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Bounds on the covariance matrix of a class of Kalman–Bucy filters for
systems with non-linear dynamics

Toni Karvonen, Silvère Bonnabel, Eric Moulines, and Simo Särkkä

Abstract— We consider a broad class of Kalman–Bucy filter
extensions for continuous-time systems with non-linear dynam-
ics and linear measurements. This class contains, for example,
the extended Kalman–Bucy filter, the unscented Kalman–Bucy
filter, and most other numerical integration filters. We provide
simple upper and lower bounds for the trace of the error
covariance, as solved from a matrix Riccati equation, for
this class of filters. The upper bounds require assuming that
the state is fully observed. The bounds are applied to a
simple simultaneous localisation and mapping problem and
numerically demonstrated on a two-dimensional trigonometric
toy model.

I. INTRODUCTION

In classical Kalman filters for continuous and discrete-time
linear systems, evolution of the error covariance matrix is
controlled by either a matrix Riccati differential or difference
equation, respectively. In the literature, numerous results based
on various controllability and observability conditions provide
upper and lower bounds on solutions of the differential [1]–
[5] and difference [6], [7] equations and, when the system is
time-invariant, guarantee convergence to the solution of the
corresponding algebraic Riccati equation [8]–[10].

Unfortunately, none of these results generalise for the
various extensions of the Kalman filter for non-linear sys-
tems [11], such as the extended Kalman filter (EKF) or the
more recent unscented Kalman filter (UKF) [12] and other
similar filters based on numerical integration of Gaussian
expectations [13]. This is partially due to the enormous
difficulties in easily generalising the notions of observability
and controllability to non-linear systems. The only bounds
we are aware of that are applicable to, for example, the EKF,
appear in [14] (see also [15]). However, although they have
seen some applications [16], [17], these bounds, being based
on existence of a bounded stabilising gain matrix, are difficult
to verify and work with.

We derive upper and lower bounds for the trace of the
error covariance of a large class (including, e.g., the EKF and
the UKF) of commonly used extensions of the Kalman–Bucy
filter to continuous-time systems with non-linear dynamics
and linear measurements. It appears that these bounds, simple
as they are, have not appeared explicitly in the literature
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before. In particular, for the UKF and other similar filters we
are not aware of any prior work on the topic. Lower bounds
require few assumptions besides uniform boundedness of the
Jacobian matrix of the dynamics, but to obtain upper bounds
we need to assume that the system is fully observed (see
Definition 1).

Our main motivation comes from stability and convergence
analysis of Kalman-like filters and observers for non-linear
systems, where one of the key requirements is that the
error covariance remains uniformly bounded [16], [18]–[21].
Although the assumption that the system is fully observed is
extremely stringent, we nevertheless believe the bounds we
derive are of interest and useful as existing results mainly
concern the EKF only and, furthermore, at the moment
stability analysis of Kalman filters for non-linear systems
using assumptions that are a priori verifiable is actually
restricted to fully observed models [22].

The main results of this article are the upper and lower
bounds of Propositions 4 and 5 in Section III. We also
(qualitatively) compare these bounds to those appearing
in [14]. In Section V, we numerically validate the bounds
on a two-dimensional toy model and apply them to a simple
simultaneous localisation and mapping model from [17].

A. Some preliminaries

The spectral norm of a matrix A is ‖A‖2 = λmax(ATA). In
addition to this norm, we make frequent use of the logarithmic
norms (that, being possibly negative, are not really norms)

µ(A) =
1

2
λmax(A+AT)

and
ν(A) =

1

2
λmin(A+AT) = −µ(−A).

The logarithmic norms satisfy the triangle inequalities
µ(A+B) ≤ µ(A) + µ(B) and ν(A+B) ≥ ν(A) + ν(B).
Recall also the trace and eigenvalue inequali-
ties [23, Section 8.4]

λmin(A) tr(B) ≤ tr(AB) ≤ λmax(A) tr(B)

for a symmetric A and a positive-semidefinite B and

ν(A) tr(B) ≤ tr(AB) ≤ µ(A) tr(B) (1)

for a positive-semidefinite B.
For a differentiable function g : Rn → Rn, [Jg(x)]ij =

(∂gi/∂xj)(x) stands for the Jacobian matrix of g evaluated
at x ∈ Rn. We define the logarithmic Lipschitz constants

M(g) =
1

2
sup
x∈Rn

λmax
[
Jg(x) + Jg(x)T

]
= sup
x∈Rn

µ[Jg(x)]



and

N(g) =
1

2
inf
x∈Rn

λmin
[
Jg(x) + Jg(x)T

]
= inf
x∈Rn

ν[Jg(x)].

The following inequality for the Euclidean inner product and
norm will be useful:

N(g) ‖x− y‖2 ≤ 〈x− y, g(x)− g(y)〉 ≤M(g) ‖x− y‖2
(2)

for any x, y ∈ Rn.

II. KALMAN–BUCY FILTER EXTENSIONS FOR
NON-LINEAR SYSTEMS

This section briefly introduces stochastic dynamic models
with non-linear dynamics and extensions of the classical
Kalman–Bucy filter [24] for estimation of the latent state of
such systems.

A. Models

We consider continuous-time models formulated as stochas-
tic differential equations of the (Itô) form

dXt = f(Xt) dt+Q1/2 dWt,

dYt = HXt dt+R1/2 dVt,
(3)

where Xt ∈ Rn stands for the latent state, initialised from
X0 ∼ N (X̂0, P0), that is to be estimated from the incomplete
and noisy measurements Yt ∈ Rm. The state evolution
is dictated by the continuously differentiable dynamics
f : Rn → Rn and the measurements are obtained through
the linear measurement model H ∈ Rm×n. The noise terms
Wt and Vt are independent standard Brownian motions with
positive-definite covariance matrices Q and R.

In Section III we derive upper bounds on the error
covariance matrix under the assumption that the model is
fully observed.

Definition 1: The model (3) is fully observed if m ≥ n
and the matrix H is of full rank.

A model is typically fully observed when m = n and H
is the identity (or invertible). The case m > n may arise in
the presence of redundant sensor information. In any case, a
model being fully observed is a fairly restrictive condition.
Indeed, knowledge of the dynamics f , while often beneficial,
is then not strictly necessary to estimate the state (but it helps
reducing the variance of the estimate). Nevertheless, fully
observed models sometimes appear in applications [17], [25].

B. Kalman–Bucy filtering

Let Ft = σ(Ys | 0 ≤ s ≤ t) stand for the sigma-algebra
generated by the continuous-time measurements. In filtering,
the aim is to compute or approximate the filtering distributions
Xt | Ft. When the function f is not affine, these distributions
are in general intractable, necessitating use of approximations.

For each t ≥ 0, let `t : C1(Rn)→ Rn be a vector-valued
(random) functional acting on continuously differentiable
functions. A Kalman–Bucy filter for the model (3) produces
the Gaussian approximation

N (X̂t, Pt) ≈ Xt | Ft

whose mean, used as an estimate to the latent state Xt, is
computed from

dX̂t = `t(f) dt+ PtH
TR−1(dYt −HX̂t dt), (4)

where Pt ∈ Rn×n is the positive-semidefinite error covari-
ance matrix. This matrix is solved from the Riccati differential
equation

∂tPt = Lt,Pt(f) + Lt,Pt(f)T +Q− PtSPt, (5)

where S = HTR−1H (note that this matrix is invertible when
the model is fully observed) and Lt,Pt

: C1(Rn) → Rn×n
are matrix-valued functionals (dependency on Pt is purposely
made explicit) that depend on t and Pt. Moreover, we will
always assume that the functionals Lt,Pt

are sufficiently
regular to ensure that (5) is well-defined and that a positive-
definite solution exists (for our purposes, the functionals will
anyway be chosen such that (6) below holds). The equation
is initialised from a positive-semidefinite P0 = Cov(X0).

Assumption 2: Assume that
• The Lipschitz constants M(f) and N(f) are bounded;
• The functionals Lt,Pt

safisfy

N(f) tr(Pt) ≤ tr[Lt,Pt
(f)] ≤M(f) tr(Pt) (6)

for every t ≥ 0.
The first assumption is classical, and its analogue for linear

systems often appears in stability analysis of linear Kalman
and Kalman–Bucy filters [5], [7]. Indeed, considering the
EKF, for instance, in the light of the calculations to follow,
we see that it is hopeless to try to derive bounds on the
solution if we allow the estimate X̂t to drive the Jacobian
Jf (X̂t) into regions where it can grow unboundedly1. The
second assumption is painless, as it holds for all sensible
extensions of the Kalman–Bucy filter. We next provide two
examples of such extensions.

C. The extended Kalman–Bucy filter

With the choice `t(f) = f(X̂t) and Lt,Pt
= Jf (X̂t)Pt, we

obtain the classical extended Kalman–Bucy filter. In this case,
Equation (1) implies that

N(f) tr(Pt) ≤ tr[Jf (X̂t)Pt] ≤M(f) tr(Pt).

That is, Assumption 2 holds.

D. Numerical integration filters (e.g., the UKF)

Let ξ1, . . . , ξN ∈ Rn and w1, . . . , wN ≥ 0 be unit sigma-
points and weights and λ > 0 a constant such that

N∑
i=1

wip(µ+ λ
√
Pξi) =

∫
Rn

p(x)N (x | µ, P ) dx (7)

for any multivariate polynomial p of degree at most two and
any µ ∈ Rn and P ∈ Rn×n. In particular, as (7) holds for

1This does not mean that the condition is necessary, but it means that
it cannot be avoided if we want to consider the Riccati equation on its
own, without specifying the behavior of the estimate X̂t. Of course the
assumption could be relaxed by, for instance, assuming the state space to be
bounded.



the polynomials p(x) = 1 and p(x) = x, this implies that∑N
i=1 wi = 1 and

∑N
i=1 wiλ

√
Pξi = 0 for any positive-

definite matrix P . Denote χt,i = λ
√
Ptξi and set

`t(f) =

N∑
i=1

wif(χt,i),

Lt,Pt(f) =

N∑
i=1

wiχt,if(X̂t + χt,i)
T.

For instance, the unscented transform, the tensor product
Gauss–Hermite rule, and other popular numerical integration
rules used in Kalman filtering fit this framework. A concrete
example is (a particular version of) the unscented Kalman–
Bucy filter that uses the unit sigma-points

ξ1 = 0, ξi+1 = ei, ξn+i+1 = −ei

for i = 1, . . . , n, where ei are the unit coordinate vectors,
and the weights

w0 =
1

n+ 1
, wi+1 = wn+i+1 =

1

2(n+ 1)

for i = 1, . . . , n. Of course, different unit sigma-points and
weights could—and often are—be used in `t and Lt,Pt

; this
has no effect on our analysis.

To verify that (6) holds for this class of filters, observe
that

tr[Lt,Pt(f)]

=

N∑
i=1

wi
〈
χt,i, f(X̂t + χt,i)

〉
=

N∑
i=1

wi
〈
(X̂t + χt,i)− X̂t, f(X̂t + χt,i)− f(X̂t)

〉
,

where we have exploited the facts that the weights sum to
one and

∑N
i=1 wiχt,i = 0. An application of (2) and the fact

that (7) holds for second-degree polynomials yield

tr
[
Lt,Pt

(f)
]
≤M(f)

N∑
i=1

wi ‖χt,i‖2

=

∫
Rn

‖x‖2N (x | 0, Pt) dx

= M(f) tr(Pt).

That tr[Lt,Pt
(f)] ≥ N(f) tr(Pt) follows along similar lines.

III. BOUNDS ON THE ERROR COVARIANCE

The main results of this section are Propositions 4 and 5
that contain upper (under the full observation assumption)
and lower bounds on the trace of Pt as solved from the
Riccati differential equation (5). Bounds somewhat similar to
ours, albeit without a proof and less general, have appeared
in [26] in the context of stability analysis of the ensemble
Kalman–Bucy filter.

A. An auxiliary lemma

There is an extensive theory on scalar Riccati differential
equations [27, Chapter 3]. The following basic result on
exponential convergence to the equilibrium of solutions of
time-invariant scalar Riccati differential equations will be
useful to us. For completeness, we also present its proof.
See for example [9], [10], [28] for similar results regarding
matrix Riccati differential equations.

Lemma 3: Let a, c > 0, b, and x0 ≥ 0 be constants and
define

α(a, b, c) = α =
√
ac+ b2,

β(a, b, c, x0) = β =
ax0 − α− b
ax0 + α− b

.
(8)

Consider the scalar Riccati differential equation

∂txt = −ax2t + 2bxt + c (9)

with the initial condition x0. The solution xt satisfies

x+ − 2α

a
|β| e−2αt ≤ xt ≤ x+ +

2α

a

1

1− β
e−2αt

where
x+ :=

b+ α

a
> 0

is the equilibrium point and β ≤ 0 when x0 ≤ x+ and
0 ≤ β < 1 when x0 ≥ x+.

Proof: There exist two solutions to the quadratic equation
(or the algebraic Riccati equation) −ax2 + 2bx+ c = 0:

x+ =
b+ α

a
> 0 and x− =

b− α
a

< 0.

Since x0 ≥ 0 and ∂txt = c if xt = 0, any solution to (9)
must be non-negative. It follows that there is an equilibrium
at x+ and that xt < x+ if x0 < x+ and xt > x+ if x0 > x+.

Suppose that xt 6= x+ and denote εt = xt − x+ 6= 0. The
error εt satisfies the differential equation

∂tεt = εt(−aεt − 2α).

The change of variables zt = 1/εt, valid because εt 6= 0,
leads to the affine differential equation

∂tzt = 2αzt + a,

the solution to which is

zt = − a

2α
+

a

2αβ
e2αt .

We thus obtain the solution

xt =
1

zt
+ x+ = x+ +

2α

a

β e−2αt

1− β e−2αt

to the scalar Riccati equation (9). When x0 ≤ x+, β ≤ 0 and

xt ≥ x+ −
2α

a
|β| e−2αt,

whereas 1 > β ≥ 0 and 1 − β e−2αt ≥ 1 − β > 0 when
x0 ≥ x+, yielding

xt ≤ x+ +
2α

a

1

1− β
e−2αt .



Note that the simpler bounds

min(x0, x
+) ≤ xt ≤ max(x0, x

+)

are established at the beginning of the proof and do not
required explicitly solving the differential equation (9).

B. Upper and lower bounds on Pt
Lemma 3 can be now used to derive lower and upper

bounds for the solution Pt of the continuous-time matrix
Riccati differential equation (5). The proofs make use of the
standard comparison theorem (see e.g. [29, Appendix E]) that
allows for deducing inequalities of solutions to differential
equations from differential inequalities (e.g., ∂txt ≤ ∂tyt
implies xt ≤ yt).

Proposition 4 (Upper bound): Suppose that the model is
fully observed (see Definition 1) and denote

α = α
(
λmin(S)/n,M(f), tr(Q)

)
,

β = β
(
λmin(S)/n,M(f), tr(Q), tr(P0)

)
,

where α(a, b, c) and β(a, b, c, x0) are defined in (8). If
Assumption 2 holds and Pt is the solution to the Riccati
differential equation (5), then

tr(Pt) ≤
M(f) + α

λmin(S)/n
+

2α

(1− β)λmin(S)/n
e−2αt

−−−→
t→∞

M(f) + α

λmin(S)/n

(10)

for every t ≥ 0.
Proof: Since H ∈ Rm×n is of full rank and m ≥ n, the

matrix S = HTR−1H is positive-definite. This implies that
λmin(S) > 0. Evolution of the trace of Pt is

∂t tr(Pt) = tr
[
Lt,Pt(f) + Lt,Pt(f)T

]
+ tr(Q)− tr(SP 2

t )

≤ 2M(f) tr(Pt) + tr(Q)− λmin(S) tr(P 2
t )

≤ 2M(f) tr(Pt) + tr(Q)− [λmin(S)/n] tr(Pt)
2,

where we have used Jensen’s inequality in the form
(
∑n
i=1 ai)

2/n ≤
∑n
i=1 a

2
i . The upper bound of Lemma 3

establishes the claim.
Proposition 5 (Lower bound): Denote

α = α
(
λmax(S), N(f), tr(Q)

)
,

β = β
(
λmax(S), N(f), tr(Q), tr(P0)

)
,

where α(a, b, c) and β(a, b, c, x0) are defined in (8). If
Assumption 2 holds and Pt is the solution to the Riccati
differential equation (5), then

tr(Pt) ≥
N(f) + α

λmax(S)
− 2α |β|
λmax(S)

e−2αt

−−−→
t→∞

N(f) + α

λmax(S)

(11)

for every t ≥ 0.
Proof: This time, the trace satisfies

∂t tr(Pt) = tr
[
Lt,Pt

(f) + Lt,Pt
(f)T

]
+ tr(Q)− tr(SP 2

t )

≥ 2N(f) tr(Pt) + tr(Q)− λmax(S) tr(P 2
t )

≥ 2N(f) tr(Pt) + tr(Q)− λmax(S) tr(Pt)
2,

where we have used the inequality
∑n
i=1 a

2
i ≤ (

∑n
i=1 ai)

2.
The claim follows from the lower bound of Lemma 3.

IV. DISCUSSION
We now discuss some properties of the bounds proved in

the previous section.

A. Qualitative properties

Suppose that H = I . Consequently, S = R−1. When
written out, the limiting bounds in (10) and (11) are

tr(Pt)

≤
nM(f) +

√
nλmin(S) tr(Q) + n2M(f)2

λmin(S)

= λmax(R)
(
nM(f) +

√
n tr(Q)/λmax(R) + n2M(f)2

)
and

tr(Pt) ≥
N(f) +

√
λmax(S) tr(Q) +N(f)2

λmax(S)

= λmin(R)
(
N(f) +

√
tr(Q)/λmin(R) +N(f)2

)
.

Some intuitive behaviour can be observed:
• Larger model and measurement noises lead to larger

bounds since both bounds grow linearly with R and as
a square of root of Q;

• For M(f) < 0 (i.e., the homogeneous system
∂txt = f(xt) is exponentially stable), we obtain from√
a+ b ≤

√
a+
√
b the simpler bound

tr(Pt) ≤
√
n tr(Q)λmax(R).

That is, if there is little model noise, the filter is accurate
because it correctly expects that Xt remains close to
the origin. In fact, the model does not need to be
assumed fully observed in this case since, in the proof
of Proposition 4, the term − tr(SP 2

t ) can be removed
and boundedness concluded from Grönwall’s inequality.

B. Comparison to previous bounds

In this section we compare the bounds of Propositions 4
and 5 to those derived in [14] for the EKF by a control-
theoretic argument. Recall the EKF Riccati equation

∂tPt = Jf (X̂t)Pt + PtJf (X̂t)
T +Q− PtSPt.

The model (3) is uniformly detectable if there is a matrix-
valued function Λd(x) such that

sup
x∈Rn

‖Λd(x)‖ = ‖Λd‖ <∞

and
sup
x∈Rn

µ
[
Jf (x)− Λd(x)H

]
≤ −λd

for λd > 0. It is uniformly controllable if there exists a
matrix-valued function Λc(x) such that

sup
x∈Rn

‖Λc(x)‖ = ‖Λc‖ <∞

and
inf
x∈Rn

µ
[
Jf (x) +Q1/2Λc(x)

]
≥ λc > 0



for λc > 0.
Proposition 6 (Theorem 7 in [14]): If the model (3) is

uniformly detectable and controllable, then

‖Pt‖ ≤ ‖P0‖+
(
‖Q‖+ ‖R‖ ‖Λd‖2

)
/(2λd),

‖P−1t ‖ ≤ ‖P−10 ‖+
(
‖S‖+ ‖Λc‖2

)
/(2λc).

For an easy comparison with our bounds, consider the case
H = I and Q = qI for some q > 0. Then

sup
x∈Rn

µ
[
Jf (x)− Λd(x)

]
≤M(f) + sup

x∈R
µ[−Λ(x)],

which means that Λd(x) = [M(f) + αd]I for some αd > 0
yields λd = αd. Similarly, Λc(x) = q−1/2(|N(f)| + αc)
yields λc = αc. Then the bounds of Proposition 6 become

‖Pt‖ ≤ ‖P0‖+
(
q + ‖R‖ [M(f) + αd]

2
)
/(2αd),

‖P−1t ‖ ≤ ‖P−10 ‖+
(
‖R−1‖+ q−1(|N(f)|+ αc)

2
)
/(2αc).

The upper bound is linear in q and R and quadratic in
M(f) while, as discussed in Section IV-A, our upper bound
only grows linearly in M(f) and as a square root of Q.
Furthermore, unlike our bounds where dependency on P0

decays exponentially, these bounds retain P0.

V. EXAMPLES
In this section we apply the error covariance bounds of

Section III to a fully observed simultaneous localisation and
mapping (SLAM) model from [17] and conduct numerical
simulations on a simple two-dimensional toy model.

A. A SLAM application example

As a simple example application of our bounds we use a
continuous-time fully observed SLAM model from [17]. In
this article, the authors consider a SLAM problem, where a
wheeled robot observes fixed landmarks of the environment
in its frame and tries to estimate their positions as well as its
position and orientation. In robocentric mapping, all equations
are written in the robot’s frame. This yields at all times a
(closed-loop) estimate of the landmarks’ positions in the
robot frame (the map), and the trajectory of the robot and the
landmarks in the global (fixed) frame can be recovered by
open loop integration. We assume that the wheeled robot’s
dynamics are described by the unicycle equations (also known
as the nonholonomic car equations). If there are p landmarks,
the state Xt ∈ R2p at time t consists of ranges dt,i ≥ 0
(distance between the landmark i and the robot) and bearings
ϑt,i ∈ [0, 2π[ (direction of landmark i viewed from the robot),
as follows:

Xt =
[
dt,1 ϑt,1 · · · dt,p ϑt,p

]T
.

The dynamics then write [17]

ft(Xt) =
[
ft,1(Xt) · · · ft,p(Xt)

]T
(12)

with

ft,i(Xt) =

[
−vt,r cosϑt,i

vt,r
dt,i

sinϑt,i − wt,r

]
,

where vt,r ≥ 0 and wt,r ∈ R are the robot translational and
angular velocities, respectively. The measurement model is

H = I , which corresponds to ranges and bearings to all of
the p landmarks being constantly measured (in other terms,
all landmarks remain visible during the experiments, and if
this is not the case one must work with subsets of landmarks).
The full model with noise-free dynamics is therefore

dXt = ft(Xt) dt,

dYt = Xt dt+R1/2 dVt

for some measurement noise covariance R. As in [17], we
make the additional (reasonable) assumptions that vt,r and
wt,r remain uniformly bounded in time and dt,i ≥ 1 for each
i = 1, . . . , p and t ≥ 0. From this it follows that

−∞ < N ≤ inf
t≥0

N(ft) ≤ sup
t≥0

M(ft) ≤M <∞. (13)

for some constants N and M .
For estimating the latent state Xt, we consider a modified

EKF whose Riccati equation is

∂tPt = Jft(X̂t)Pt + PtJft(X̂t)
T +Qtu − PtSPt,

where Qtu is a positive-definite tuning parameter. Despite
time-varying dynamics, the error covariance bounds derived
in Section III are valid if M(f) and N(f) are replaced with
M and N from (13). At t→∞, we obtain the bounds

tr(Pt) ≤ r2
(

2pM +
√

2p tr(Qtu)/r2 + 4p2M2
)
,

tr(Pt) ≥ r1
(
N +

√
tr(Qtu)/r1 +N2

)
,

where r1 = λmin(R) and r2 = λmax(R).

B. A two-dimensional toy model
In this section we consider the two-dimensional fully

observed trigonometric model

d

(
Xt,1

Xt,2

)
=

(
− sin(Xt,1) + cos(Xt,2)
cos(Xt,2)− sin(Xt,1)

)
dt+Q1/2 dWt,

dYt = Xt dt+R1/2 dVt

with diagonal noise covariances Q = 0.2I and R = 0.2I . The
state is initialised from X0 = (1, 1) and the Riccati equation
from P0 = 0.3I . The logarithmic Lipschitz constants are
M(f) =

√
2 and N(f) = −

√
2. We experiment with (i) the

extended Kalman–Bucy filter and (ii) the unscented Kalman–
Bucy filter (as formulated in Section II-D). The stochastic
differential equations are solved up to time t = 100 using the
Euler–Maruyama method with step-size 0.01. Figures 1 and 2
display a particular realisation of the state and the estimates
by the EKF and the UKF. Figure 3 depicts the upper and
lower bounds for tr(Pt), as computed from Propositions 4
and 5 and five actual trace trajectories for both the EKF and
the UKF. We observe that the theoretical bounds are valid.

VI. CONCLUSIONS
In Propositions 4 and 5 we have proved bounds on trace

of the error covariance of Kalman–Bucy filters for systems
with non-linear dynamics and linear (or fully observed)
measurements. As proved in Section II, the bounds are
valid for a large class of prevalent filters. Possibly the most
straightforward generalisation would be to systems whose
partially observed state components are asymptotically stable.
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Fig. 1: State components and their EKF estimates for a particular realisation
of the system of Section V-B.

0 20 40 60 80 100
−10

−5

0

4

t

UKF estimates

Xt,1 Xt,2

X̂t,1 X̂t,2

Fig. 2: State components and their UKF estimates for a particular realisation
of the system of Section V-B.
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Fig. 3: The theoretical upper and lower bounds of Propositions 4 and 5
(gray) and five actual trace trajectories for the EKF (red) and the UKF (blue).
The norm bounds of Proposition 6, applicable only to the EKF, are (using
optimal values of αd and αc) ‖Pt‖ ≤ 0.93 and ‖P−1

t ‖ ≤ 19.1 while the
empirically observed bounds are ‖Pt‖ ≤ 0.63 and ‖P−1

t ‖ ≤ 15.7.
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