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Abstract

We present a general Fourier analytic technique for constructing orthonormal basis expansions
f translation-invariant kernels from orthonormal bases of L2(R). This allows us to derive explicit

expansions on the real line for (i) Matérn kernels of all half-integer orders in terms of associated Laguerre
functions, (ii) the Cauchy kernel in terms of rational functions, and (iii) the Gaussian kernel in terms
of Hermite functions.
© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

MSC: 65D12; 46E22; 33C45; 60G10
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1. Introduction

Let Ω be a vector space. A symmetric positive-semidefinite kernel r : Ω × Ω → R
is translation-invariant if r (t, u) = Φ(t − u) for some Φ : Ω → R and all t, u ∈ Ω .
Translation-invariant kernels, also known as stationary or shift-invariant kernels, are a mainstay
of radial basis function interpolation [30] and Gaussian process modelling as used in, for
example, spatial statistics [25] and machine learning [23]. Each positive-semidefinite kernel
induces a unique reproducing kernel Hilbert space (RKHS), Hr (Ω ), which is equipped with
an inner product ⟨·, ·⟩r and the associated norm ∥ · ∥ r (e.g., [21], Section 2.2). Practically every
commonly used kernel induces an infinite-dimensional RKHS that is separable (see [20] for a
short review on separability of RKHSs), which means that Hr (Ω ) has an orthonormal basis
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{ψm}m∈I for some countably infinite index set I (e.g., I = N) and that the kernel admits the
ointwise convergent orthonormal expansion

r (t, u) =

∑
m∈I

ψ∗

m(t)ψm(u) for all t, u ∈ Ω , (1.1)

here z∗ denotes the complex conjugate of z ∈ C. If Ω is a compact subset of the Euclidean
pace Rd and r is continuous, the expansion (1.1) converges uniformly [21, Section 11.3].
xpansions of the form (1.1) are often needed to develop reduced rank methods of sub-
ubic computational complexity [22,24], to improve numerical stability [8], and for various
heoretical purposes (e.g., [14,26]).

However, few orthonormal expansions appear to have been constructed for translation-
nvariant kernels. To the best of our knowledge, the Matérn- 1

2 kernel r (t, u) = exp(−λ |t − u|)
nd the Gaussian kernel r (t, u) = exp(− 1

2λ
2(t − u)2) on subsets of R are the only commonly

sed translation-invariant kernels for which orthonormal expansions have been found. For vari-
us expansions of the Matérn- 1

2 kernel, see Section 4 in [11], Section 3.4.1 in [29], Example 4.1
in [32], and Example 2.5 and Appendix A.2 in [9]. For the Gaussian kernel both a simple
non-Mercer expansion based on a Taylor expansion of the exponential function (e.g., [17])
and a class of Mercer expansions [9, Section 12.2.1], which appear to have originated in
[33, Section 4], are available. A large collection of expansions for kernels which are not
translation-invariant can be found in [9, Appendix A]. In this article we describe a general
and conceptually simple Fourier analytic technique, contained in Theorem 1.1, for constructing
orthonormal bases for translation-invariant kernels on R out of orthonormal bases of L2(R). We
hen use this technique to compute orthonormal expansions for three commonly used classes
f kernels.

Ours is what one could call a kernel-centric approach. That is, our starting point is a kernel
hat has, in some sense, desirable or intuitive properties and our goal is to find its orthonormal
xpansion. The space-centric approach is to start with a Hilbert space or its orthonormal basis,
how that this space is an RKHS, and construct its reproducing kernel via (1.1); under fortuitous
ircumstances the kernel is available in closed form. A prime example of this approach is how
orobov spaces and their kernels, which can be expressed in terms of Bernoulli polynomials,
re used in the quasi-Monte Carlo literature (e.g., [5], Section 5.8). Other examples include
ardy spaces [21, Section 1.4.2], power series kernels [34], and Hermite spaces [13]. Our

echnique to construct orthonormal bases is similar to the method in [18], where the goal is
owever to find a closed form expression for the reproducing kernel of a Hilbert space.

.1. Construction of orthonormal bases

Let |z| denote the modulus of z ∈ C and recall that z∗ is the complex conjugate. The spaces
2(R) and L2(R, 1/2π ) consist of all square-integrable functions f :R → C and are equipped

with the inner products

⟨ f, g⟩L2(R) =

∫
∞

−∞

f ∗(t)g(t) dt and ⟨ f, g⟩L2(R,1/2π ) =
1

2π

∫
∞

−∞

f ∗(t)g(t) dt.

he Fourier transform and the corresponding inverse transform for any integrable or square-
ntegrable function f are defined as

f̂ (ω) =

∫
∞

f (t)e−iωt dt and f (t) =
1
∫

∞

f̂ (ω)eiωt dω.

−∞ 2π −∞

2
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The Fourier transform defines an isometry from L2(R) to L2(R, 1/2π ) via the Plancherel
heorem∫

∞

−∞

f ∗(t)g(t) dt =
1

2π

∫
∞

−∞

f̂ ∗(ω)ĝ(ω) dω.

he functions f and f̂ are referred to as time domain and Fourier domain representa-
ions, respectively. Our Hr (R)-orthonormal expansions are derived from the following rather
traight-forward theorem. Let I be a countably infinite index set, typically either N or Z.

heorem 1.1 (Construction of Orthonormal Bases). Suppose that r (t, u) = Φ(t − u) is a
ranslation-invariant symmetric positive-definite kernel with Φ ∈ C(R) ∩ L1(R). Let {ϕm}m∈I
e an orthonormal basis of L2(R) and h a function such that |ĥ(ω)| = Φ̂(ω)1/2. Then the
unctions

ψm(t) =

∫
∞

−∞

h(t − τ )ϕm(τ ) dτ with Fourier transforms ψ̂m(ω) = ĥ(ω)ϕ̂m(ω)

or m ∈ I form an orthonormal basis of Hr (R) and the kernel r has the pointwise convergent
xpansion

r (t, u) =

∑
m∈I

ψ∗

m(t)ψm(u) for all t, u ∈ R. (1.2)

roof. That r is symmetric positive-definite implies that Φ̂ is real-valued and positive
30, Theorem 6.11]. For a function h such that |ĥ(ω)| = Φ̂(ω)1/2 > 0 for all ω ∈ R we
efine a convolution operator H : L2(R) → L2(R) via

(H f )(t) =

∫
∞

−∞

h(t − τ ) f (τ ) dτ for all t ∈ R.

ote that the convolution theorem yields Ĥ f (ω) = ĥ(ω) f̂ (ω). By the standard characterisation
see [15] or [30, Theorem 10.12]) of the RKHS of a translation-invariant kernel,

⟨ f, g⟩r =
1

2π

∫
∞

−∞

f̂ ∗(ω)ĝ(ω)

Φ̂(ω)
dω for any f, g ∈ Hr (R). (1.3)

For any f, g ∈ L2(R) the convolution theorem and Plancherel theorem thus give

⟨H f,Hg⟩r =
1

2π

∫
∞

−∞

|ĥ(ω)| 2 f̂ ∗(ω)ĝ(ω)

Φ̂(ω)
dω =

1
2π

∫
∞

−∞

f̂ ∗(ω)ĝ(ω) dω = ⟨ f, g⟩L2(R),

hich shows that H is an isometry from L2(R) to Hr (R). It follows from (1.3) that the inverse
ourier transform

(H−1 f )(t) =
1

2π

∫
∞

−∞

f̂ (ω)

ĥ(ω)
eiωt dω for all t ∈ R

defines the inverse of H. Therefore H is an isometric isomorphism and thus maps every
orthonormal basis of L2(R) to an orthonormal basis of Hr (R) [12, Section 2.6]. The kernel
has a pointwise convergent expansion of the form (1.2) for every orthonormal basis of Hr (R)
[21, Theorem 2.4]. □

To obtain the basis functions ψm in time domain using Theorem 1.1 one has to either
compute the convolution

∫
∞ h(t − τ )ϕ (τ ) dτ or the inverse Fourier transform of ĥ(ω)ϕ̂ (ω).

−∞ m m

3
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It is therefore necessary to select a basis of L2(R) for which either of these operations
an be done in closed form. We use Theorem 1.1 to derive orthonormal expansions for (i)
atérn kernels for all half-integer orders, (ii) the Cauchy kernel (i.e., rational quadratic kernel

23, Equation (4.19)] with α = 1), and (iii) the Gaussian kernel. The expansions are
summarised in Section 2. All expansions appearing in this article converge pointwise.

1.2. On Mercer expansions

Let Ω be a subset of Rd and w :Ω → [0,∞) a weight function. The Hilbert space L2(Ω , w)
s equipped with the inner product

⟨ f, g⟩L2(Ω,w) =

∫
Ω

f ∗(t)g(t)w(t) dt

nd consists of all functions f :R → C for which the corresponding norm is finite. Suppose
hat the kernel r is continuous and define the integral operator

Tr,w f =

∫
∞

−∞

r (·, u) f (u)w(u) du. (1.4)

nder certain assumptions, Mercer’s theorem [27] states that (i) Tr,w has continuous eigen-
unctions {ϑm}

∞

m=0 and corresponding positive non-increasing eigenvalues {µm}
∞

m=0 which tend
to zero, (ii) {ϑm}

∞

m=0 are an orthonormal basis of L2(Ω , w), and (iii) {
√
µmϑm}

∞

m=0 is an
orthonormal basis of Hr (Ω ). Consequently, the kernel has the pointwise convergent Mercer
expansion

r (t, u) =

∞∑
m=0

µmϑ
∗

m(t)ϑm(u) for all t, u ∈ Ω . (1.5)

While Mercer’s theorem and the eigenvalues of Tr,w constitute a powerful tool for under-
standing topics such as optimal approximation in L2(Ω , w)-norm (e.g., [19, Corollary 4.12]
nd [7, Section 2.4]) and improved approximation orders in subsets of Hr (Ω ) [30, Sec-
ion 11.5], both in theoretical research and practical applications there is often no reason
o prefer a Mercer expansion (1.5) over a generic RKHS-orthonormal expansion (1.1). For
xample, the Karhunen–Loève theorem is merely a special case of a more general result that
Gaussian process with covariance kernel r can be expanded in terms of any orthonormal

asis of Hr (Ω ) [1, Chapter III]. When an expansion is being sought solely for computational
reasons, it does not matter whether or not this expansion is Mercer.

Constructing a Mercer expansion by first identifying a convenient weight and then finding
the eigendecomposition of the integral operator (1.4) can be rather involved, which is illustrated
by the construction in [9, Example 2.5] for the Matérn- 1

2 kernel. What makes Theorem 1.1
convenient is therefore that it does not require that the expansion be Mercer for some weight.
However, identifying a weight w for which the basis function ψm constructed via Theorem 1.1
are L2(R, w)-orthogonal shows that the expansion is Mercer because the L2(R, w)-normalised
versions of ψm are the eigenfunctions of Tr,w. It turns out that our expansion for the Gaussian
kernel is Mercer and the ones for Matérn kernels are “almost” Mercer, in that all but finitely
many basis functions are orthogonal in L2(R, w) for a certain weight.

2. Summary of expansions

This section summarises the expansions that we derive using Theorem 1.1. Each expansion
converges pointwise for all t, u ∈ R. All expansions are for kernels with unit scaling.
4
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Expansions of arbitrary scalings, λ, may be obtained by considering the kernel r (λt, λu), for
which the corresponding basis functions are ψm(λt).

2.1. Matérn kernels

Expansions for Matérn kernels are derived in Section 3. A Matérn kernel of order α > 0 is

rα(t, u) =
21−α

Γ (α)
(|t − u|)αKα(|t − u|), (2.1)

here Γ is the Gamma function and Kα the modified Bessel function of the second kind of
rder α. Let L(η)

m denote the mth associated Laguerre polynomial of index η, defined in (3.12),
nd let {ϕm}m∈Z be the Laguerre functions

ϕm(t) =
√

2 Lm(2t)e−t 1[0,∞)(t) and ϕ−m−1(t) = −
√

2 Lm(−2t)et 1(−∞,0)(t)

or m ∈ N0, where Lm = L(0)
m and 1A denotes the indicator function of a set A. Consider

alf-integer order α = ν + 1/2 for ν ∈ N0. Then the Matérn-Laguerre functions

ψ+

m,ν(t) =
ν!

(2ν)!
m!

(m + ν + 1)!
(2t)ν+1L(ν+1)

m (2t)e−t 1[0,∞)(t) for m ∈ N0

ψ−

m,ν(t) = (−1)νψ+

m,ν(−t) for m ∈ N0,

ψ0
m,ν(t) =

1
√

2

ν!
√

(2ν)!

ν+1∑
k=0

(
ν + 1

k

)
(−1)kϕm+k−ν−1(t) for m = 0, . . . , ν

orm an orthonormal basis of the RKHS and

rν+1/2,(t, u) =

ν∑
m=0

ψ0
m,ν(t)ψ

0
m,ν(u) +

∞∑
m=0

ψ−

m,ν(t)ψ
−

m,ν(u) +

∞∑
m=0

ψ+

m,ν(t)ψ
+

m,ν(u)

or all t, u ∈ R. The basis functions ψ−
m,ν and ψ+

m,ν are orthogonal in L2(R, wν) for the weight
unction wν(t) = 2/

⏐⏐2t
⏐⏐ ν+1.

.2. Cauchy kernel

Expansions for the Cauchy kernel are derived in Section 4. The Cauchy kernel is

r (t, u) =
1

1 + (t − u)2 .

oth the complex-valued Cauchy–Laguerre functions

ψm(t) = −
1

√
2

(i t)m

(i t − 1)m+1 and ψ−m−1(t) = −
1

√
2

(i t)m

(i t + 1)m+1

or m ∈ N0 and the real-valued Cauchy–Laguerre functions

αm(t) =
1

√
2

(
ψm(t) + ψ∗

m(t)
)

and βm(t) =
1

√
2

(
ψm(t) − ψ∗

m(t)
)

for m ∈ N0 form orthonormal bases of the RKHS. Therefore, the Cauchy kernel has the
expansions

r (t, u) =

∞∑
m=−∞

ψ∗

m(t)ψm(u) =

∞∑
m=0

αm(t)αm(u) +

∞∑
m=0

βm(t)βm(u)
or all t, u ∈ R. Expressions of αm and βm in terms of real parameters are given in (4.5).

5
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2.3. Gaussian kernel

Expansions for the Gaussian kernel are derived in Section 5. The Gaussian kernel is

r (t, u) = exp
(
−

1
2

(t − u)2
)
.

he functions

ψm(t) =

(
2
√

2
3

)1/2√ 1
6mm!

e−t2/3Hm

(
2t
√

3

)
for m ∈ N0 (2.2)

form an orthonormal basis of the RKHS and the kernel has the expansion

r (t, u) =

∞∑
m=0

ψm(t)ψm(u)

for all t, u ∈ R. This expansion is a special case of the well-known Mercer expansion of the
Gaussian kernel [9, Section 12.2.1]. The basis functions (2.2) are orthogonal in L2(R, wα) for
the weight function wα(t) = απ−1/2e−α2t2

with α =
√

2/3.

. Expansions of Matérn kernels

The Matérn kernel of order α > 0 in (2.1) can be written as

rα(t, u) =
21−2α

Γ (α)
(2|t − u|)αKα(|t − u|),

and its Fourier transform is (e.g., [30], Theorem 6.13)

Φ̂α(ω) = 21−2α√π
Γ (α + 1/2)

Γ (α)
22α

(ω2 + 1)α+1/2 .

From now on we assume that the kernel is of half-integer order: α = ν+1/2 for ν ∈ N0. Then
he Fourier transform simplifies to

Φ̂ν+1/2(ω) =
(ν!)2

(2ν)!
22ν+1

(ω2 + 1)ν+1 ,

nd a non-symmetric square-root, in the sense that |ĥν+1/2(ω)| 2
= Φ̂ν+1/2(ω), is given by

ĥν+1/2(ω) =
ν!

√
(2ν)!

2ν+1/2

(iω + 1)ν+1 . (3.1)

The corresponding time domain function is [31, Section 1.03]

hν+1/2(t) = 2ν+1/2 ν!
√

(2ν)!

tν

ν!
e−t 1[0,∞)(t). (3.2)

ote that this function vanishes on the negative real line.

.1. Laguerre functions

The following material is mostly based on Section 2.6.4 in [12] and Section 1.03 in [31]. To
erive an orthonormal expansion for the Matérn kernel we use the so-called Laguerre functions
m whose Fourier transforms are given by

ϕ̂m(ω) =
√

2
(iω − 1)m

for m ∈ Z. (3.3)

(iω + 1)m+1

6
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The functions ϕ̂m form an orthonormal basis of L2(R, 1/2π ). Because the Fourier transform
s an isometry, the Laguerre functions themselves, defined by the inverse Fourier transform

ϕm(t) =
1

2π

∫
∞

−∞

ϕ̂m(ω)eiωt dω for m ∈ Z, (3.4)

are an orthonormal basis of L2(R). Let Lm for m ∈ N0 be the mth Laguerre polynomial

Lm(t) =

m∑
k=0

(
m
k

)
(−1)k

k!
tk . (3.5)

or non-negative indices m ∈ N0 the inverse Fourier transform (3.4) is given by

ϕm(t) =
√

2 Lm(2t)e−t 1[0,∞)(t). (3.6)

The conjugate symmetry ϕ̂∗

−m−1(ω) = −ϕ̂m(ω) gives the following expression for negative
indices:

ϕ−m−1(t) = −ϕm(−t) = −
√

2 Lm(−2t)et 1(−∞,0)(t) for m ∈ N0.

he Laguerre functions and their Fourier transforms satisfy the following useful identities:

ϕ̂∗

−m−1(ω) = −ϕ̂m(ω), (conjugate symmetry)

ϕ̂m+k(ω) =

( iω − 1
iω + 1

)k
ϕ̂m(ω), (shift property)

ϕ̂m(ω)ϕ̂k(ω) =
1

√
2

(
ϕ̂m+k(ω) − ϕ̂m+k+1(ω)

)
, (multiplication property)

2ν+1/2

(iω + 1)ν+1 =

ν∑
k=0

(
ν

k

)
(−1)k ϕ̂k(ω). (binomial identity)

.2. Matérn–Laguerre functions

In view of Theorem 1.1, an orthonormal basis for the RKHS of the Matérn kernel rν,+1/2

s obtained from (3.1) and (3.3) in Fourier domain as

ψ̂m,ν(ω) = ĥν+1/2(ω)ϕ̂m(ω) = 2ν+1 ν!
√

(2ν)!

(iω − 1)m

(iω + 1)m+1+ν+1 (3.7)

for m ∈ Z. We call the resulting functions the Matérn–Laguerre functions. Like the Laguerre
functions, the Matérn–Laguerre functions satisfy a certain conjugate symmetry property in the
sense that

ψ̂−ν−1−m−1,ν(ω) = (−1)νψ̂∗

m,ν(ω) for m ∈ N0. (3.8)

Furthermore, by the binomial identity and the shift property of Laguerre functions, the
Matérn–Laguerre functions and their Fourier transforms are

ψm,ν(t) =
1

√
2

ν!
√

(2ν)!

ν+1∑(
ν + 1

k

)
(−1)kϕm+k(t) (3.9)
k=0

7
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ψ̂m,ν(ω) =
1

√
2

ν!
√

(2ν)!

ν+1∑
k=0

(
ν + 1

k

)
(−1)k ϕ̂m+k(ω) (3.10)

for m ∈ Z. The Matérn kernel of order ν + 1/2 can therefore be expanded as

rν+1/2(t, u) =

∞∑
m=−∞

ψm,ν(t)ψm,ν(u). (3.11)

The following proposition provides a uniform upper bound on the Matérn–Laguerre functions.

Proposition 3.1 (Matérn–Laguerre Upper Bound). For all t ∈ R and m ∈ Z, the
Matérn–Laguerre functions satisfy

|ψm,ν(t)| ≤
2νν!

√
(2ν)!

∼ (πν)1/4 as ν → ∞.

roof. By (3.10) and the binomial identity for Laguerre functions,

ψm,ν(t) =
ν!

√
(2ν)!

ν∑
k=0

(
ν

k

)
(−1)k 1

2π

∫
∞

−∞

ϕ̂m(ω)ϕ̂k(ω)eiωt dω.

pply the triangle inequality, the Cauchy–Schwarz inequality, and the orthonormality in
2(R, 1/2π ) of ϕ̂m to arrive at

|ψm,ν(t)| ≤
ν!

√
(2ν)!

ν∑
k=0

(
ν

k

)
1

2π

⏐⏐⏐⏐⏐
∫

∞

−∞

eiωt ϕ̂m(ω)ϕ̂k(ω) dω

⏐⏐⏐⏐⏐
≤

ν!
√

(2ν)!

ν∑
k=0

(
ν

k

)
1

2π

(∫
∞

−∞

|ϕ̂m(ω)| 2 dω
)1/2(∫ ∞

−∞

|ϕ̂k(ω)| 2 dω
)1/2

=
ν!

√
(2ν)!

ν∑
k=0

(
ν

k

)
=

2νν!
√

(2ν)!
.

he asymptotic equivalence as ν → ∞ follows from Stirling’s formula. □

It appears difficult to improve upon the bound in Proposition 3.1. Consequently, uniform
onvergence of Matérn–Laguerre expansions on R is likely unattainable.

.3. Classification of Matérn–Laguerre functions

For m ∈ N0, a more compact and convenient expression of the Matérn–Laguerre func-
ions (3.9) may be obtained by using the convolution formula in Theorem 1.1. For η ∈ N0, the
ssociated Laguerre polynomial L(η)

m is defined as

L(η)
m (t) =

m∑(
m + η

m − k

)
(−1)k

k!
tk . (3.12)
k=0

8
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The associated Laguerre polynomial L(0)
m equals the Laguerre polynomial Lm in (3.5). For t > 0

and m ∈ N0, we get from (3.2) and (3.6) that

ψm,ν(t) =

∫
∞

−∞

hν+1/2(t − τ )ϕm(τ ) dτ

=
ν!

√
(2ν)!

2ν+1/2
∫ t

0
e−(t−τ ) (t − τ )ν

ν!
e−τ

√
2Lm(2τ ) dτ

=
ν!

√
(2ν)!

2e−t
∫ t

0

(2t − 2τ )ν

ν!
Lm(2τ ) dτ

=
ν!

√
(2ν)!

e−t
∫ 2t

0

(2t − τ )ν

ν!
Lm(τ ) dτ

=
ν!

√
(2ν)!

m!

(m + ν + 1)!
(2t)ν+1L(ν+1)

m (2t)e−t ,

where the last equality follows from a convolution identity for Laguerre polynomials
[3, Chapter 6, Problem (3)]. For t < 0, the Laguerre functions ϕm(t) vanish and the convolution
evaluates to zero and hence

ψm,ν(t) =
ν!

√
(2ν)!

m!

(m + ν + 1)!
(2t)ν+1L(ν+1)

m (2t)e−t 1[0,∞)(t) for m ∈ N0.

For negative indices m ≤ −ν − 2 a similar expression is obtained from the conjugate
symmetry (3.8):

ψ−ν−1−m−1,ν(t) = (−1)νψm,ν(−t)

= −
ν!

√
(2ν)!

m!

(m + ν + 1)!
(2t)ν+1L(ν+1)

m (2 |t |)e−|t |1(−∞,0)(t)
(3.13)

or m ∈ N0. This motivates the following notation for the three classes of Matérn–Laguerre
unctions that comprise an orthonormal basis:

ψ+

m,ν(t) = ψm,ν(t) for m ∈ N0, (3.14)

ψ−

m,ν(t) = (−1)νψm,ν(−t) for m ∈ N0, (3.15)

ψ0
m,ν(t) = ψ−ν−1+m,ν(t) for m = 0, 1, . . . , ν. (3.16)

or convenience, define the corresponding sets

M +

ν =
{
ψ+

m,ν

}
m∈N0

, M −

ν =
{
ψ−

m,ν

}
m∈N0

, M 0
ν =

{
ψ0

m,ν

}ν
m=0,

he union Mν = M −
ν ∪ M +

ν , and the kernels

ρ−

ν+1/2(t, u) =

∞∑
m=0

ψ−

m,ν(t)ψ
−

m,ν(u) and ρ+

ν+1/2(t, u) =

∞∑
m=0

ψ+

m,ν(t)ψ
+

m,ν(u). (3.17)

e call the set M 0
ν the null-space and study it in more detail in Section 3.5. For now, note

hat the null-space functions are supported on R because from (3.9) one can see that for
= 0, . . . , ν the sum that defines ψ−ν−1+m,ν contains Laguerre functions with both negative

nd non-negative indices. Some of the basis functions are shown in Figs. 1 and 4.
The Matérn expansion (3.11) can now be written in terms of these functions and kernels as

rν+1/2(t, u) =

ν∑
ψ0

m,ν(t)ψ
0
m,ν(u) + ρ−

ν+1/2(t, u) + ρ+

ν+1/2(t, u).

m=0

9
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n

I
i

W
f

M

P

Fig. 1. The Matérn–Laguerre functions ψ+
m,ν in (3.14) for m = 0, . . . , 6. Observe that the functions vanish on the

egative real line.

t is clear that the functions in M −
ν are supported on the negative real line and the functions

n M +
ν on the positive real line. This observation yields the following simplifications:

rν+1/2(t, u) =

ν∑
m=0

ψ0
m,ν(t)ψ

0
m,ν(u) + ρ+

ν+1/2(t, u) if t ≥ 0 or u ≥ 0, (3.18)

rν+1/2(t, u) =

ν∑
m=0

ψ0
m,ν(t)ψ

0
m,ν(u) + ρ−

ν+1/2(t, u) if t ≤ 0 or u ≤ 0, (3.19)

rν+1/2(t, u) =

ν∑
m=0

ψ0
m,ν(t)ψ

0
m,ν(u) if sign t ̸= sign u. (3.20)

e next show that Mν , M −
ν , and M +

ν form orthogonal bases with respect to the weight
unction

wν(t) = 2/
⏐⏐2t
⏐⏐ ν+1

.

This justifies saying that the expansions we have derived for Matérn kernels are “almost”
ercer.

roposition 3.2 (Matérn–Laguerre Orthogonality). The sets Mν , M +
ν , and M −

ν form
orthogonal bases in L2(R, wν), L2(R+, wν), and L2(R−, wν), respectively. Furthermore,ψ+

m,ν

2
L2(R,wν ) =

ψ−

m,ν

2
L2(R,wν ) =

(ν!)2

(2ν)!
m!

(m + ν + 1)!
for every m ∈ N0.

Proof. That M +
ν forms an orthogonal basis in L2(R+, wν) follows from the fact that the

functions

tν/2+1/2L(ν+1)
m (t)e−t/2 for m ∈ N0 (3.21)

form an orthonormal basis in L2(R+) [28, Theorem 5.7.1]. Furthermore, the norms of
the functions in M + are readily computed from the norms of the corresponding Laguerre
ν

10
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Fig. 2. Translates ρν+1/2(·, u) of the kernel in (3.22) for u ∈ {−2,−1.2,−0.4, 0.4, 1.2, 2}. Observe that each
ranslate is supported on the axis that u lies on.

olynomials:ψ+

m,ν

2
L2(R,wν ) =

(ν!)2

(2ν)!

(
m!

(m + ν + 1)!

)2 ∫ ∞

0
[L(ν+1)

m (t)]2tν+1e−t dt

=
(ν!)2

(2ν)!
m!

(m + ν + 1)!
.

he statement pertaining to M −
ν follows from the symmetry (3.13) and the statement pertaining

to Mν from the fact that L2(R) = L2(R−) ⊕ L2(R+). □

Because they do not decay to zero sufficiently fast at the origin, the functions in M 0
ν are

ot members of L2(R, wν). This will become evident in Section 3.5.

.4. Truncation error

Define the kernel

ρν+1/2(t, u) = ρ−

ν+1/2(t, u) + ρ+

ν+1/2(t, u) (3.22)

n terms of the kernels in (3.17). A few translates of this kernel are displayed in Fig. 2. The
ull Matérn kernel is therefore

rν+1/2(t, u) =

ν∑
m=0

ψ0
m,ν(t)ψ

0
m,ν(u) + ρν+1/2(t, u).

rom Proposition 3.2 we see that the kernel ρν+1/2 is an element of L2(R×R, wν ⊗wν) and
hat its squared norm is given by∫

∞

−∞

∫
∞

−∞

ρ2
ν+1/2(t, u)wν(t)wν(u) dt du

=

∞∑
m=0

(ψ−

m,ν

4
L2(R,wν ) +

ψ+

m,ν

4
L2(R,wν )

)
.

his implies that ρν+1/2 defines a Hilbert–Schmidt operator on L2(R, wν) via (1.4) and that
he above norm is precisely the squared Hilbert–Schmidt norm of this operator [16, Chapter 1,
11
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p

O
k

P

w

Fig. 3. The truncation in (3.24) for two Matérn kernels. Because the second kernel argument has been fixed to a
ositive value, the truncations are exact on the negative real line by (3.20).

Fig. 4. The null-space Matérn–Laguerre functions ψ0
m,ν in (3.16) for ν = 2 and ν = 9.

§1]. Next the approximation errors for appropriately truncated approximations of the Matérn
kernel are examined in terms of the Hilbert–Schmidt norm. Let n ≥ 1 and define the truncated
kernels

ρν+1/2,n(t, u) =

n−1∑
m=0

ψ−

m,ν(t)ψ
−

m,ν(u) +

n−1∑
m=0

ψ+

m,ν(t)ψ
+

m,ν(u), (3.23)

rν+1/2,n(t, u) =

ν∑
m=0

ψ0
m,ν(t)ψ

0
m,ν(u) + ρν+1/2,n(t, u). (3.24)

bserve that rν+1/2,n is a finite expansion of ν + 1 + 2n terms. Some truncations of Matérn
ernels are displayed in Fig. 3.

roposition 3.3 (Matérn Truncation). For every n ∈ N it holds that(∫
∞

−∞

∫
∞

−∞

(rν+1/2(t, u) − rν+1/2,n(t, u))2wν(t)wν(u) dt du

)1/2

≤
cν

nν+1/2 ,

here

cν =
(ν!)2

√
2(2ν + 2)

∼
1
√

2π (2ν + 2)ν
as ν → ∞.
(2ν)! 2ν + 1 22ν 2ν + 1
12
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Proof. Firstly, the truncation error is

rν+1/2(t, u) − rν+1/2,n(t, u) = ρν+1/2(t, u) − ρν+1/2,n(t, u)

=

∞∑
m=n

[
ψ−

m,ν(t)ψ
−

m,ν(u) + ψ+

m,ν(t)ψ
+

m,ν(u)
]
.

sing Proposition 3.2, the squared norm of the truncation error is straight-forwardly computed
s ∫

∞

−∞

∫
∞

−∞

(rν+1/2(t, u) − rν+1/2,n(t, u))2wν(t)wν(u) dt du

=

∞∑
m=n

(ψ−

m,ν

4
L2(R,wν ) +

ψ+

m,ν

4
L2(R,wν )

)
= 2

(
(ν!)2

(2ν)!

)2 ∞∑
m=n

(
m!

(m + ν + 1)!

)2

≤ 2
(

(ν!)2

(2ν)!

)2 ∞∑
m=n

1
m2ν+2 .

he sum may be estimated with an integral as
∞∑

m=n

1
m2ν+2 ≤

1
n2ν+2 +

∫
∞

n

1
t2ν+2 dt =

1
n2ν+2 +

1
2ν + 1

1
n2ν+1 ≤

2ν + 2
2ν + 1

1
n2ν+1 ,

here n ≥ 1 was used in the last inequality. This yields the desired upper bound. The
symptotic equivalence for cν as ν → ∞ follows from Stirling’s formula. □

.5. The null-space M 0
ν

In view of Proposition 3.2, M 0
ν is left as the odd set out. From (3.1) and (3.7) we compute

hat

ψ̂0
m,ν(ω) = (−1)ν+1ĥ∗

ν+1/2(ω)ϕ̂m(ω).

urthermore, the functions

(iω + 1)ν+1ψ̂0
m,ν(ω),

hen viewed as functions of iω, have no poles in the left half-plane. Therefore M 0
ν are

nnihilated on the positive real line by the differential operator (D + 1)ν+1. That is,

(D + 1)ν+1ψ0
m,ν(t) = 0 for every t > 0.

or this reason we refer to these functions as the null-space functions. The null space functions
ave a symmetry property similar to that of the functions Mν given by (3.14) and (3.15).

roposition 3.4 (Null-space Symmetry). The null-space functions satisfy

ψ0
ν−m,ν(t) = (−1)νψ0

m,ν(−t) and ψ̂0
ν−m,ν(ω) = (−1)νψ̂0∗

m,ν(ω).

or m = 0, 1, . . . , ν.
13
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Proof. Starting from (3.10), using the conjugate symmetry of Laguerre functions, and then
changing the order of summation gives

ψ̂0
m,ν(ω) =

1
√

2

ν!
√

(2ν)!

ν+1∑
k=0

(
ν + 1

k

)
(−1)k ϕ̂−ν−1+m+k(ω)

=
1

√
2

ν!
√

(2ν)!

ν+1∑
k=0

(
ν + 1

k

)
(−1)k ϕ̂−(ν−m−k)−1(ω)

= −
1

√
2

ν!
√

(2ν)!

ν+1∑
k=0

(
ν + 1

k

)
(−1)k ϕ̂∗

ν−m−k(ω)

= −
1

√
2

ν!
√

(2ν)!

ν+1∑
k=0

(
ν + 1

ν + 1 − k

)
(−1)ν+1−k ϕ̂∗

ν−m−(ν+1−k)(ω)

= (−1)ν
1

√
2

ν!
√

(2ν)!

ν+1∑
k=0

(
ν + 1

k

)
(−1)k ϕ̂∗

−ν−1+ν−m+k(ω)

= (−1)νψ̂0∗

ν−m,ν(ω),

hich is the Fourier domain symmetry. The time domain symmetry is then obtained from
ourier inversion. □

xample 3.5 (Null-space Functions). The set M 0
0 (i.e., ν = 0) consists of the function

ψ
0,(0)
0 (t) = −e−|t |.

he set M 0
1 (i.e., ν = 1) consists of the functions

ψ0
0,1(t) =

1
√

2
(2tet 1(−∞,0)(t) + e−|t |) and ψ0

1,1(t) = −
1

√
2

(2te−t 1[0,∞)(t) + e−|t |).

he set M 0
2 (i.e., ν = 2) consists of the functions

ψ0
0,2(t) =

2
√

4!

(
2(−t2

+ t)et 1(−∞,0)(t) − e−|t |),
ψ0

1,2(t) =
4

√
4!

(|t | + 1)e−|t |,

ψ0
2,2(t) =

2
√

4!

(
−2(t2

+ t)e−t 1[0,∞)(t) − e−|t |).
Some null space functions are depicted in Fig. 4. Unlike the basis functions M +

ν depicted
n Fig. 1, the null space functions are supported on the entire real line. For d = |t − u|, a

atérn kernel can be written as

rν+1/2(t, u) = rν+1/2(0, d) =

ν∑
m=0

ψ0
m,ν(0)ψ0

m,ν(d),

where we have used (3.18) and the fact that the kernel ρ+

ν+1/2(t, u) vanishes if t = 0 or u = 0.
Upon substitution of the expressions in Example 3.5 we obtain the well-known explicit forms
of Matérn kernels in terms of d, such as

r3/2(t, u) = (1 + d)e−d and r5/2(t, u) =

(
1 + d +

d2)
e−d .
3
14
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4. Expansions of the Cauchy kernel

The Cauchy kernel and its Fourier transform are

r (t, u) =
1

1 + (t − u)2 and Φ̂(ω) = πe−|ω|. (4.1)

The Cauchy kernel is thus a Fourier dual to the Matérn kernel of smoothness index α = 1/2
(i.e., ν = 0). In what follows this will inform the construction of an RKHS basis. A square-root
of Φ̂(ω) is then given by

ĥ(ω) = Φ̂(ω)1/2
=

√
π e−|ω|/2. (4.2)

4.1. Expansion in complex-valued Cauchy–Laguerre functions

In view of the Fourier dualism with the Matérn- 1
2 kernel and the fact that the Fourier

ransform is an isometry from L2(R) to L2(R, 1/2π ), a straight-forward way to construct a
suitable basis of L2(R) for Theorem 1.1 is to modify the Laguerre functions from Section 3.1
and consider the functions

√
πϕm(ω/2). The Fourier transforms of these functions are an

rthonormal basis of L2(R), so that Theorem 1.1 and (4.2) yield the RKHS basis functions

ψ̂m(ω) =
√
π e−|ω|/2√π ϕm(ω/2)

n the Fourier domain. Since their inverse Fourier transforms are complex-valued, we call these
unctions the complex-valued Cauchy–Laguerre functions. For m ∈ N0, Fourier inversion gives

ψm(t) =
1
2

∫
∞

−∞

e−|ω|/2ϕm(ω/2)eiωt dω =

∫
∞

−∞

e−|ω|ϕm(ω)eiω2t dω

=

∫
∞

0
e−|ω|ϕm(ω)eiω2t dω

=

∫
∞

0
e−|ω|ϕm(ω)e−iω(−2t−i) dω

= ϕ̂m(−2t − i)

= −
1

√
2

(i t)m

(i t − 1)m+1 .

imilarly, for negative indices we get

ψ−m(t) =
1
2

∫
∞

−∞

e−|ω|/2ϕ−m(ω/2)eiωt dω =

∫
∞

−∞

e−|ω|ϕ−m(ω)eiω2t dω

= −

∫ 0

−∞

e−|ω|ϕm−1(−ω)eiω2t dω

= −

∫
∞

0
e−|ω|ϕm−1(ω)e−iω2t dω

= −

∫
∞

0
ϕm−1(ω)e−iω(2t−i) dω

= −ϕ̂m−1(2t − i)

= −
1

√
(i t)m−1( )m .
2 i t + 1
15



F. Tronarp and T. Karvonen Journal of Approximation Theory 302 (2024) 106055

T

a

H

w
v
H
i

4

b
f

f

To summarise, the complex valued Cauchy–Laguerre functions are

ψm(t) = −
1

√
2

(i t)m

(i t − 1)m+1 for m ∈ N0, (4.3a)

ψ−m−1(t) = −
1

√
2

(i t)m

(i t + 1)m+1 for m ∈ N0. (4.3b)

hey have the conjugate symmetry property

ψ∗

m(t) = −ψ−m−1(t) = ψm(−t) for m ∈ Z.

An expansion of the Cauchy kernel (4.1) in terms of complex-valued Cauchy–Laguerre
functions is thus given by

r (t, u) =

∞∑
m=−∞

ψ∗

m(t)ψm(u).

This expansion is remarkably easy to verify by independent means since geometric summation
and conjugate symmetry yield

∞∑
m=0

ψ∗

m(t)ψm(u) =
1
2

1
(i t − 1)(−iu − 1) − tu

nd
−1∑

m=−∞

ψ∗

m(t)ψm(u) =

(
∞∑

m=0

ψ∗

m(t)ψm(u)

)∗

.

ence
∞∑

m=−∞

ψ∗

m(t)ψm(u) =
1
2

1
1 − i(t − u)

+
1
2

1
1 + i(t − u)

=
1

1 + (t − u)2 ,

hich indeed is the Cauchy kernel. An appropriate L2(R, w) space in which the complex-
alued Cauchy–Laguerre functions form a complete orthogonal set remains elusive to us.
owever, just as with the Matérn–Laguerre expansions in Section 3, the present expansion

s very good at origin since all but two terms vanish:

r (t, 0) =

∞∑
m=−∞

ψ∗

m(t)ψm(0) = −
(
ψ−1(t) + ψ0(t)

)
.

.2. Expansion in real-valued Cauchy–Laguerre functions

It would be desirable to obtain a real-valued basis for the Cauchy RKHS. This can be done
y scaling the real and imaginary parts of ψ̂m in a similar manner as was done for the Laguerre
unctions in [4]. This gives the RKHS basis functions

αm(t) =
1

√
2

(
ψm(t) + ψ∗

m(t)
)

and βm(t) =
1

i
√

2

(
ψm(t) − ψ∗

m(t)
)

(4.4)

or m ∈ N0, where ψm are the complex-valued Cauchy–Laguerre functions in (4.3). We call
the functions α and β the real-valued Cauchy–Laguerre functions. The binomial theorem
m m

16
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y
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Fig. 5. The real-valued Cauchy–Laguerre functions αm and βm in (4.4).

ields the explicit expressions

αm(t) =
1
2

(−1)m(i t)m

(t2 + 1)m+1

m+1∑
k=0

(
m + 1

k

)
(i t)k(1 − (−1)m+1−k),

βm(t) =
1
i2

(−1)m(i t)m

(t2 + 1)m+1

m+1∑
k=0

(
m + 1

k

)
(i t)k(1 + (−1)m+1−k),

which can be transformed into expressions of only real parameters by considering even and
odd m separately. This yields

α2m(t) =
(−1)m t2m

(t2 + 1)2m+1

m∑
k=0

(
2m + 1

2k

)
(−1)k t2k, (4.5a)

α2m+1(t) =
(−1)m t2m+1

(t2 + 1)2m+2

m∑
k=0

(
2m + 2
2k + 1

)
(−1)k t2k+1, (4.5b)

β2m(t) =
(−1)m t2m

(t2 + 1)2m+1

m∑
k=0

(
2m + 1
2k + 1

)
(−1)k t2k+1, (4.5c)

β2m+1(t) =
(−1)m+1t2m+1

(t2 + 1)2m+2

m+1∑
k=0

(
2m + 2

2k

)
(−1)k t2k . (4.5d)

n expansion of the Cauchy kernel (4.1) in terms of real functions is thus given by

r (t, u) =

∞∑
m=0

αm(t)αm(u) +

∞∑
m=0

βm(t)βm(u). (4.6)

At the origin, this reduces to the finite term expansion

r (t, 0) = α0(t)α0(0).

The basis functions αm and βm and truncations of the expansion (4.6) are displayed in Figs. 5

and 6.

17
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Fig. 6. Truncations
∑n−1

m=0 αm (t)αm (u) +
∑n−1

m=0 βm (t)βm (u) of the Cauchy expansion in (4.6).

. Expansion of the Gaussian kernel

The Gaussian kernel and its Fourier transform are

r (t, u) = exp
(
−

1
2

(t − u)2
)

and Φ̂(ω) =
√

2π e−ω2/2. (5.1)

A square-root is

ĥ(ω) = Φ̂(ω)1/2
= (2π )1/4e−ω2/4,

so that taking the inverse Fourier transform gives the function h in Theorem 1.1 as

h(t) = 21/4π−1/4e−t2
. (5.2)

5.1. Expansion for the Gaussian kernel

As an orthonormal basis of L2(R) we use the Hermite functions (for them being an
orthonormal basis, see [28, Theorem 5.7.1])

ϕm(t) =

√
1

2mm!
√
π

e−t2/2Hm(t) for m ∈ N0. (5.3)

ere Hm is the mth physicist’s Hermite polynomial given by

Hm(t) = m!

⌊m/2⌋∑
k=0

(−1)k

k!(m − 2k)!
(2t)m−2k . (5.4)

By Theorem 1.1, the functions

ψm(t) =

∫
∞

−∞

h(t − τ )ϕm(τ ) dτ =

(√
2
π

)1/2√ 1
2mm!

∫
∞

−∞

e−(t−τ )2
e−τ2/2Hm(τ ) dτ

orm an orthonormal basis of the RKHS of the Gaussian kernel (5.1). Equation (17) in Section
6.5 of [6] states that∫

∞

e−(s−τ )2
Hm(aτ ) dτ =

√
π (1 − a2)m/2Hm

(
as

√

)

−∞ 1 − a2

18
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Fig. 7. The first six basis functions ψm in (5.5) of the Gaussian kernel (5.1).

for any reals s and a. Completing the square, doing a change of variables, and using this
equation yields∫

∞

−∞

e−(t−τ )2
e−τ2/2Hm(τ ) dτ =

√
2
3

e−t2/3
∫

∞

−∞

e−(
√

2/3 t−τ )2
Hm
(√

2/3 τ
)

dτ

=

√
2π
3

3−m/2e−t2/3Hm

(
2t
√

3

)
.

We thus obtain the basis functions

ψm(t) =

(
2
√

2
3

)1/2√ 1
6mm!

e−t2/3Hm

(
2t
√

3

)
for m ∈ N0 (5.5)

and the resulting expansion

r (t, u) =

∞∑
m=0

ψm(t)ψm(u) (5.6)

of the Gaussian kernel in (5.1). Fig. 7 displays some of the basis functions.
Note that the basis functions can be written in terms of the Hermite functions (5.3) by using

the multiplication theorem

Hm(bt) =

⌊m/2⌋∑
k=0

bm−2k(b2
− 1)k

(
m
2k

)
(2k)!

k!
Hm−2k(t)

or Hermite polynomials. Setting b =
√

2 gives

Hm

(
2t
√

3

)
= 2m/2

⌊m/2⌋∑
k=0

2−k
(

m
2k

)
(2k)!

k!
Hm−2k

(√
2 t

√
3

)
,

o that

ψm(t) =

(
2
√
π

√
3

)1/2√2mm!

3m

⌊m/2⌋∑
k=0

1
4kk!

√
(m − 2k)!

ϕm−2k

(√
2 t

√
3

)
.

t would be interesting to be able to connect ψm to the associated Hermite polynomials [2] like
he Matérn–Laguerre functions are connected to associated Laguerre functions in Section 3.3.

emark 5.1. Observe that (both here and elsewhere) we have used a basis of L2(R) that
s “compatible” with the kernel, having the same scaling in the exponential. That is, the
19
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Hermite functions in (5.3) have the exponential term e−t2/2 and the kernel is e−(t−u)2/2. For
ny κ ∈ (0,

√
2), the scaled Hermite functions

ϕm,κ (t) =

√
κ

2mm!
√
π

e−κ2t2/2Hm(κt)

ould yield the RKHS basis functions

ψm,κ (t) =

(√
2κ

a2

)1/2√ 1
2mm!

(
1 −

κ2

a2

)m/2

e−(1−1/a2)t2
Hm

(
κt

a2
√

1 − κ2/a2

)
,

where a2
= 1 + κ2/2.

5.2. Mercer basis and Mehler’s formula

The expansion (5.6) that we derived for the Gaussian kernel by the use of the basis functions
in (5.5) can also be derived by setting

ρ =
1
3
, x =

2t
√

3
, and y =

2u
√

3
n Mehler’s formula

∞∑
m=0

(ρ/2)m

m!
Hm(x)Hm(y)e−(x2

+y2)/2
=

√
1

1 − ρ2 exp
(

4xyρ − (1 + ρ2)(x2
+ y2)

2(1 − ρ2)

)
nd subsequently multiplying both sides by e−(t2

+u2)/3. This suggests that the expansion derived
n the preceding section is a special case of the relatively well known Mercer expansion of the
aussian kernel, which can also be derived from Mehler’s formula [9, Section 12.2.1]. Let
> 0 and define the constants

β =

(
1 +

2
α2

)1/4

and δ2
=
α2

2
(β2

− 1).

he Mercer expansion of the Gaussian kernel with respect to the weight function

wα(t) =
α

√
π

e−α2t2

on the real line is

r (t, u) =

∞∑
m=0

µm,αϑm,α(t)ϑm,α(u), (5.7)

where

µm,α =

√
α2

α2 + δ2 + 1/2

(
1/2

α2 + δ2 + 1/2

)m

re the eigenvalues and

ϑm,α(t) =

√
β

2mm!
e−δ2t2

Hm(αβt) (5.8)

he L2(R, wα)-orthonormal eigenfunctions of the integral operator in (1.4). By requiring that
β = 2/

√
3, so that the Hermite polynomials appearing in (5.5) and (5.8) have the same
20
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Fig. 8. The Gaussian kernel (5.1) with u = 0 and its truncated expansions in (5.9). For n = 3 and n = 11 the
truncated kernels become negative.

scaling, it is straight-forward to solve that

ψm =
√
µm,α ϑm,α =

√
2

3m+1 ϑm,α when α =

√
2
3
,

hich shows that the basis (5.5) is a special case of the Mercer basis. Results of some of the
bove computations are collected in the following proposition.

roposition 5.2 (Orthogonality of the Gaussian Basis). Let α =
√

2/3. The functions√
3m+1

2
ψm(t) = 21/4

√
1

2mm!
e−t2/3Hm

(
2t
√

3

)
for m ∈ N0

orm an orthonormal basis of L2(R, wα).

Although the Mercer expansion (5.7) has been known for some time, apparently originating
n [33, Section 4], all its derivations in the literature that we are aware of are based on Mehler’s
ormula and integral identities for Hermite polynomials (the only detailed derivations that we
now of are given in [9, Section 12.2.1] and [10, Section 5.1]). The expansion (5.6) is therefore
he first Mercer expansion for the Gaussian kernel that has been derived from some general
rinciple, which in this case is Theorem 1.1, instead of utilising ad hoc calculations. The
elative simplicity of the basis functions (5.5) and the fact that the Hermite functions (5.3)
ave the same exponential decay as the kernel suggest that the choice α =

√
2/3 for the

tandard deviation of the Gaussian weight wα may be in some sense the most natural one.
More discussion on the selection of α may be found in [8, Section 5.3].

5.3. Truncation error

Define the truncated kernel

rn(t, u) =

n−1∑
m=0

ψm(t)ψm(u) (5.9)

for any n ∈ N. A few truncations are shown in Fig. 8. The truncated kernel converges to the full
Gaussian kernel r pointwise on R×R. The following proposition shows that the convergence
of (5.9) to r is exponential in L (R × R, w ⊗ w ).
2 α α
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Proposition 5.3 (Gaussian Truncation). Let α =
√

2/3. For every n ∈ N it holds that(∫
∞

−∞

∫
∞

−∞

(r (t, u) − rn(t, u))2wα(t)wα(u) dt du

)1/2

=
1

√
2

1
3n
.

roof. As in the proof of Proposition 3.3, we get∫
∞

−∞

∫
∞

−∞

(r (t, u) − rn(t, u))2wα(t)wα(u) dt du =

∞∑
m=n

ψm
4

L2(R,wα ).

By Proposition 5.2,
∞∑

m=n

ψm
4

L2(R,wα ) =

∞∑
m=n

4
9m+1 =

1
2

1
9n
.

This completes the proof. □

. Conclusion

In this article, we have demonstrated that Theorem 1.1 is a simple and powerful tool for
onstructing orthonormal expansions of translation-invariant kernels. In particular, using the
holesky factor of the Fourier transform of the kernel together with the Laguerre functions led

o an interesting decomposition of the RKHS of the Matérn kernel for half-integer smoothness
arameters in terms of a finite dimensional space and a Hilbert space of functions vanishing
t the origin. This might be deemed unsatisfying, and a possible avenue to obtaining basis
unctions for Matérns in a common space would be to investigate constructions based on the
ymmetric square-root. The expansion for the Cauchy kernel was derived from the Fourier
uality with the Matérn kernel of smoothness α = 1/2. It remains an open problem to find
weighted L2 space in which the Cauchy basis functions are orthogonal. For the Gaussian

ernel, our construction is a means to reproduce certain Mercer expansions that are typically
erived from Mehler’s formula.
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