
Where is Physiological Noise
Lurking in k-Space?

Toni Karvonen1,2, Arno Solin3, Ángel F. García-Fernández1, Filip
Tronarp1, Simo Särkkä1, and Fa-Hsuan Lin4,5

1Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
2Aalto NeuroImaging, Aalto University, Espoo, Finland

3IndoorAtlas Ltd., Helsinki, Finland
4Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan

5Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo,

Finland

Synopsis

We analyze the structure of physiological noise in the k-space of BOLD fMRI.
We use DRIFTER which is an algorithm based on optimal Bayesian smoothing
techniques for separation of the fMRI signal to a BOLD signal component and
physiological noises. DRIFTER is run independently for each spatial frequency
and it is shown that the physiological noise lies in the k-space points with low
spatial frequency and that its amplitude is proportional to the BOLD signal.
This result suggests that we can lower the computational burden without
losing estimation accuracy by running DRIFTER only on a subset of k-space
points.

1 Purpose
Structured non-white noise resulting from cardiac and respiratory activity can account
for over a third of the total standard deviation in BOLD fMRI1, making proper
treatment of these noise sources an essential part in enhancing the signal-to-noise
ratio2. Removal of the structural noise is typically done retrospectively from the
reconstructed images3,4, but it has been demonstrated5 that working directly with the
raw k-space data is possible and can result to more accurate noise estimates. In this
work, we investigate the k-space structure of the physiological noise, as estimated
by the DRIFTER algorithm3. Knowing this spatial distribution is important as such,
but it can also be used for reducing the computational burden of the DRIFTER
algorithm—as the DRIFTER processes each spatial frequency independently and
most of the energy is concentrated to low frequencies, we can save computations by
only processing a subset of the k-space.
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Figure 1: Logarithmic k-space amplitude maps averaged over time for slices 7 and 19.
Columns from left to right: full signal; cleaned signal estimate by DRIFTER; total physiolog-
ical noise with the contour enclosing those spatial frequencies that have largest amplitudes
and constitute 90% of the total energy; cardiac noise estimate; respiratory noise estimate.
Magnitudes in different maps are not comparable. Spatial frequency range, in units of
1/mm, is from −0.29 to 0.29 on the horizontal axis and from −0.14 to 0.14 on the vertical
one.

Figure 2: Cardiac noise amplitude maps, displayed with the corresponding anatomical
images, reconstructed by DRIFTER using spatial frequencies constituting 100%, 90% and
50% of the physiological noise energy in k-space for selected slices. The magnitudes are
logarithmic and not in scale between different slices or columns.

Figure 3: Respiratory noise amplitude maps, displayed with the corresponding anatomical
images, reconstructed by DRIFTER using spatial frequencies constituting 100%, 90% and
50% of the physiological noise energy in k-space for selected slices. The magnitudes are
logarithmic and not in scale between different slices or columns.
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Figure 4: Logarithmic scatter plots of image space cardiac and respiratory noise versus
cleaned signal amplitudes by DRIFTER for slice 7. The data points represent the cleaned
signal amplitude (horizontal axis) and physiological noise amplitude (vertical axis) of
individual image space voxels. The scales have been normalized.

2 Methods
The DRIFTER algorithm is a retrospective estimation scheme for identification and
removal of physiological noise in fMRI data. It is based on Bayesian optimal filtering
and smoothing methods from signal processing. The algorithm decomposes the data
into different noise components and the “cleaned” BOLD signal. In this work we apply
DRIFTER to raw k-space data. After this we select spatial frequencies that contain
most of the energy and process only these. This kind of subset processing is only
possible in k-space whereas processing only some of the image space voxels would
make little sense. Specifically, we use DRIFTER to compute the overall physiological
noise distribution in the k-space and then investigate how the reconstructed images
are affected if only the those spatial frequencies containing 90% or 50% of the total
physiological noise energy are processed further. The actual image reconstruction is
done with Kaiser–Bessel regridding6 and by weighting by the complete coil images
when summing over the coil channels.

The test data consists of a 27-run set of raw resting state fMRI data and
accompanying anatomical images of one volunteer. The data was obtained at Aalto
AMI Centre of Aalto NeuroImaging, part of Aalto University School of Science,
with a 3 T Siemens Skyra scanner using a 32-channel receive-only head-coil array.
Parameters of the EPI sequence were TR: 77 ms; TE: 21 ms; FA: 60 degrees; FOV:
224 mm; matrix size: 64×64; voxel size: 3.5×3.5×6 mm, and those of the EPI
trajectory were ramp times: 140 µs; flat-top: 220 µs; ADC readout time: 409.6
µs. Each run had a length of approximately 30 seconds and consisted of a fixed
reference slice and a second slice with the gap size between them advancing on each
run. The reference cardiac and respiration signals were time-locked to the fMRI data
with a peripheral (BIOPAC) pulse measure and a respiratory belt, respectively. The
physiological signals were sampled with a frequency of 1 kHz. For the DRIFTER
algorithm, two harmonic resonators were used with their frequencies for each run
estimated from external cardiac and respiration signals.
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Figure 5: Logarithmic scatter plots of k-space cardiac and respiratory noise versus cleaned
signal amplitudes by DRIFTER for slice 7. The data points represent the cleaned signal
amplitude (horizontal axis) and physiological noise amplitude (vertical axis) of individual
spatial frequencies in the k-space. The scales have been normalized.

3 Results
The results are summarized in Figures 1–5. Figure 1 is instrumental and shows
amplitude maps of the physiological noises in k-space for one slice. Figures 2 and
3 display how processing fewer spatial frequencies affects the reconstructed image
space noise estimates. With 90% coverage there is little degradation but if half of
the energy is discarded the estimates become markedly more blurred. Figures 4 and
5 demonstrate that there is, as has been suggested1, a linear relationship between
cleaned signal and physiological noise magnituges.

4 Discussion
The results reveal that the physiological noise is heavily concentrated to low spatial
frequencies and its distributions roughly coincides with that of the total signal.
The number of spatial frequencies required to contain most of physiological noise
energy decreases fast: in the case of covering 90% of energy the numbers of spatial
frequencies required were (the total number is 8192) 5212, 5115, 3839, 3610,
3896, 3700, 3813 and 3086 for the slices in Figures 2 and 3. That is, around half
of the frequencies can be discarded with little degradation of image space noise
estimates. These findings support the goal of reducing the computational cost by
only considering a subset of the frequencies.

5 Conclusions
We have presented how physiological noise in fMRI is structured in the k-space and
shown that DRIFTER algorithm (available for download7) can be applied to only a
subset of spatial frequencies with little degradation of the noise estimates and that
this approach can considerably improve the practical computational efficiency of
physiological noise removal in fMRI.
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