
such that c1 ≤ an ≤ c2 for all sufficiently large n. This, together with Theorem 4.7, yields the following
theorem which we consider the main result of this article. The full proof is more complicated than the
above argument as we cannot assume that every positive sequence is a scaling of H(K).

Theorem 4.8. LetΦ = (φn)∞n=1 be an orthonormal basis of H(K) and suppose that there is aΦ-scaling
A = (αn)∞n=1 of H(K) such that

∑∞
n=1 α

−1
n <∞ and KA,Φ is continuous. Let ΣΦ be the collection of Φ-

scalings of H(K) such that the corresponding scaled kernels are continuous. Suppose that dK is a
metric and let R = {KA,Φ : A ∈ ΣΦ}. Then SR(K) is non-empty and consists precisely of the functions
f =

∑∞
n=1 fnφn such that

lim inf
n→∞

f 2
n > 0 and sup

n≥1
f 2
n <∞. (4.4)
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Proof. By Theorem 4.7, SR(K) = R(ΣΦ,Φ) and the assumption that there is a scaling A = (αn)∞n=1
of H(K) such that

∑∞
n=1 α

−1
n < ∞ implies that R(ΣΦ,Φ) is non-empty. Hence we have to show that

functions in R(ΣΦ,Φ) satisfy (4.4). Suppose that there is a function f =
∑∞

n=1 fnφn ∈ R(ΣΦ,Φ) that
violates (4.4). If supn≥1 f 2

n = ∞, then there is a subsequence ( f 2
nm )

∞
m=1 such that f 2

nm ≥ 2m for all
m ∈ N. Define a sequence B = (βn)∞n=1 by setting βnm = 2m ≤ f 2

nm for m such that f 2
nm < αnm and

βn = αn for all other n. Then B is a Φ-scaling of H(K) since βn � αn and
∞∑
n=1

β−1
n ≤

∞∑
n=1

α−1
n +

∞∑
m=1

2−m <∞.

Moreover, Proposition 3.3 implies that H(KB,Φ) ⊂ H(KA,Φ) and it thus follows from the continuity of
KA,Φ that KB,Φ is continuous, so that B ∈ ΣΦ. However,

∞∑
n=1

f 2
n

βn
=

∑
n�(nm)∞

m=1

f 2
n

βn
+

∑
m∈N

f 2
nm ≥αnm

f 2
nm

βnm
+

∑
m∈N

f 2
nm<αnm

f 2
nm

βnm

=
∑

n�(nm)∞
m=1

f 2
n

αn
+

∑
m∈N

f 2
nm ≥αnm

f 2
nm

αnm
+

∑
m∈N

f 2
nm<αnm

f 2
nm

2m

≥
∑

n�(nm)∞
m=1

f 2
n

αn
+

∑
m∈N

f 2
nm ≥αnm

1 +
∑
m∈N

f 2
nm<αnm

1

=
∑

n�(nm)∞
m=1

f 2
n

αn
+

∞∑
m=1

1

=∞,

which contradicts the assumption that ( f 2
n )∞n=1 is ΣΦ-approximately constant. On the other hand, if

lim infn→∞ f 2
n = 0, then there is a subsequence ( fnm )∞m=1 such that f 2

nm ≤ 2−m for all m ∈ N. The
sequence B = (βn)∞n=1 defined as βnm = 1 for m ∈ N and βn = αn f 2

n for other n is a Φ-scaling of H(K)
and KB,Φ ∈ ΣΦ because we have proved that supn≥1 f 2

n <∞. Clearly
∑∞

n=1 β
−1
n =∞ but

∞∑
n=1

f 2
n

βn
=

∑
n�(nm)∞

m=1

f 2
n

βn
+

∞∑
m=1

f 2
nm

βnm
≤

∑
n�(nm)∞

m=1

1
αn
+

∞∑
m=1

2−m <∞,

which again contradicts the assumption that ( f 2
n )∞n=1 is ΣΦ-approximately constant.

Recall from Section 3 that a scaled RKHS depends on the ordering of the orthonormal basis of
H(K). However, the sample support set of Theorem 4.8 does not depend on the ordering because the
characterisation (4.4) is invariant to permutations. That is, let π : N→ N be any permutation. Then
f =

∑∞
n=1 fnφn =

∑∞
n=1 fπ(n)φπ(n) but it is clear that

sup
n≥1

f 2
n = sup

n≥1
f 2
π(n) and lim inf

n→∞
f 2
n = lim inf

n→∞
f 2
π(n),

so that which of the bases (φn)∞n=1 and (φπ(n))∞n=1 the function f is expanded in does not matter.
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Theorem 4.11 below demonstrates that the sample support set of Theorem 4.8 cannot be expressed
in terms of countably many elementary set operations of scaled RKHSs—and thus could be non-
measurable. The reason for this is that there does not exist a useful notion of a boundary between
convergent and divergent series, a result which is partially contained in Lemma 4.10. The lemma is a
modified version of a result originally due to du Bois-Reymund and Hadamard [19, pp. 301–302]. In
its proof a classical result by Dini [19, p. 293] is needed.

Lemma 4.9 (Dini). Let (a′
n)∞n=1 be a positive sequence such that

∑∞
n=1 a′

n <∞ and set

an =
a′
n

(
∑∞

l=n a′
l
)c .

Then limn→∞(a′
n)−1an =∞ and the series

∑∞
n=1 an converges if and only if 0 ≤ c < 1.

Lemma 4.10. For each m ∈ N, suppose that (am,n)∞n=1 is a positive sequence such that
∑∞

n=1 am,n <∞.
Then there is a positive sequence (an)∞n=1 such that

∞∑
n=1

an <∞ and lim
n→∞

an
am,n

=∞ for every m ∈ N.

Proof. For each m ∈ N, define the sequence (ām,n)∞n=1 by setting ām,n =
∑m

k=1 ak ,n. Therefore ām,n ≤
ām+1,n and

∑∞
n=1 ām,n =

∑m
k=1

∑∞
n=1 ak ,n <∞ for every m. Consequently, there is a strictly increasing

sequence (nm)∞m=1 such that
∑∞

n=nm ām,n ≤ 2−m for every m ≥ 2. Set a′
n = ā1,n when n < n2 and a′

n =

ām,n when nm ≤ n < nm+1 for m ≥ 2. Then

∞∑
n=1

a′
n =

n2−1∑
n=1

ā1,n +

∞∑
m=2

nm+1−1∑
n=nm

ām,n ≤
∞∑
n=1

ā1,n +

∞∑
m=2

2−m <∞

and, because ām,n ≤ ām+1,n and ām,n ≥ am,n, we have a′
n ≥ ām,n ≥ am,n for all m and n ≥ nm. Finally,

selecting an = a′
n/(

∑∞
l=n a′

l
)1/2 yields, by Lemma 4.9, a convergent series such that

lim
n→∞

an
am,n

≥ lim
n→∞

an
a′
n
= lim

n→∞

( ∞∑
l=n

a′
n

) −1/2

=∞

for every m ∈ N. This proves the claim.

Theorem 4.11. Let Φ = (φn)∞n=1 be an orthonormal basis of H(K) and suppose that there is a Φ-
scaling A = (αn)∞n=1 of H(K) such that

∑∞
n=1 α

−1
n <∞ and KA,Φ is continuous. Let ΣΦ be the collection

Φ-scalings of H(K) such that the corresponding scaled kernels are continuous. Suppose that dK is
a metric and let R = {KA,Φ : A ∈ ΣΦ}. For each m ∈ N, let Am = (αm,n)∞n=1 and Bm = (βm,n)∞n=1 be
elements of ΣΦ such that

∞∑
n=1

1
αm,n

<∞ and
∞∑
n=1

1
βm,n

=∞.

If (X(t))t∈T ∼ GP(0,K), then there exists F ∈ B such that μX (F) = 1 and

SR(K)� F �

∞⋂
m=1

H(KAm ,Φ) \
∞⋃

m=1

H(KBm ,Φ).
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Proof. By Lemma 4.10, there is a positive sequence A′ = (α′
n)∞n=1 such that

∞∑
n=1

1
α′
n
<∞ and lim

n→∞
αm,n

α′
n
=∞ for every m ∈ N.

By Proposition 3.5, H(KA′,Φ)� H(KAm ,Φ) for every m. Therefore H(KA′,Φ) ⊂
⋂∞

m=1 H(KAm ,Φ). Using
Lemma 4.9 and Proposition 3.5 we can construct a Φ-scaling A = (αn)∞n=1 such that

∑∞
n=1 α

−1
n <∞ and

H(KA,Φ)� H(KA′,Φ). By Theorem 4.3, the set

F = H(KA,Φ) \
∞⋃

m=1

H(KBm ,Φ)�
∞⋂

m=1

H(KAm ,Φ) \
∞⋃

m=1

H(KBm ,Φ)

is of μX -measure one and thus SR(K) ⊂ F by definition. But Proposition 3.5 can be used again to
construct a set F ′ � F such that SR(K) ⊂ F ′. Hence SR(K)� F. This completes the proof.

In Theorem 4.11 the set F was constructed by finding a scaled RKHS which is smaller than each
H(KAm ,Φ) while still containing the sample set. A natural question is if we can also construct a scaled
RKHS that contains each H(KBm ,Φ) but not the sample support set. Although Lemma 4.10 has a
counterpart for divergent series, it seems difficult to guarantee that the resulting sequence is a scaling.
Namely, it can be shown that if (βm,n)∞n=1 in Theorem 4.11 are such that limn→∞ βm,n/βm+1,n = 0 for
every m ∈ N, then there exists B = (βn)∞n=1 such that

∑∞
n=1 β

−1
n =∞ and limn→∞ βm,n/βn = 0 for every

m ∈ N. Although there is a Φ-scaling of H(K) such that
∑∞

n=1 α
−1
n < ∞, the divergence of

∑∞
n=1 β

−1
n

does not have to imply that B is a Φ-scaling because a divergent series can have terms arbitrarily
larger than those of a convergent series [19, p. 303]: there is a positive sequence (γn)∞n=1 such that∑∞

n=1 γ
−1
n <∞ and lim infn→∞ γn/βn = 0. If (γn)∞n=1 is a Φ-scaling of H(K), we cannot directly deduce

that so is B because βn � γn fails.

4.4. On monotonely scaled RKHSs

A scaling A = (αn)∞n=1 is monotone if (αn)∞n=1 is a monotone sequence. In this section we demonstrate
that the characterisation (4.4) fails if only monotone scalings are permitted. Let ΣM be the collection of
monotone Φ-scalings of H(K) and RM the collection of corresponding scaled kernels. Then the sample
support set SRM (K) is strictly larger than the sample support set SR(K) characterised by Theorem 4.8
because, as we show below, a ΣM-approximately constant sequence can be unbounded, as long as it
does not grow too rapidly, and contain arbitrarily long sequences of zeros.

Let (gm)∞m=0 be a strictly increasing sequence of positive integers and set agm = gm+1 − gm for m ≥ 0
and an = 0 otherwise. Then

∞∑
n=1

anbn =
∞∑

m=0

(gm+1 − gm)bgm (4.5)

for any sequence (bn)∞n=1. Schlömilch’s generalisation of the Cauchy condensation test [19, p. 121]
implies that, under the assumption gm+1 − gm ≤ C(gm − gm−1) for some C > 0 and all m ≥ 1, for any
non-increasing positive sequence (bn)∞n=1 the series

∑∞
n=1 bn and

∑∞
m=0(gm+1 − gm)bgm either both

converge or diverge. That (an)∞n=1 is ΣM-approximately constant follows then from (4.5). The condition
gm+1 − gm ≤ C(gm − gm−1), or equivalently agm ≤ Cagm−1 , guarantees that agm does not grow too fast
in relation to gm. The canonical example is obtained by setting gm = 2m so that a2m = 2m and C = 2
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and
∑∞

m=0(gm+1 − gm)bgm =
∑∞

m=0 2mb2m converges or diverges with
∑∞

n=1 bn by the standard Cauchy
condensation test. Note that, because

1
gm

gm∑
n=1

an =
1
gm

m∑
k=0

(gk+1 − gk) =
gm+1 − g0

gm
≤ gm+1

gm
≤ (1 +C)gm

gm
= 1 +C

and

1
gm − 1

gm−1∑
n=1

an =
1

gm − 1

m−1∑
k=0

(gk+1 − gk) =
gm − g0

gm − 1
,

the elements of the sequence (an)∞n=1 are, on average, constants:

lim inf
N→∞

1
N

N∑
n=1

an = 1 and sup
N ≥1

1
N

N∑
n=1

an ≤ 1 +C.

This can be interpreted as a weaker form of (4.4).
Although ΣM contains unbounded sequences and sequences with zero lower limit, no sequence in

this set can have infinity or zero as its limit. This can be shown by using results in [19, § 41] which,
given a sequence such that limn→∞ an =∞, guarantee the existence of a monotone sequence (cn)∞n=1
such that

∑∞
n=1 cn <∞ but

∑∞
n=1 ancn =∞. Conversely, given a sequence such that limn→∞ an = 0 it is

possible to construct a monotone sequence (dn)∞n=1 such that
∑∞

n=1 dn =∞ but
∑∞

n=1 andn <∞.

4.5. On hyperharmonic scalings and iterated logarithms

We conclude this section with two general constructions before moving onto concrete examples. Recall
from Section 3 that scalings of the form Aρ = (nρ)∞n=1 for any ρ ≥ 0 are called hyperharmonic scalings.
Because

∑∞
n=1 n−ρ <∞ if and only if ρ > 1, Theorem 4.3 implies that P

[
X ∈ H(KAρ ,Φ)

]
= 1 if ρ > 1

and P
[
X ∈ H(KAρ ,Φ)

]
= 0 if ρ ≤ 1. Therefore the samples are “almost” contained in H(KA1 ,Φ), while

H(KA1+ε ,Φ) is a “small” RKHS which contains the samples for any “small” ε > 0. Thus the sample
support set in Theorem 4.11 satisfies

SR(K)�
∞⋂
k=1

H(KA1+1/k ,Φ) \ H(KA1 ,Φ),

where the set on the right-hand side is in B and has μX -measure one. But Theorem 4.11 also guarantees
the existence of a set F ∈ B which is a proper subset of

⋂∞
k=1 H(KA1+1/k ,Φ) \ H(KA1 ,Φ) while having

μX -measure one. One such set is F = H(KA,Φ) \ H(KA′,Φ) for the scalings A = (αn)∞n=1 and A′ =

(α′
n)∞n=1 defined by αn = n log(n + 1)2 and α′

n = n log(n + 1). This is because
∑∞

n=1 α
−1
n converges but∑∞

n=1(α
′
n)−1 does not and

lim
n→∞

nρ

n log(n + 1)2
=∞ for any ρ > 1 and lim

n→∞
n log(n + 1)

n
=∞,

which by Proposition 3.5 imply that H(KA,Φ) ⊂
⋂∞

k=1 H(KA1+1/k ,Φ) and H(KA1 ,Φ)� H(KA,Φ).
But one can construct even smaller measurable sets which contain the samples by the use of iterated

logarithms. The iterated logarithm logp x is defined recursively as logp x = log(logp−1 x) for p ∈ N and
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log0 x = x. Let p ∈ N0 and suppose that q ≥ 0 is large enough that logp(1+q) is positive. For any ρ > 1,
define Alog(ρ) = (αn)∞n=1 by αn = (n+ q) log(n+ q)× · · · × logp−1(n+ q) logp(n+ q)ρ and Alog = (α′

n)∞n=1
by α′

n = (n + q) log(n + q) × · · · × logp−1(n + q) logp(n + q). It can be proved that
∑∞

n=1 α
−1
n < ∞ but∑∞

n=1(α
′
n)−1 =∞ [19, pp. 123, 280, 293]. Moreover,

lim
n→∞

n log(n + 1)2
(n + q) log(n + q) × · · · × logp−1(n + q) logp(n + q)ρ =∞

and

lim
n→∞

(n + q) log(n + q) × · · · × logp−1(n + q) logp(n + q)
n log(n + 1) =∞

if p ≥ 2. Therefore iterated logarithms can be used to construct sets of μX -measure one which are
smaller than the set F above. But Theorem 4.11 again demonstrates that for any set of μX -measure
one constructed out of scalings Alog(ρ) and Alog there is a smaller set which still has measure one (and
which contains the sample support set).

5. Examples

This section contains examples of kernels to which Theorem 4.3 can be applied to construct “small”
RKHSs that contain the samples and “slightly smaller” RKHSs that do not. For simplicity we let the
domain T be a finite interval on the real line and occasionally index the orthonormal bases starting from
zero. Note that to use our results one needs to have access to an orthonormal expansion of the kernel.
This rules out examples involving the popular Matérn kernels because, to the best of our knowledge,
no orthonormal expansions have been computed for these kernels. Previous results based on powers of
RKHSs and convolution kernels are easier to apply in this regard, but are less flexible and expressive.
See [17, Section 4.4] and [36] and for examples featuring powers of RKHSs (in particular for Sobolev
kernels and the Gaussian kernel) and [11, Appendices A.2 and A.3] for convolution kernel examples.
Lukić [23] has examples involving integrated kernels.

5.1. Iterated Brownian bridge kernels

Let T = [0,1] and consider the iterated Brownian bridge kernel of integer order s ≥ 2 [4, Section 4.1]:

Ks(t, t ′) = 2
πs

∞∑
n=1

sin(πnt) sin(πnt ′)
ns

=

∞∑
n=1

φn(t)φn(t ′), (5.1)

where φn(t) =
√

2(πn)−s/2 sin(πnt). One can show that for even parameters the kernel is

K2s(t, t ′) = (−1)s−1 22s−1

(2s)!

[
B2s

(
|t − t ′|

2

)
− B2s

(
t + t ′

2

) ]
,

where Bp is the Bernoulli polynomial of degree p. For s = 2 we obtain the Brownian bridge kernel
K2(t, t ′) =min{t, t ′} − tt ′. For s ≥ 1 and fixed t ′ ∈ [0,1] the even-order translates K2s(·, t ′) are piecewise
polynomials of order 2s − 1.
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Figure 1. Translates (left) and their second derivatives (right) at t ′ = 0.3 of the kernel Ks and its three translates
Ks
A1 ,Φ

, Ks
A′,Φ and Ks

A,Φ
for s = 4. The second derivatives have been scaled so as to have −1 as their minimum.

The scaled kernels were computed by truncating the series after 5,000 terms.

Iterated Brownian bridge kernels are natural candidates for hyperharmonic scalings because the ρ-
hyperharmonic scaling Aρ = (nρ)∞n=1 for ρ ∈ N such that ρ ≤ s − 2 gives

Ks
Aρ ,Φ

(t, t ′) = 2
πs

∞∑
n=1

sin(πnt) sin(πnt ′)
ns−ρ

=
1
πρ

Ks−ρ(t, t ′). (5.2)

By Theorem 4.3, samples of (X(t))t∈T ∼ GP(0,Ks) are in the RKHS of this kernel for any such ρ ≥ 2
because

∑∞
n=1 n−ρ <∞ whenever ρ > 1. From the identity 2

∫ 1
0 sin(πnt) sin(πmt)dt = δnm we see that

the Mercer expansion with respect to the Lebesgue measure on [0,1] of Ks is

Ks(t, t ′) =
∞∑
n=1

λnψn(t)ψn(t ′) with λn =
1

(πn)s and ψn(t) =
√

2 sin(πnt).

Therefore the θth power of H(Ks), with θ = 1 − ρ/s, equals H(Ks
Aρ ,Φ

) as a set. In this case the power
RKHS is recovered as an instance of a scaled RKHS. We can also consider logarithmic scalings (recall
Section 4.5), which do not correspond to power RKHSs, such as A = (αn)∞n=1 for αn = n log(n+1)2 and
A′ = (α′

n)∞n=1 for α′
n = n log(n + 1). These yield the scaled kernels

Ks
A,Φ(t, t

′) = 2
πs

∞∑
n=1

sin(πnt) sin(πnt ′)
ns−1 log(n + 1)2 (5.3)

and

Ks
A′,Φ(t, t

′) = 2
πs

∞∑
n=1

sin(πnt) sin(πnt ′)
ns−1 log(n + 1), (5.4)

which do not appear to have closed form expressions. Because
∑∞

n=1 1/(n log(n + 1)2) < ∞ but∑∞
n=1 1/(n log(n + 1)) = ∞ the samples from (X(t))t∈T ∼ GP(0,Ks) are located in H(Ks

A,Φ
) but not

in H(Ks
A′,Φ).

Translates at t ′ = 0.3 of the kernel Ks in (5.1) and the scaled kernels Ks
A1 ,Φ

in (5.2), Ks
A,Φ

in (5.3) and
Ks
A′,Φ in (5.4) are plotted in Figure 1 for s = 4. Also plotted are the second derivatives of the translates.
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As noted, the samples from (X(t))t∈T ∼ GP(0,Ks) are in H(Ks
A,Φ

) but not in H(Ks
A′,Φ) or H(Ks

A1 ,Φ
).

Moreover,

H(Ks)� H(Ks
A1 ,Φ

)� H(Ks
A′,Φ)� H(Ks

A,Φ) (5.5)

by Proposition 3.5. The second derivative of Ks(·, t ′) is Lipschitz while those of the scaled kernels are
less well-behaved, though nevertheless continuous. How the second derivatives behave is indicative of
the inclusions in (5.5): the larger the RKHS, the more severe the non-differentiability at t = 0.3.

5.2. Gaussian kernel

The ubiquitous Gaussian kernel with a length-scale parameter � > 0 is

K(t, t ′) = exp
(
− (t − t ′)2

2�2

)
= exp

(
− t2

2�2

)
exp

(
− (t ′)2

2�2

) ∞∑
n=0

1
�2nn!

(tt ′)n (5.6)

and the functions

φn(t) =
1

�n
√

n!
tn exp

(
− t2

2�2

)
for n ≥ 0 (5.7)

form an orthonormal basis of its RKHS [25,38].
The easiest way to proceed is to consider hyperharmonic scalings Aρ = (nρ)∞n=0 for ρ > 0 with the

convention 0ρ = 1. Then

KAρ ,Φ(t, t ′) = exp
(
− t2 + (t ′)2

2�2

) (
1 +

∞∑
n=1

nρ

�2nn!
(tt ′)n

)
. (5.8)

For ρ = 1 we get a simple analytic expression for the scaled kernel:

KA1 ,Φ(t, t
′) = exp

(
− t2 + (t ′)2

2�2

) (
1 +

tt ′

�2

∞∑
n=0

1
n!

(
tt ′

�2

) n)

= exp
(
− t2 + (t ′)2

2�2

) (
1 +

tt ′

�2 exp
(

tt ′

�2

) )
.

(5.9)

Since the harmonic series
∑∞

n=1 n−1 is the prototypical example of an “almost” convergent series, we
can informally say that the RKHS of (5.9) is only slightly too small to contain samples of the Gaussian
process (X(t))t∈T ∼ GP(0,K) with covariance kernel (5.6). For a few larger values of ρ we have

KA2 ,Φ(t, t
′) = exp

(
− t2 + (t ′)2

2�2

) [
1 + (a + a2) exp(a)

]
,

KA3 ,Φ(t, t
′) = exp

(
− t2 + (t ′)2

2�2

) [
1 + (a + 3a2 + a3) exp(a)

]
,

KA4 ,Φ(t, t
′) = exp

(
− t2 + (t ′)2

2�2

) [
1 + (a + 7a2 + 6a3 + a4) exp(a)

]
,

where a = tt ′/�2. By Theorem 4.3, the RKHSs of the above kernels contain the samples because∑∞
n=1 n−ρ <∞ if and only if ρ > 1.
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Figure 2. The translates at t ′ = 1 of the Gaussian kernel K in (5.6), the kernels KAρ ,Φ in (5.8) for ρ ∈ {1,1.1,2},
and the kernel in (5.10) with τ = 1.1. The length-scale is � = 0.8.

Another example can be constructed using the scaling A= (τ2n)∞
n=0 for some τ > 0. Then

KA,Φ(t, t ′) = exp
(
− t2 + (t ′)2

2�2

) ∞∑
n=0

1
n!

(
τ2tt ′

�2

) n
= exp

(
− t2 + (t ′)2

2�2 +
τ2tt ′

�2

)
. (5.10)

The RKHS of this kernel contains the samples if and only if
∑∞

n=0 τ
−2n converges, which is equivalent

to τ > 1. Since KA,Φ equals the original kernel if τ = 1, this class of scalings is not particularly expres-
sive. Because the Mercer eigenvalues of the Gaussian kernel have an exponential decay this example is
reminiscent (but more explicit) of the power RKHS consruction for the Gaussian kernel in Section 4.4
of Kanagawa et al. [17]. Observe also that with the selection �2 = (1− r2)/r2 and τ2 = 1/r for r ∈ (0,1)
the kernel equals the scaled Mehler kernel

Kr
M (t, t ′) = exp

(
− r2(t2 + (t ′)2) − 2rtt ′

2(1 − r2)

)
=

√
1 − r2

∞∑
n=0

rn

n!
Hn(t)Hn(t ′),

where Hn is the nth probabilists’ Hermite polynomial. The RKHS of the Mehler kernel is analysed
in [14].

A few of the kernels mentioned above are shown in Figure 2. By Proposition 3.5, their RKHSs satisfy

H(K)� H(KAρ ,Φ)
ρ=1

� H(KAρ ,Φ)
ρ=1.1

� H(KAρ ,Φ)
ρ=2

� H(KA,Φ)
A= (τ2n)∞

n=0

and the three largest of these contain the samples of (X(t))t∈T ∼ GP(0,K). All the kernels are qualita-
tively quite similar, being all infinitely differentiable.

5.3. Power series kernels

A power series kernel [44,45] is a kernel of the form

K(t, t ′) =
∞∑
n=0

wn

(n!)2
(tt ′)n (5.11)

for positive coefficients wn such that the series converges for all t, t ′ ∈ T . These kernels do not appear
have seen much use in the probabilistic setting, but are useful in functional analysis and approximation
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theory because, for particular choices of the coefficients, they reproduce important classical function
spaces. For instance, the selection wn = (n!)2 yields the Szegő kernel

K(t, t ′) =
∞∑
n=0

(tt ′)n = 1
1 − tt ′

(5.12)

which converges as long as T ⊂ (−1,1) and whose complex extension is the reproducing kernel of the
Hardy space H2

1 on the unit disc. The exponential kernel

K(t, t ′) =
∞∑
n=0

1
n!
(tt ′)n = exp(tt ′), (5.13)

obtained by setting wn = n!, is power series kernel that is convergent on the whole real line.
From the expansion in (5.11) we see that the functions φn(t) = tn

√
wn/n! for n ≥ 0 form an orthonor-

mal basis of H(K) and therefore a scaled kernel is

KA,Φ(t, t ′) =
∞∑
n=0

αnwn

(n!)2
(tt ′)n,

which itself is a power series kernel. By Theorem 4.3 the samples from (X(t))t∈T ∼ GP(0,K) are in
the RKHS of a different power series kernel

K̄(t, t ′) =
∞∑
n=0

w̄n

(n!)2
(tt ′)n if and only if

∞∑
n=0

wn

w̄n
<∞.

For example, samples from a Gaussian process with the exponential covariance kernel (5.13) are in the
RKHS of the Szegő kernel (5.12) if T ⊂ (−1,1) because

∑∞
n=0 wn/w̄n =

∑∞
n=0 n!/(n!)2 <∞. Its samples

are not in the RKHS of the kernel

K̄(t, t ′) = 1 +
∞∑
n=1

n!n
(n!)2

(tt ′)n = 1 + tt ′ exp(tt ′),

where w0 = 1 and wn = n!n for n ≥ 1, because
∑∞

n=0 wn/w̄n = 1 +
∑∞

n=1 n−1 = ∞. Note that this is
essentially the same example as the one for the Gaussian kernel that involved the kernel (5.9).

6. Application to maximum likelihood estimation

Gaussian processes are often used to model deterministic data-generating functions in, for example,
design of computer experiments [32] and probabilistic numerical computation [6,8]. In applications it
is typical that the covariance kernel has parameters, such as the length-scale parameter � > 0 in (5.6),
which are estimated from the data. Maximum likelihood estimation is one of the most popular ap-
proaches to estimate the kernel parameters; see, for example, [31, Section 5.4.1] or [33, Chapter 3].
This section uses Theorem 4.3 to explain the behaviour of the maximum likelihood estimate of the
kernel scaling parameter that Xu and Stein [41] observed recently.

Let K : T × T → R be a positive-definite kernel and Kσ = σ
2K a kernel parametrised by a non-

negative scaling parameter σ. Suppose that the data consist of evaluations of a function f : T → R at
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distinct points t1, . . . , tN ∈ T and that f is modelled as a Gaussian process (Xσ(t))t∈T ∼ GP(0,Kσ). It
is easy to compute that the maximum likelihood estimate σ̂f ,N of σ is (see the references above)

σ̂f ,N =

√
fT
N

K−1
N

fN

N
,

where fN = ( f (t1), . . . , f (tN )) ∈ RN is a column vector and KN ∈ RN×N is the positive-definite covari-
ance matrix with elements (KN )i j = K(ti, tj ). Suppose for a moment that f is a zero-mean Gaussian
process with covariance σ2

0 K . Then

E f

[
σ̂2
f ,N

]
=
E f

[
fTNK−1

N fN
]

N
=
E f

[
tr(fN fTNK−1

N )
]

N
=

tr(σ2
0 KNK−1

N )
N

= σ2
0 .

This suggests that σ̂f ,N ought to tend to a constant as N →∞ if f is a deterministic function which is
“akin” to the samples of (X(t))t∈T ∼ GP(0,K). Theorem 4.8 can be interpreted as saying that functions
of the form f =

∑∞
n=1 fnφn for coefficients fn which are bounded away from zero and infinity are akin

to the samples. For example, the function f (t) = exp(−t2/(2�2))
∑∞

n=0 tn/(�n
√

n!) can be thought of as
a sample from a Gaussian process with the Gaussian covariance kernel in (5.6).

When H(K) is norm-equivalent to the Sobolev space W s+d/2
2 (T) on a suitable bounded domain T ⊂

R
d , Karvonen et al. [18] have used results from scattered data approximation literature to essentially

argue that the maximum likelihood estimate decays to zero if f is too regular to be a sample from X
and explodes if f is too irregular in the sense that, assuming the points ti cover T sufficiently uniformly,

lim
N→∞

σ̂f ,N = 0 if f ∈ W s
2 (T) and lim

N→∞
σ̂f ,N =∞ if f ∈ Wr

2 (T) \W s−ε
2 (T)

for any ε > 0 and r ∈ (d/2, s − ε). Recall from Section 2 that the samples are contained in Wr
2 (T) if

and only if r < s. This suggests the conjecture that, for any kernels K0, K1, and K2 such that P[X ∈
H(K0)] = 0, P[X ∈ H(K1)] = P[X ∈ H(K2)] = 1, and H(K2) ⊂ H(K1), it should hold that

lim
N→∞

σ̂f ,N = 0 if f ∈ H(K0) and lim
N→∞

σ̂f ,N =∞ if f ∈ H(K1) \ H(K2) (6.1)

under some assumptions on T and the points ti . We now show that the behaviour of σ̂f ,N observed and
conjectured by Xu and Stein [41] when K is the Gaussian kernel in (5.6) and f is a monomial agrees
with this conjecture if the kernels K0, K1, and K2 are obtained via hyperharmonic scalings.

Let K be the Gaussian kernel in (5.6). Let T = [0,1] and consider the uniform points ti = i/N for
i = 1, . . . ,N . Xu and Stein [41] used explicit Cholesky decomposition formulae derived in [22] to prove
that, for certain positive constants C
,0 and C
,1,

σ̂2
f ,N ∼ C
,0N−1/2 if f ≡ 1 and lim inf

N→∞
N−1/2σ̂2

f ,N ≥ C
,1 if f (t) = t

as N →∞. Furthermore, they conjectured that

σ̂2
f ,N ∼ C
,pNp−1/2 as N →∞ (6.2)

if f (t) = tp for any p ≥ 0 and a positive constant C
,p .4 In particular, the conjecture (6.2) implies that
σ̂f ,N → 0 if f is a constant function and σ̂f ,N →∞ if f (t) = tp for p ∈ N. Xu and Stein [41, p. 142]

4As pointed out by Dette and Zhigljavsky [7, Section 4.1], it appears that the constant C
,p = 
2p/(
√

2π(p + 1/2)) in [41] is
erroneous. By truncating the expansion (6.3) after N terms one arrives, after some relatively straightforward computations, to
the conjecture that the constant is C
,p = 2p
2p/(

√
π(p + 1/2)).
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lacked an intuitive explanation for these findings. We employ a technique similar to that used in [25] to
demonstrate that this phenomenon can be explained by the conjecture in (6.1).

Any monomial of degree p ∈ N0 can be written in terms of the orthonormal basis (5.7) as

tp = exp
(

t2

2�2

)
tp exp

(
− t2

2�2

)
=

∞∑
n=0

t2n+p

2n�2nn!
exp

(
− t2

2�2

)
= �p

∞∑
n=0

√
(2n + p)!
2nn!

φ2n+p(t). (6.3)

Let A = (αn)∞n=1 be a Φ-scaling of H(K). If the pth monomial is to be an element of the scaled RKHS
H(KA,Φ) it must, by Proposition 3.2, hold that

∞∑
n=0

α−1
2n+p

(2n + p)!
22n(n!)2

<∞. (6.4)

From Stirling’s formula and limn→∞(1 + p
2n )

2n = ep we get

(2n + p)!
22n(n!)2

∼
√

2π(2n + p)2n+p+1/2 e−(2n+p)

2π22nn2n+1 e−2n
=

1
√

2π ep
(2n + p)2n+p+1/2

(2n)2nn

=
1

√
2π ep

(
1 +

p
2n

) 2n (2n + p)p+1/2

n

∼ 2p

√
π

np−1/2

as n →∞. Therefore (6.4) holds if and only if
∑∞

n=1 α
−1
2n+pnp−1/2 < ∞. If we constraint ourselves to

hyperharmonic scalings this is clearly equivalent to αn = nρ for ρ > p+1/2. But since
∑∞

n=1 n−ρ <∞ if
and only if ρ > 1, it follows that (a) if p < 1/2, then f (t) = tp is an element of a hyperharmonic scaled
RKHS H(KA,Φ) such that P[X ∈ H(KA,Φ)] = 0 and (b) if p ≥ 1/2, then f (t) = tp is an element of a
hyperharmonic scaled RKHS H(KA,Φ) if and only if P[X ∈ H(KA,Φ)] = 1. These observations and the
conjecture in (6.2) are compatible with our conjecture in (6.1):

• If f is a constant function, then σ̂f ,N tends to zero as N → ∞ and, for A = (nρ)∞
n=0 and any

ρ ∈ (1/2,1], f is an element of the RKHS H(K0) = H(KA,Φ) which is of zero measure.
• If f (t) = tp for p ∈ N, then σ̂f ,N tends to infinity (or is conjectured to) as N →∞. Let H(K1) =

H(KA,Φ) and H(K2) = H(KA′,Φ) for hyperharmonic scalings A = (nρ)∞
n=0 and A′ = (nσ)∞

n=0, where
ρ > p + 1/2 and σ ∈ (1,p + 1/2]. Then both H(K1) and H(K2) are of measure one and f ∈ H(K1)\
H(K2).

In other words, the constant function is too close to H(K), or too “regular”, to be a sample while
higher-order monomials are too far from H(K), or too “irregular”.
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