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Abstract
For over a century, extrapolation methods have provided a powerful tool to improve the convergence order of a 
numerical method. However, these tools are not well-suited to modern computer codes, where multiple 
continua are discretized and convergence orders are not easily analysed. To address this challenge, we 
present a probabilistic perspective on Richardson extrapolation, a point of view that unifies classical 
extrapolation methods with modern multi-fidelity modelling, and handles uncertain convergence orders by 
allowing these to be statistically estimated. The approach is developed using Gaussian processes, leading 
to Gauss–Richardson Extrapolation. Conditions are established under which extrapolation using the 
conditional mean achieves a polynomial (or even an exponential) speed-up compared to the original 
numerical method. Further, the probabilistic formulation unlocks the possibility of experimental design, 
casting the selection of fidelities as a continuous optimization problem, which can then be (approximately) 
solved. A case study involving a computational cardiac model demonstrates that practical gains in accuracy 
can be achieved using the GRE method.
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1 Introduction
Testing of hypotheses underpins the scientific method, and increasingly these hypotheses are 
model-based. Deterministic or stochastic mathematical models are routinely used to represent 
mechanisms hypothesized to govern diverse phenomena, such as aerodynamics or electrochemical 
regulation of the human heart. In these cases, critical scientific enquiry demands a comparison of 
the model against a real-world dataset. The practical challenge is twofold; to simulate from the 
mathematical model, and to obtain a real-world dataset. Here, we focus on the first challenge— 
simulating from the model—which can be arbitrarily difficult depending on the complexity of 
the model. For example, simulating a single cycle of a jet engine to an acceptable numerical pre
cision routinely requires 106 core hours (Arroyo et al., 2021), while accurate simulation from 
the cardiac models that we consider later in this paper at steady state requires 104 core hours in 
total (Strocchi et al., 2023). To drive progress in these and many other diverse scientific domains, 
there is an urgent need for statistical and computational methodology that can mitigate the high 
cost of accurately simulating from a mathematical model.

Abstractly, we enumerate all of the discretization parameters involved in approximate simula
tion from the mathematical model using scalars x = (x1, . . . , xd), such that each component of x 
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controls the error due to a particular aspect of discretization; for example, x1 could be a time-step 
size, x2 could be the width of a spatial mesh, and x3 could be an error tolerance for an adaptive 
numerical method. The principal requirement is that the ideal mathematical model corresponds 
to the limit x→ 0, where no discretization is performed. Given a value of x, we denote as f (x) 
the associated numerical approximation to the continuum quantity f (0) from the mathematical 
model. The computational cost of such an evaluation will be denoted c(x), with c(0) = ∞ being 
typical. The computational challenge addressed in this paper is to produce an accurate approxi
mation to f (0), based on a dataset of simulations {f (xj)}, where {xj} ⊂ (0, ∞)d, such that the 
computational cost of obtaining {f (xj)} remains within a prescribed budget. For this initial discus
sion, we focus on scalar-valued model output, but we generalize to multivariate and infinite- 
dimensional model output in Section 2.9.

Several solutions have been proposed to perform approximate simulation at a reduced cost. In 
what follows, it is useful to draw a distinction between extrapolation methods, applicable to the 
situation, where a mathematical model is discretized for simulation and numerical analysis of the 
discretization error can be performed, and modern solutions that are typically applied to ‘black 
box’ computer codes for which numerical analysis is impractical.

Extrapolation Methods. A unified presentation of extrapolation methods, that includes the 
most widely used algorithms, is provided by the so-called E-algorithm (see the survey of 
Brezinski, 1989). The starting point is a (real-valued) convergent sequence, which in our setting, 
we interpret as a sequence of numerical approximations (f (xm))m∈N, where xm is a vector of dis
cretization parameters controlling the error in approximating the mathematical model, while f (0) 
represents the continuum quantity of interest. The E-algorithm posits an ansatz that

f (xm) = f (0) + a1g1(m) + . . . + an−1gn−1(m) (1) 

for some unknown a1, . . . , an−1 ∈ R, some known functions gi : N→ R, and all m ∈ N. Then, in
stantiating (1) for m, m + 1, . . . , m + n − 1, we may solve for the unknown a1, . . . , an−1 and f (0) 
in terms of the n values f (xm), . . . , f (xm+n−1). Indeed, solving this linear system for f (0) leads to the 
estimator

Sm := S(f (xm), . . . , f (xm+n−1)) =

f (xm) . . . f (xm+n−1)
g1(m) . . . g1(m + n − 1)

..

. ..
.

gn(m) . . . gn(m + n − 1)

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

1 . . . 1
g1(m) . . . g1(m + n − 1)

..

. ..
.

gn(m) . . . gn(m + n − 1)

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

. (2) 

Under appropriate assumptions, the sequence (Sm)m∈N constructed based on (f (xm))m∈N as in (2) 
not only has the same limit, f (0), but also converges to that limit faster in the sense that 
limm→∞(Sm − f (0))/(f (xm) − f (0)) = 0; for precise statements, see Chapter 2 of Brezinski and 
Zaglia (2013).

The principal classes of extrapolation methods concern either the case of a single discretization 
parameter xm, or they maintain ambivalence about xm by operating only on the values of the se
quence (f (xm))m∈N. In either case, different extrapolation methods correspond to different basis 
functions gi in (1). Richardson extrapolation corresponds to gi(m) = xi

m, in which case (1) is rec
ognized as polynomial extrapolation to the origin (Richardson, 1911; Richardson & Gaunt, 
1927). The existence of a Taylor expansion of f at the origin is sufficient to guarantee a 
polynomial-rate convergence acceleration using Richardson’s method. Other examples of ex
trapolation methods include Shanks’ transformation gi(m) = f (xm+i) − f (xm+i−1) (Shanks, 1955), 
the Germain–Bonne transformation gi(m) = (f (xm+1) − f (xm))i (Germain-Bonne, 1990), and 
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Thiele’s rational extrapolation method gi(m) = xi
m, gi+p(m) = f (xm)xi

m for i = 1, . . . , p, n = 2p + 1 
(Bulirsch & Stoer, 1964; Larkin, 1967; Thiele, 1909). A careful numerical analysis of f is usually 
required to determine when a particular extrapolation method can be applied. To the best of our 
knowledge, ideas from statistics and uncertainty quantification do not feature prominently, if at 
all, in the literature on extrapolation methods. In addition, the question of how best to construct 
the sequence (xm)m∈N under a constraint on the overall computational budget does not appear to 
have been systematically addressed. Further background can be found in the book-level treatment 
of Sidi (2003) and Brezinski and Zaglia (2013).

Though rather classical, extrapolation methods continue to find new and useful applications, 
including in optimal transport (Chizat et al., 2020), regularization and training of machine learn
ing models (Bach, 2021), and sampling with Markov chain Monte Carlo (Durmus et al., 2016).

Modern Solutions. If the mathematical model additionally involves one or more degrees of free
dom θ, numerical approximations fθ(x) are often required across a range of values for θ to identify 
configurations that are consistent with observations from the real world. Since the introduction of 
additional degrees of freedom further complicates numerical analysis, this setting has motivated 
the development of black box methods that can be applied in situations, where numerical analysis 
is impractical. Among these, emulation and multi-fidelity modelling (MFM) are arguably the most 
prominent.

In emulation, one attempts to approximate the map θ 7! fθ(xhi−fi), where the discretization pa
rameters xhi−fi are typically fixed and correspond to a suitably high fidelity (hi-fi) model. This en
ables the prediction of computer code output at values of θ for which simulation was not 
performed (Sacks et al., 1989). A variety of sophisticated techniques have been developed to iden
tify an appropriate basis or subspace in which an emulator can be constructed, such as reduced 
order modelling (Lucia et al., 2004). One drawback of emulation is that it can be data hungry; 
in applications for which it is only possible to perform a small number n of simulations, and 
for which insight from numerical analysis is unavailable, one usually cannot expect to obtain high- 
quality predictions. A second drawback is that emulation treats the discretized model θ 7!
fθ(xhi−fi) as the target, whereas in reality, the continuum mathematical model θ 7! fθ(0) is of prin
cipal interest.

A partial solution to the drawbacks of emulation is MFM, in which one supplements a small 
number of simulations from the hi-fi model θ 7! fθ(xhi−fi) with a larger number of simulations 
from one or more cheaper low fidelity (lo-fi) models θ 7! fθ(xlo−fi) (Peherstorfer et al., 2018). 
Lo-fi models can sometimes be obtained using coarse-grid approximations, early stopping of itera
tive algorithms, or linearization (Piperni et al., 2013). Alternatively, lo-fi models could involve 
only a subset of the relevant physical mechanisms, an approach popular, e.g. in climate science 
(Held, 2005; Majda & Gershgorin, 2010). Once specified, the models of different fidelities can 
be combined in different ways: one can either use the hi-fi model to periodically ‘check’ (and pos
sibly adapt) the lo-fi models; or one can use the lo-fi models as pilot runs to decide whether or not 
to evaluate the hi-fi model; or one can use the information from all models simultaneously, by de
fining a multi-fidelity surrogate model (Craig et al., 1998; Cumming & Goldstein, 2009; Ehara & 
Guillas, 2023; Kennedy & O’Hagan, 2000), where correlation between models is taken into ac
count. Provided that the lo-fi models are correlated with the original model, these additional cheap 
simulations can be leveraged to more accurately predict computer code output. The principal 
drawback of MFM is that there is limited guidance on how the lo-fi models should be constructed, 
and a poor choice can fail to improve (or even worsen) predictive performance, while incurring an 
additional computational cost. In addition, as with emulation, the literature on MFM tends to 
treat the hi-fi model as the target, rather than the continuum mathematical model.

Other Related Work. Some alternative lines of research will briefly be discussed. Probabilistic 
numerics casts numerical approximation as a statistical task (Hennig et al., 2015), with 
Bayesian principles used to quantify uncertainty regarding the continuum model of interest 
(Cockayne et al., 2019). However, the focus of the literature is the design of numerical methods, 
in contrast to extrapolation methods, which operate on the output of existing numerical methods. 
In parallel, the application of machine learning methods to numerical tasks has received recent 
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attention; for example, deep learning is being used for numerical approximation of high- 
dimensional parametric partial differential equations (Han et al., 2018). This literature does not 
attempt extrapolation as such, with a hi-fi numerical method typically used to provide a training 
dataset. Gaussian processes have been used in specific applications to extrapolate a series of nu
merical approximations to a continuum quantity of interest f (0), for example, in Thodoroff 
et al. (2023) to model ice sheets in Antarctic, and in Ji et al. (2024) to model the evolution of 
the quark-gluon plasma following the Big Bang. To date, however, convergence acceleration 
has not been studied in the Gaussian process context. An important numerical task encountered 
in statistics is to approximate an expected value of interest f (0) = E[X(0)]. Unbiased estimation 
of f (0) at finite cost is possible in this setting using the methodology of Rhee and Glynn (2015), 
provided one can construct a sequence (X(xn))n∈N of computable stochastic approximations to 
X(0), such that the variance of X(xn) − X(xn−1) decays sufficiently fast. Similar de-biasing ideas 
have since been used in the context of Markov chain Monte Carlo (Jacob et al., 2020). 
Multilevel methods, based on such sequences, have been combined with Richardson extrapolation 
in Lemaire and Pagès (2017) and Beschle and Barth (2022).

Our Contribution. This paper proposes a probabilistic perspective on extrapolation methods 
that unifies extrapolation methods and multi-fidelity modelling (MFM). The approach is instan
tiated using a numerical analysis-informed Gaussian process to approximate the map x 7! f (x), 
as described in Section 2, where the conditional mean can be interpreted as a (novel) extrapolation 
method, in the sense that it provably achieves a polynomial (or even an exponential) speed-up 
compared to the original numerical method. Like Richardson extrapolation, our theoretical argu
ments are rooted in Taylor expansions, so the name Gauss–Richardson Extrapolation (GRE) is 
adopted. The probabilistic formulation of extrapolation methods confers several advantages: 

• In contrast to classical extrapolation methods, which focus on the case of a univariate discret
ization parameter xn, it is straight-forward to consider a vector of discretization parameters xn 

within a regression framework. In Sections 2.1–2.3, the probabilistic approach is laid out, 
then in Sections 2.4 and 2.5, higher-order convergence guarantees for GRE are established.

• Credible sets for the continuum quantity of interest f (0) can be constructed, enabling compu
tational uncertainty to be integrated into experimental design and downstream decision- 
support. The asymptotic performance of GRE credible sets is analysed in Section 2.6.

• In contrast to existing approaches in MFM, where a discrete set of fidelities are specified at the 
outset, GRE operates on a continuous spectrum of fidelities and casts the selection of fidelities 
as a cost-constrained experimental design problem, which can then be approximately solved 
using methods described in Section 2.7.

• For computer models whose convergence order is difficult to analyse, the probabilistic 
formulation allows for convergence orders to be formally estimated. The consistency of a 
maximum quasi-likelihood approach to estimating unknown convergence order is established 
in Section 2.8.

The methodology is rigorously tested in the context of simulating from a computational cardiac 
model involving separate spatial and temporal discretization parameters in Section 3. The sensi
tivity of the cardiac model to the different discretization parameters is first estimated from lo-fi 
simulations, then an optimal experimental design is generated and used to estimate the true trajec
tory of the cardiac model in the continuum limit. Our experimental results demonstrate that a 
practical gain in accuracy can be achieved with our GRE method. Though our assessment focuses 
on a specific cardiac model of scientific and clinical interest, the methodology is general and offers 
an exciting possibility to accelerate computation in the diverse range of scenarios in which com
putationally intensive simulation is performed. A closing discussion is contained in Section 4.

Code to reproduce our results is provided at https://github.com/christopheroates/Richardson.

2 Methodology
This section contributes a probabilistic perspective on extrapolation methods, which we instanti
ate using Gaussian processes (GPs) to produce Gauss–Richardson Extrapolation (GRE). For 

460                                                                                                                                                  Oates et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/87/2/457/7933067 by guest on 14 April 2025

https://github.com/christopheroates/Richardson


simplicity of presentation, we first consider the case of a scalar quantity of interest, generalizing to 
arbitrary-dimensional quantities of interest in Section 2.9.

Set-Up. Let f :X → R be a (nonrandom) real-valued function on a bounded set X ⊂ [0, ∞)d 

such that 0 ∈ X . As in Section 1, the output f (x) for x ≠ 0 will represent a numerical approxima
tion to a continuum quantity f (0) of interest, and for extrapolation to be possible at all we will 
minimally need to assume that f is continuous at 0.

Notation. For β ∈ N
p
0, let ∂βg denote the mixed partial derivative x 7! ∂β1

x1
. . . ∂βp

xp g(x) of a func
tion g : D→ R, whenever this is well-defined and D ⊆ Rp. Let Cs(D) denote the set of s-times con
tinuously differentiable functions g : D→ R, meaning that ∂βg is continuous for all |β| ≤ s, where 
|β| := β1 + · · · + βp. For g : D→ R bounded, let ‖g‖L∞(D) := supx∈D|g(x)|. Let πr(D) denote the set 
of all polynomial functions of total degree at most r on D. For vectors a, b ∈ Rd, let 
[a, b] := [a1, b1] × . . . × [ad, bd] ⊂ Rd, and similarly for [a, b) and so forth. Let GP(m, k) denote 
the law of a GP with mean function m and covariance function k; background on GPs can be found 
in Rasmussen and Williams (2006).

2.1 A numerical analysis-informed Gaussian process
Assuming for the moment that numerical analysis of x 7! f (x) can be performed, our first aim is to 
encode the resulting bounds on discretization error into a statistical regression model. Training 
such a numerical analysis-informed regression model on data {f (xi)}

n
i=1 obtained at distinct inputs 

Xn = {xi}
n
i=1 ⊂ X \ {0} enables statistical prediction of the limit f (0), in analogy with classical ex

trapolation methods. To leverage conjugate computation, here we instantiate the idea using 
GPs in a Bayesian framework. For the first part, we require an explicit error bound b :X →
[0, ∞) such that b(x) ≥ 0 with equality if and only if x = 0, and such that f (x) − f (0) = O(b(x)). 
The error bound b will be encoded into a centred prior GP model for f, whose covariance function

k(x, x′) := σ2 k2
0 + b(x)b(x′)ke(x, x′)

􏼂 􏼃
, x, x′ ∈ X , (3) 

is selected to ensure samples g ∼ GP(0, k) from the GP satisfy, with probability one, g(x) − g(0) = 
O(b(x)) (see Appendix B.1 for the precise statement). Here, σ2 > 0 is an overall scale to be esti
mated, while the scalar k2

0 > 0 is proportional to the prior variance of f (0). The symmetric positive- 
definite function ke :X × X → R is the covariance function for the normalized error x 7! e(x), 
where e(x) := b(x)−1(f (x) − f (0)) for x ∈ X \ {0}, and must be specified. In practice, ke will 
additionally involve length-scale parameters ℓ which must be estimated, for example ke(x, x′) = 
exp(−

􏽐d
i=1 ℓ

−2
i (xi − x′i)

2) in the case of the Gaussian kernel; we defer all discussion of this point 
to Sections 2.8 and 3. To our knowledge, the encoding of convergence orders into a GP as in (3) 
has not been well-studied, though the basic idea appeared in Tuo et al. (2014) and Bect et al. 
(2021) and in our preliminary work (Teymur et al., 2021). Standard techniques can be applied 
to fit such a GP model to a dataset; see Figure 1 and Section 2.2.

Remark 1 (Recovering Richardson in dimension d = 1). Let ke be any kernel that repro
duces the polynomial space πn−2(R), such as ke(x, x′) = (1 + xx′)n−2, and con
sider the ‘objective’ prior with k2

0 →∞. Conditioning on data {f (xi)}
n
i=1, the 

posterior mean function is the unique interpolant of the form x 7!
μ + b(x)p(x) for some μ ∈ R, p ∈ πn−2(R) (see e.g. Karvonen et al., 2018, 
Proposition 2.6). Thus, if b is polynomial, the intercept μ is the result of poly
nomial extrapolation to 0, and is an instance of Richardson’s classical extrapo
lation method.

Unfortunately the connection in Remark 1 is not especially useful. Indeed, while the posterior 
mean provides a useful point estimate, the posterior variance is identically zero, meaning that pre
dictive uncertainty is not being properly quantified. Thus, we do not attempt to reproduce 
Richardson extrapolation in the sequel, but rather, we develop de novo methodology tailored 
to the GP framework.
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2.2 Gauss–Richardson extrapolation
First we recall the relevant calculations for conditioning the GP model (3) on a dataset. Let kb :X × 
X → R be defined as kb(x, x′) := b(x)b(x′)ke(x, x), so that our assumptions on b and ke imply that 
kb is a symmetric positive-definite kernel on X \ {0}, and a symmetric positive semi-definite kernel 
on X . Let f (Xn) be a column vector with entries f (xi), let kb(x) be a column vector with entries 
kb(xi, x), and let Kb be a matrix with entries kb(xi, xj). Recalling that k2

0 is proportional to the prior 
variance for f (0), we opt for an ‘objective’ prior in which k2

0 →∞. However, this limit results in an 
improper prior GP. To make progress, we must first compute the conditional GP using a finite val
ue of k2

0 and then retrospectively take the limit—a standard calculation which we detail in 
Appendix B.2—yielding conditional mean and covariance functions

mn[f ](x) :=
1⊤K−1

b f (Xn)

1⊤K−1
b 1

+ kb(x)⊤K−1
b f (Xn) −

1⊤K−1
b f (Xn)

1⊤K−1
b 1

􏼠 􏼡

1

􏼨 􏼩

, (4) 

kn[f ](x, x′) := σ2
n[f ] kb(x, x′) − kb(x)⊤K−1

b kb(x′) +
[kb(x)⊤K−1

b 1 − 1][kb(x′)⊤K−1
b 1 − 1]

1⊤K−1
b 1

􏼨 􏼩

, (5) 

where 1 is a column vector whose elements are all 1. The matrix Kb can indeed be inverted since we 
have assumed that the entries of Xn ⊂ X \ {0} are distinct. To obtain (5), we have additionally re
placed σ2 with σ2

n[f ], an estimator for the scale parameter σ, to be specified in Section 2.6. 
Computing the conditional mean and variance at x = 0 results in the simple formulae

mn[f ](0) =
1⊤K−1

b f (Xn)

1⊤K−1
b 1

and kn[f ](0, 0) =
σ2

n[f ]

1⊤K−1
b 1

, (6) 

Figure 1. The numerical analysis-informed Gaussian process model, fitted to an illustrative dataset {f (xi )}
n
i=1 (circles) 

of size n = 5, corresponding to the approximations produced by a finite difference method (solid curve) whose 
first-order accuracy [i.e. b(x) = x] was encoded into the GP. The scale σ2

n[f ] of the uncertainty was calibrated using 
the method advocated in Section 2.6, while ke was taken to be a Matérn-52 kernel with length-scale parameter 
selected using quasi-maximum likelihood (see Section 2.8). Observe that point estimate mn[f ](0) (dashed curve at 
x = 0), is more accurate than that of the highest fidelity simulation from the numerical method, while the limiting 
quantity of interest f (0) (star) falls within the one standard deviation prediction interval (dotted curves at x = 0).
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since b(0) = 0, and thus kb(0, x) = b(0)b(x)ke(0, x) = 0 for all x ∈ X . The proposed GRE method 
returns a (univariate) Gaussian distribution, which can be summarized using the point estimate 
mn[f ](0) for f (0), together with the 100(1 − α)% credible intervals

Cα[f ] = y ∈ R :
|y − mn[f ](0)|
������������
kn[f ](0, 0)

􏽰 ≤ Φ−1 1 −
α
2

􏼐 􏼑
􏼨 􏼩

, (7) 

where Φ denotes the standard Gaussian cumulative density function. The uncertainty quantifica
tion provided by GRE unlocks additional functionality that was not available to classical extrapo
lation methods, including optimal experimental design for selecting Xn (Section 2.7) and 
principled statistical methods for estimating uncertain convergence orders (Section 2.8). 
However, both the accuracy of the point estimate and the coverage of the credible intervals will 
depend critically on the choice of the scale estimator σ2

n[f ] and the choice of covariance function 
ke. This important issue of how to select σ2

n[f ] and ke will be discussed next. An illustration of 
the proposed GRE method is provided in Figure 1.

2.3 Conservative Gaussian process priors
Our set-up involves a nonrandom function f that is modelled using a prior GP. One would perhaps 
hope to elicit a prior covariance function k in such a manner that f could plausibly have been 
generated as a sample from the GP. However, such elicitation is fundamentally difficult; the sample 
support set of a GP is not a vector space and may not even be measurable in general (Karvonen, 
2023; Stein & Hung, 2019). How then can we proceed? In the applications that we have in 
mind, it is often possible to identify a symmetric positive-definite kernel such that f belongs to the 
reproducing kernel Hilbert space (RKHS) associated with the kernel, whose elements are real-valued 
functions on X . For example, in numerical analysis, it is often possible to reason that f possesses a 
certain number of derivatives, from which inclusion in certain Sobolev RKHSs can be deduced. The 
approach that we take is to identify the covariance function k with the kernel of an RKHS, denoted 
Hk(X), in which f is contained. In particular, for any k2

0 ∈ (0, ∞) the space reproduced by the kernel 
k in (3) consists of functions g :X → R of the form g(x) = μ + b(x)e(x) where μ ∈ R and e ∈ Hke

(X), 
and in the k2

0 →∞ limit the norm structure of Hk(X ) reduces to a semi-norm |g|Hk(X ) := ‖x 7!
(g(x) − g(0))/b(0)‖Hke (X ) induced by the norm structure of Hke

(X ); further background on RKHS 
can be found in Berlinet and Thomas-Agnan (2011). This construction results in a conservative prior 
GP, since with probability, one sample paths will be less regular than f when the RKHS is infinite- 
dimensional. However, there are several senses in which this approach to prior elicitation can be jus
tified. First, it can be viewed as a form of ‘objective’ prior for GPs, in the sense that it is not intended 
to reflect prior belief but is rather intended to induce desirable behaviour in the posterior GP. Second, 
the choices that we make here will be justified through theoretical guarantees on both point estima
tion error (Section 2.4) and coverage of credible sets (Section 2.6). Third, the introduction of an add
itional scale estimator σ2

n[f ] in (5) provides an opportunity to counteract the conservatism of the 
choice of k through the data-driven estimation of an appropriate scale for the credible sets in (7).

2.4 Higher-order convergence guarantees
The main technical contribution of this paper is to establish sufficient conditions under which the GRE 
point estimate mn[f ](0) in (6) provides a more accurate approximation to the continuum limit f (0) 
compared to the highest fidelity approximation f (xn) on which it is based. The analysis we present 
is based on local polynomial reproduction, similar to that described in Wendland (2004). However, 
our results differ from existing work in that they are adapted to the nonstationary kernel (3) and quan
tify the space-filling properties of a design Xn using boxes, rather than balls or cones, since boxes are 
more natural for the domain X ⊆ [0, ∞)d and enable sharper control over the constants involved.

To state our results, we define the box fill distance ρXn,X as the supremum value of ν such that 
there is a box of the form [x, x + ν1] contained in X for which Xn ∩ [x, x + ν1] = ∅. Define the con
stants γd using the induction γd := 2d(1 + γd−1) with base case γ1 := 2. Our first main result, whose 
proof is contained in Appendix B.4, concerns the finite-smoothness case, where polynomial-order 
acceleration can be achieved:
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Theorem 2 (Higher-order convergence; finite smoothness). Let X = [0, 1] ⊂ Rd and 
Xn ⊂ X . Let Xh = [0, h1] and Xh

n = {hx : x ∈ Xn} where h ∈ (0, 1]. Assume 
that f ∈ Hk(X ), b ∈ πr(X ) and ke ∈ C2s(X × X ). Let mh

n[f ](0) denote the 
point estimate (6) based on data f (Xh

n). Then there is an explicit n- and 
h-independent constant Cr,s, defined in the proof, such that

|f (0) − mh
n[f ](0)|

􏽼���������􏽻􏽺���������􏽽

extrapolation error

≤ Cr,sρs
Xn,X |f |Hk(X) hs

􏽼􏽻􏽺􏽽

acceleration

‖b‖L∞(Xh)
􏽼����􏽻􏽺����􏽽

original bound 

whenever the box fill distance satisfies ρXn,X ≤ 1/(γd(r + 2s)).

To interpret the conclusion of Theorem 2, fix n to be large enough that the constraint on the box 
fill distance is satisfied and examine the convergence of mh

n[f ](0) to f (0) as h is decreased. If the 
problem possesses no additional smoothness to exploit (i.e. s = 0) then convergence is gated at 
the rate ‖b‖L∞(Xh) of the original numerical method, irrespective of the number n of data that 
are used to train the GP. On the other hand, if f is regular enough that the normalized error func
tional x 7! (f (x) − f (0))/b(x) is an element of the RKHS Hke

(X) of an s-smooth kernel (implied by 
|f |Hk(X ) < ∞), then the hs factor provides acceleration of polynomial order s over the convergence 
rate of the original numerical method. To the best of our knowledge, these theoretical results are 
the first of their kind for convergence acceleration using GPs. Examples 5 and 8 illustrate cases in 
which our regularity assumptions are satisfied. For the reader’s convenience, we recall some stand
ard examples of kernels and their associated smoothness properties in Appendix A.

Remark 3 (Sample efficiency compared to Richardson). A notable feature of Richardson 
extrapolation is that, under appropriate regularity assumptions, acceleration 
of order s can be achieved using a dataset of size n = s + 1 in dimension 
d = 1. For example, if f is first-order accurate with f (h) = f (0) + c1h + O(h2), 
then the line that passes through data (h, f (h)) and (2h, f (2h)) has intercept 
2f (h) − f (2h), which is equal to 2[f (0) + c1h + O(h2)] − [f (0) + 2c1h + O(h2)]= 
f (0) + O(h2); an additional order of accuracy is gained. Our result is less 
sample-efficient, in the sense that n ≥ 2r + 4s data are in principle required, 
due to the constraint on the box fill distance in Theorem 2. However, we specu
late that this lower bound on n is not tight, and we empirically confirm that 
order-s acceleration is observed at smaller sample sizes n in Examples 5 and 8.

On the other hand, if there is infinite smoothness to exploit, then we may consider increasing the 
value of s in Theorem 2 to obtain an arbitrarily fast convergence rate as h→ 0, albeit with an in
creasing number n of training points required for the bound to hold. This result goes beyond clas
sical Richardson extrapolation, but is natural within the GP framework. Theorem 4, whose proof 
is contained in Appendix B.5, is obtained by carefully tracking the s-dependent constants appear
ing in Theorem 2:

Theorem 4 (Higher-order convergence; infinite smoothness). In the setting of Theorem 2, 
assume further that ke ∈ C∞(X × X ) and that supx,y∈X

􏽐
|β|=2s |∂

β
yke(x, y)| ≤ 

C2s
k (2s)! for some constant Ck. Then, there exists an explicit h-independent 

constant Cn,r,s, defined in the proof, such that

|f (0) − mh
n[f ](0)|

􏽼���������􏽻􏽺���������􏽽

extrapolation error

≤ Cn,r,s|f |Hk(X ) h
1

4γdρXn ,X
􏽼��􏽻􏽺��􏽽

acceleration

‖b‖L∞(Xh)
􏽼����􏽻􏽺����􏽽

original bound 

whenever the box fill distance satisfies ρXn ,X ≤ min {1/(2γd(r + 1)), 

1/(2d1/2γde4dγd+1)}.

The derivative growth condition in the statement of Theorem 4 holds for most popular smooth 
kernels ke, including the Gaussian kernel. The order of acceleration is now determined by the box 
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fill distance, which reflects the general phenomenon that ‘more samples are required to exploit 
smoothness’ (Cabannes & Vigogna, 2024).

To assess the sharpness of our results, we first consider the problem of approximating deriva
tives using finite differences; a setting where extrapolation methods are routinely used (see 
Section 6.7 of Brezinski & Zaglia, 2013):

Example 5 (Higher-order convergence for finite difference approximation). Consider nu
merical differentiation of a suitably regular function ψ : R→ R. The central 
difference method

f (x) :=
ψ(t + x) − ψ(t − x)

2x
, x > 0, 

is a second-order approximation to ψ′(t) for a given t ∈ R. To make use of our 
results, we set b(x) = x2, from (3), and suppose that ψ(t + x) = c0 + c1x + 
c2x2 + c3(x)x3 for some c0, c1, c2 ∈ R and some x-dependent coefficient 
c3(x). The normalized error is

e(x) =
f (x) − f (0)

b(x)
=

ψ(t + x) − ψ(t − x)
2x · x2 −

ψ′(t)
x2 =

c3(x) − c3( − x)
2

, 

so that the assumptions of Theorem 2 are satisfied when x 7! c3(x) and x 7!
c3( − x) are elements of Hke

(X), and ke ∈ C2s(X × X ) (the latter condition 
can be satisfied, for example, by taking ke to be either a Matérn kernel or a 
Wendland kernel with appropriate smoothness level; see Appendix A). As a 
test problem, consider ψ(t) = sin (10t) + 1t>0ts+4 with ψ′(0) = 10 the value to 
be estimated; this test problem is selected so that our assumptions hold precise
ly for an s-smooth kernel, as verified in Appendix B.6. The sample size n = 5 
was fixed and the initial design Xn = {0.2, 0.4, 0.6, 0.8, 1} was scaled by a fac
tor h to obtain a range of designs Xh

n ⊂ (0, h]. In these experiments, we work in 
100 digits of numerical precision, so that rounding error can be neglected.

Results for s = 2 are reported in Figure 2, with the absolute error |f (0) − 
mh

n[f ](0)| plotted as a function of h in the left panel. These results reveal 
that the orders of acceleration predicted by our analysis are achieved, despite 
the sample size n being less than that required to fulfil the box fill distance re
quirement in Theorem 2. The GRE method demonstrated accuracy compar
able to Richardson’s extrapolation method (and superior to other classical 
extrapolation methods) when the kernel was chosen to match the smoothness 
of the task at hand. Interestingly, the most accurate extrapolation was pro
vided by GRE with the Gaussian kernel, despite this kernel being too smooth 
for the task at hand. The coverage of GRE credible intervals was also inves
tigated, with the relative error (f (0) − mh

n[f ](0))/
������������
kn[f ](0, 0)

􏽰
plotted as a 

function of h in the right panel. It was found that credible intervals are asymp
totically conservative in the case where a kernel with finite smoothness was 
used, in the sense that the relative error appeared to vanish in the h→ 0 limit. 
However, in the case of the Gaussian kernel, the credible intervals appeared 
to be asymptotically calibrated, in the sense that the relative error appeared to 
converge to a finite value (≈ 3) in the h→ 0 limit. Theoretical analysis of the 
GRE credible intervals is provided in Section 2.6.

Though they accurately describe the convergence acceleration provided by the GRE method, 
there are at least two apparent drawbacks with Theorems 2 and 4. The first is that these results 
require the error bound b to be a polynomial; this is an intrinsic part of our proof strategy, which 
is based on local polynomial reproduction, and cannot easily be relaxed. However, for applica
tions in which a nonpolynomial error bound b̃ naturally arises, we may still be able to construct 
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a polynomial error bound b ∈ πr(X ) for some r that satisfies b̃(x) ≤ b(x) for all x ∈ X and enables 
the conclusion of Theorem 2 to be applied. The second limitation is that, for many iterative numer
ical methods that produce a convergent sequence of approximations to the continuum quantity 
f (0) of interest, there is not always the notion of a continuum of discretization parameters x 
that can be exploited in the GRE framework. This second issue can be elegantly addressed using 
the notion of an s-smooth extension, which we introduce next.

2.5 The generality of continua
Several numerical methods do not admit a continuum of discretization parameters x that can be 
exploited in the GRE method. For example, the conjugate gradient algorithm for approximating 
the solution to a linear system of equations produces a convergent sequence of approximations, 
but is in no sense continuously indexed. The aim of this section is to demonstrate that iterative 
methods, which produce a sequence of approximations converging to a limiting quantity of inter
est, do in fact fall within our framework. The idea, roughly speaking, is to construct a function f 
whose values f (xn) on a convergent sequence, such as xn = 1/n, coincide with the approximation 
produced after n iterations of the numerical method. The challenge is to show that such a function 
f exists with sufficient regularity that the results of Section 2.4 can be applied. Our main tool is the 
idea of an p-smooth extension, which is the content of Proposition 6. Let min (z) :=
min {z1, . . . , zd} for z ∈ Rd.

Proposition 6 (p-smooth extension). Suppose that Cp(X) ⊂ Hke
(X) for some p ∈ N. Let 

(xn)n∈N ⊂ X \ {0} be such that xn+1 < xn componentwise and xn → 0. Let 
(yn)n∈N be a convergent sequence with limit y∞, such that the normalized 
errors en := (yn − y∞)/b(xn) satisfy |en − en+1|/min (xn − xn+1)p → 0. 
Then there exists a function f such that f (0) = y∞, f (xn) = yn for each 
n ∈ N, and |f |Hk(X ) < ∞.

A polynomial expansion can be used to establish the preconditions of Proposition 6, as we illus
trate in the following result:

Figure 2. Accelerating the central difference method; Example 5. The left panel presents the absolute error 
|f (0) − mh

n[f ](0)|, while the right panel presents the relative error (f (0) − mh
n[f ](0))/

������������
kn[f ](0, 0)
√

. Classical 
extrapolations methods (circles) were compared to our Gauss–Richardson Extrapolation (GRE) method, with either 
a Matérn (triangles), Wendland (squares), or Gaussian (stars) kernel. The true smoothness in this case is s = 2, while 
the legend indicates the level of smoothness assumed by the kernel. Kernel length-scale parameters were set to ℓ = 
1 and the scale estimator σ2

n[f ] proposed in Section 2.6 was used. Shaded regions in the right panel correspond to the 
density function of the standard normal.
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Corollary 7 (Sufficient conditions for p-smooth extension in d = 1). Let (xn, yn)n∈N ⊂ 
(0, ∞) × R be such that xn converges monotonically to 0, with 
(x p+1

n − x p+1
n+1 )(xn − xn+1)−p → 0, x p+2

n (xn − xn−1)−p → 0 and yn = y∞ + 
C1xr

n + C2xr+p+1
n + O(xr+p+2

n ) for some constants y∞, C1, C2 ∈ R. Let 
b(x) = xr. Then, the preconditions of Proposition 6 are satisfied.

The proof of both Proposition 6 and Corollary 7 can be found in Appendix B.7. The conditions 
on the sequence (xn)n∈N in Corollary 7 are satisfied by, for example, sequences of the form xn = 1

n 
and xn = λ−n for any λ > 1, which are the sort of expressions that routinely appear in error bounds. 
The overall approach is illustrated in Example 8, where a GP analogue of the classical Romberg 
method for numerical integration is derived.

Example 8 (GP Romberg methods). Romberg methods for numerical integration are clas
sically obtained via Richardson extrapolation of the trapezoidal rule (Brezinski 
& Zaglia, 2013, Section 6.7); it is interesting to ask if a similar feat can be 
achieved with GRE. Let ψ ∈ C2m+2([0, 1]) and consider the trapezoidal rule 
yn := 1

n [ ψ(0)
2 + ψ( 1

n ) + . . . + ψ( n−1
n ) + ψ(1)

2 ]. The Euler–Maclaurin summation 
formula implies that the error of the trapezoidal rule can be expressed as

yn− ∫10 ψ(t) dt =
􏽘m

i=1

B2i

(2i)!
x2i

n ψ(2i−1)(1) − ψ(2i−1)(0)
( 􏼁

+
B2m+2

(2m + 2)!
x2m+2

n ψ(2m+2)(βn) 

for some βn ∈ [0, 1], where xn = 1
n and Bk are the Bernoulli numbers. As a test 

problem, consider ψ(t) = sin (10t) + t2, for which we can apply Corollary 7 with 
b(x) = x2, r = 2 and p = 3. Thus there exists a function f that agrees with the 
trapezoidal rule on (xn)n∈N and satisfies the preconditions of Theorem 2 for a 
kernel ke with smoothness up to s = 2; see Appendix A. Empirical results in 
Figure 3 verify that we are indeed able to gain an additional s = 2 convergence 
orders over the original trapezoidal rule, akin to Romberg integration, using our 
GRE method. Here, the sample size n = 5 was fixed and the initial design Xn = 
{1, 1

2 , 1
4 , 1

8 , 1
16 } was scaled by a factor h to obtain a range of designs 

Xh
n ⊂ (0, h]. The accuracy of the GRE point estimator and the coverage of 

the GRE credible interval demonstrate similar behaviour to that observed in 
Example 5.

These results extend the applicability of GRE to settings where components of the discretization 
parameter vector x could take values in any infinite set. For example, in standard implementations 
of the finite-element method for numerically solving partial differential equations one has a con
tinuous parameter, characterizing the width of a triangular mesh, a discrete parameter, character
izing the number of cubature nodes used to integrate against each element, and another discrete 
parameter, specifying the number of iterations of a conjugate gradient method to solve the result
ing linear system. The resulting mixture of continuous and discrete discretization parameters x 
falls within the scope of our GRE method.

2.6 Uncertainty quantification
An encouraging observation from Examples 5 and 8 was that the GRE credible intervals were not 
asymptotically over-confident as h→ 0. The aim of this section is to explain how the scale param
eter σ2 in (3), which controls the size of credible intervals Cα[f ] in (7), was actually estimated, and 
to rigorously prove that asymptotic over-confidence cannot occur when our proposed estimator 
σ2

n[f ] is used.
The most standard approach to kernel parameter estimation is maximum (marginal) likelihood, 

but in GRE we do not have a valid likelihood due to taking the improper k2
0 →∞ limit. Instead, we 
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motivate a particular estimator σ2
n[f ] using asymptotic guarantees for the associated credible inter

val. Specifically, we advocate the estimator

σ2
n[f ] :=

|mn[f ]|2Hk(X )

n
=

1
n

f (Xn)⊤K−1
b f (Xn) −

(1⊤K−1
b f (Xn))2

1⊤K−1
b 1

􏼢 􏼣

, (8) 

which takes the same form as the maximum-likelihood estimator that we would have obtained had 
we not taken the k2

0 →∞ limit, but with the semi-norm |mn[f ]|Hk(X) in place of the conventional 
norm on Hk(X). This choice is supported by the following asymptotic result, whose proof is con
tained in Appendix B.8:

Proposition 9 (Asymptotic over-confidence is prevented). In the setting of Theorem 2, 
suppose that s ≥ 1 and that limx→0b(x)−1(f (x) − f (0)) ≠ 0 (i.e. we have a 
sharp error bound). Let mh

n[f ](0) and kh
n[f ](0, 0) denote the conditional 

mean and variance in (6), based on data f (Xh
n) and the estimator in (8). 

Then

lim sup
h→0

|f (0) − mh
n[f ](0)|

������������
kh

n[f ](0, 0)
􏽰 < ∞ 

whenever the box fill distance ρXn,X is sufficiently small.

In other words, the width 
������������
kn[f ](0, 0)

􏽰
of the credible interval cannot vanish asymptotically fast

er than the actual absolute error |f (0) − mn[f ](0)|. Though this result does not guarantee that cred
ible intervals are the ‘right size’ per se, there is no randomness in the data-generating process f (x) 
and thus standard statistical notions of coverage, or ‘right size’, cannot be directly applied (see 
Karvonen et al., 2020). In practice, we have already seen empirical evidence that the credible 
sets (7) are appropriately conservative; an arguably predictable consequence of the conservative 
GP prior discussed in Section 2.3. Note that the conclusion of Proposition 9 also holds when 
the stronger hypotheses of Theorem 4 are assumed. However, the result assumes that a kernel 

Figure 3. Accelerating the trapezoidal method to obtain a GP Romberg method; Example 8. The left panel presents 
the absolute error |f (0) − mh

n[f ](0)|, while the right panel presents the relative error (f (0) − mh
n[f ](0))/

������������
kn[f ](0, 0)
√

. 
Classical extrapolations methods (circles) were compared to our GRE method, with either a Matérn (triangles), 
Wendland (squares), or Gaussian (stars) kernel. The true smoothness in this case is s = 2, while the legend indicates 
the level of smoothness assumed by the kernel. Kernel length-scale parameters were set to ℓ = 1. Shaded regions in 
the right panel correspond to the density function of the standard normal.
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with appropriate smoothness is used; it does not explain the behaviour of GRE with the Gaussian 
kernel observed in Examples 5 and 8, since in that case the Gaussian kernel was formally 
misspecified.

Assured that our credible intervals are in a sense meaningfully related to the actual error, we can 
now proceed to exploit this measure of uncertainty for experimental design.

2.7 Optimal experimental design
One of the main engineering challenges associated with the simulation of continuum mathematical 
or physical phenomena is the numerical challenge of simultaneously controlling all sources of dis
cretization error, to ensure the output f (x) remains close in some sense to f (0), the continuum 
quantity of interest. In practice, one might explore the sensitivity of the simulator output f (x) 
to small changes in each discretization parameter xi in turn, to heuristically identify a global setting 
xhi−fi which is then fixed for the lifetime in which the simulator is used. It seems remarkable that 
more principled methodology has not yet been developed, and we aim to fill this gap by formulat
ing optimal experimental design within the GRE framework.

The accuracy of the point estimator (6) will depend crucially on the locations at which the GP 
has been trained. Section 2.6 established that the conditional variance is meaningfully related to 
estimation accuracy, with the advantage that it can be explicitly calculated. This motivates the fol
lowing cost-constrained optimization problem

arg max
X⊂D

1⊤K−1
b 1 s.t.

􏽘

x∈X

c(x) ≤ C, (9) 

where D ⊆ X denotes the set of feasible simulations being considered, Kb is the matrix with entries 
kb(xi, xj), xi, xj ∈ X, the map c :D→ R quantifies the cost associated with obtaining simulator 
output f (x), and C denotes the total computational budget. This numerical analysis-informed ob
jective 1⊤K−1

b 1 is inversely proportional to the GRE posterior variance (6) when the scale param
eter σ is fixed, rather than estimated (since a priori we do not suppose data have been obtained 
from which σ could be estimated). This optimization does not enforce a particular training sample 
size n, it just constrains the total computational cost. As such, (9) represents a challenging opti
mization problem, with both the number n of experiments in the optimal design, and the optimal 
experiments X = {xi}

n
i=1 themselves, to be determined. To proceed, we consider a finite set D of can

didate experiments and then use brute force to search for an optimal design restricted to this can
didate set, but we note that better search strategies can surely be developed.

Example 10 (Optimal experimental design in d = 1). Consider a first-order numerical 
method with linear cost, so that b(x) = x and c(x) = x−1, an example of 
which would be the classical forward Euler method. For illustration, we 
take ke to be either a Matérn kernel (s = 0) or the Gaussian kernel (s = ∞), 
in each case with length-scale ℓ = 1 fixed. The total computational budget 
C was varied and optimal designs X were computed with elements con
strained to a size 20 grid D; results are shown in Figure 4. In the case of a 
rough kernel, like the Matérn kernel, a greedy/exploitative strategy of as
signing all compute power to the highest resolution experiment seems opti
mal. Since we are working only with a discrete set of experiments, there is a 
small residual computational budget that is allocated to one or two further 
cheap experiments. For the Gaussian kernel, the optimal strategy is less 
greedy, with optimal designs involving more experiments, indicating that 
the greater smoothness is being leveraged to improve the accuracy of GRE.

In practice, a small number of preliminary simulations should be used to estimate appropriate 
length-scale parameters ℓ for the covariance kernel. Such parameter estimation becomes more 
critical in the multivariate setting, illustrated in the right panel of Figure 4, since the simulator 
output f (x) may be more or less sensitive to different components of x; in Section 3, a practical 
workflow is presented.
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Remark 11 (Trivial solution for iterative methods). In Section 2.5, we discussed the scen
ario where data are generated along a sequence (xn)n∈N by an iterative meth
od, which first produces f (x1), . . . , f (xn−1) en route to producing the final 
output f (xn). In this scenario, the cost of computing f (x1), . . . , f (xn) is simply 
c(xn), in which case computing as many iterations as possible is optimal in the 
sense of (9).

The methodology just presented systematizes the often ad-hoc process of selecting appropriate 
fidelities on which simulator output is computed, in a manner that is specifically tailored to im
proving the accuracy of our GRE method. Sequential experimental design strategies can also be 
developed, but were not pursued. The remainder of this section deals with three important general
izations of the GRE method; the case where convergence orders are unknown and must be esti
mated (Section 2.8), the case of multivariate simulator output (Section 2.9), and the case where 
the simulator contains additional degrees of freedom (Section 2.10).

2.8 Extension to unknown convergence order
The practical application of extrapolation methods does not necessarily require access to an expli
cit error bound, as several procedures have been developed to automatically identify a suitable 
method from a collection of extrapolation methods (which could correspond to different assumed 
convergence orders, or different classes of extrapolation method). A representative approach, 
called automatic selection (Delahaye, 1981), is based on the idea that small changes Sn+1 − Sn be
tween consecutive iterates is a useful proxy for the convergence rate of an extrapolation method 
(Sn)n∈N. Another approach is to linearly combine estimates produced by a collection of extrapo
lation methods, called a composite sequence approach (Brezinski, 1985). From our statistical 
standpoint, these methods bear a respective semblance to model selection and model averaging. 
Pursuing a statistical perspective on extrapolation, here we consider maximum (marginal) likeli
hood as a default for selecting an appropriate GP prior model for GRE. The k2

0 →∞ limit taken in 
Section 2.2 means that we do not have a proper likelihood, so instead, we identify and maximize 
an appropriate quasi-likelihood. Our justification is twofold, namely (1) our quasi-likelihood is 
directly analogous to the standard GP likelihood, and (2) we provide analysis below that demon
strates the consistency of maximum quasi-likelihood for estimation of convergence order in the 
GRE framework.

Figure 4. Optimal experimental designs were computed, for varying total computational budgets C, using either a 
Matérn (triangles; s = 0) or Gaussian (stars; s = ∞) kernel. Left: The setting of Example 10, with candidate states 
shown as vertical dotted lines on the plot. Right: An illustration of experimental design in dimension d = 3, with 
dotted lines used to indicates the coordinates of the states that were selected.
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To formulate the main result of this section, we suppose we have a vector r ∈ Rp that parametr
izes the error bound br :X → [0, ∞), with the interpretation that increasing the value of any of the 
components of r corresponds to faster convergence of the error bound br(x) to 0 as x→ 0. 
Specifically, we call a class of error bounds monotonically parametrized if, for all r1 < r2, we have

inf
r≤r1

lim
x→0

br2 (x)
br(x)

= 0.

This is not a restriction per se, as we are free to choose how br is parametrized, but an assumption 
of this kind is required to enable the following result to be rigorously stated. Examples of mono
tonically parametrized error bounds include br(x) = xr1

1 + . . . + xrd
d and br(x) = xr1

1 · · ·x
rd
d , which 

are the sort of expressions that routinely appear in error bounds. The proof of the following result 
can be found in Appendix B.9:

Proposition 12 (Estimation using maximum quasi-likelihood). Let Xh
n = {hx : x ∈ Xn}. 

Suppose that f ∈ Hk(X) holds when k in (3) is based on the monotonic
ally parametrized bound br0 (x) for some r0 ≥ 0. Let Kbr,h denote the ma
trix with entries kbr

(hxi, hxj), where the dependence of this matrix on 
both h and r has now been emphasized, relative to the notation Kb intro
duced in Section 2.2. Then any maximizer rh

n[f ] ∈ arg maxr≥0L
h
n(r) of the 

log-quasi (marginal) likelihood

Lh
n(r) := −f (Xh

n)⊤K−1
br,hf (Xh

n) +
(1⊤K−1

br,hf (Xh
n))2

1⊤K−1
br,h1

− log detKbr,h (10) 

satisfies lim infh→0rh
n[f ] ≥ r0.

The first two terms in (10) correspond to the (square of the) semi-norm |mh
n[f ]|Hk(X ), which is the 

analogue of the usual ‖mh
n[h]‖Hk(X ) term that would appear in the likelihood had we not taken the 

k2
0 →∞ limit; this justifies the interpretation of (10), up to constants, as a quasi-likelihood. The 

one-sided conclusion of Proposition 12 may be surprising at first, but this is in fact the strongest 
result that can be expected. Indeed, the statement that f (x) − f (0) = O(br0 (x)) does not rule out the 
possibility that the error f (x) − f (0) decays faster than br0 (x), and in this case we would expect the 
estimator rh

n[f ] to adapt to the actual convergence order. The experiments that we report in Section 
3 used maximum quasi (marginal) likelihood whenever convergence orders and/or kernel length- 
scale parameters were estimated.

Remark 13 (When to extrapolate?). The error bounds br(x) describe asymptotic behav
iour as x→ 0 only, and it is reasonable to ask whether given data {f (xi)}

n
i=1 

are collected from a regime where such asymptotics are actually observed. 
Though we do not develop it further in this work, our statistical perspective 
enables goodness-of-fit testing and related techniques to assess the suitability 
of given data for being extrapolated.

2.9 Generalization to multidimensional output
Until this point, we have considered the continuum quantity of interest f (0) to be scalar-valued. 
Oftentimes, however, we are interested in quantities {f (0, t)}t∈T that are vector- or function-valued 
depending on the nature of the index set T . The E-algorithm that we described in Section 1 has 
been extended to finite-dimensional vector-valued output; see Chapter 4 of Brezinski and 
Zaglia (2013) for detail. A possible advantage of the GP-based approach taken in GRE is that 
it does not impose any mathematical structure on T beyond this being a set, making extension 
of the methodology to function-valued output straight-forward.

To extend our methodology to multivariate output, let f :X × T → R be such that {f (0, t)}t∈T is 
the continuum quantity of interest and f (x, t) is a numerical approximation to f (0, t). For 
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example, f (0, t) may represent the solution to an ordinary differential equation at time t, while 
f (x, t) may represent an approximation to this solution obtained using a Runge–Kutta method, 
with x being the error tolerance of the Runge–Kutta method. To improve presentation, we will 
assume that f (x, t) − f (0, t) = O(b(x)) uniformly over t ∈ T , but t-dependent error bounds could 
also be considered with additional notational overhead. Our original covariance function (3) can 
be generalized to

k((x, t), (x′, t′)) = σ2 k2
0 + b(x)b(x′)ke(x, x′)

􏼂 􏼃
kT (t, t′), x, x′ ∈ X , t, t′ ∈ T , (11) 

where to exploit tractable computation that results from this tensor product kernel, we have as
sumed a tensor product kernel and will assume that data Xn = {(xi, tj)}

n1
i=1

n2
j=1 are obtained on a 

Cartesian grid (n = n1n2). That is, with the data appropriately ordered, we have the Kronecker de
composition K = KX ⊗ KT , where KX is the matrix with entries k2

0 + b(xi)b(xj)ke(xi, xj), and KT is 
the matrix with entries kT (ti, tj). Then, analogous calculations to those detailed in Appendix B.2, 
which we present in Appendix B.10, show that for values of t, t′ contained in the dataset, the con
ditional mean and covariance function in the k0 →∞ limit are

mn[f ](x, t) = kb(x)⊤K−1
b + [1 − kb(x)⊤K−1

b 1]
1⊤K−1

b

1⊤K−1
b 1

􏼨 􏼩

⊗ kT (t)K−1
T

􏼂 􏼃
f (Xn)

kn[f ]((x, t), (x′, t′)) = σ2
n[f ] kb(x, x′)kT (t, t′) − [kT (t)⊤K−1

T kT (t′)]
􏼚

× kb(x)⊤K−1
b kb(x′) −

[kb(x)⊤K−1
b 1 − 1][kb(x′)⊤K−1

b 1 − 1]⊤

1⊤K−1
b 1

􏼢 􏼣􏼩

, 

where kT (t) is the vector with entries kT (ti, t). For values of t, t′ not contained in the training data
set, the conditional covariance does not have a finite limit; a proper prior should be used if off-grid 
prediction in the t-domain is required. Further details on the multivariate setting are deferred to 
Section 3, where the approach is explored in the context of predicting temporal output from a car
diac model.

2.10 Incorporating additional degrees of freedom
The final methodological extension that we consider is the case where fθ(x) additionally depends 
on one or more degrees of freedom θ ∈ Θ; a setting where emulation or MFM methods are rou
tinely used (cf. Section 1). The proposed GRE method can be applied in this context by viewing 
fθ(0) as a simulator with multidimensional output {f (0, θ)}θ∈Θ and then applying the methodology 
described in Section 2.9 with θ, rather than t, indexing the output of this extended model. Since the 
required calculations are identical, we do not dwell any further on this point.

This completes our exposition of the GRE method. Next, we next turn to a cardiac modelling 
case study, where the usefulness of the methodology is evaluated.

3 Case study: cardiac modelling
The cardiac model fθ(x) that we consider in this section is a detailed numerical simulation of a sin
gle heart beat1 (Strocchi et al., 2023). The simulation is rooted in finite element methods that re
quire both a spatial (x1) and a temporal (x2) discretization level to be specified; of these, the spatial 
discretization is the most critical, due to the O(x−3

1 ) cost associated with the construction of a suit
able triangulation of the time-varying 3-dimensional volume of the heart; see Figure 5. The com
putational cost c(x) is measured in real computational time (seconds) and comprises the setup 
time, assembly time (the time taken to assemble linear systems of equations), and the solver 
time (the time taken to solve linear systems of equations), with assembly time the main contributor 

1 The simulation is usually run until a steady state is reached before reading off quantities of interest, at a substantial 
increase to the overall computational cost. For the present purpose, we removed components from the model that re
quired multiple heart beats to reach a steady state, and simulated only a single heart beat.
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to total computational cost. To achieve a clinically acceptable level of accuracy, it is typical for a 
simulation fθ(xdefault) to be performed with xdefault ≈ (0.4 mm, 2 ms), at a cost c(xdefault) ≈ 
1.5 × 104 s (around ≈ 4 hr) for a single heart beat.2 This poses severe challenges to the scientific 
use of such models, with super-computing resources required to ascertain whether there are values 
of scientific parameters θ for which observed data are consistent with model output (Strocchi et al., 
2023). These challenges directly motivated the development of GRE, and the remainder of this pa
per is dedicated to exploring the value of extrapolation methods in this context. Extrapolation of 
the cardiac model output represents a much greater challenge compared to extrapolation for the 
examples considered in Section 2, due to the nonlinear physics being simulated. Since our focus in 
this paper is not on inference for θ, these degrees of freedom were fixed to physically realistic values 
based on previous analyses (Strocchi et al., 2020, 2023), with all further details on the construc
tion of the cardiac model reserved for Appendix C.

Section 3.1 sets out a practical workflow for using the GRE method, that focuses on the multi
dimensional setting where both convergence orders and kernel length-scale parameters are to be 
estimated. The performance of GRE is then investigated for both scalar-valued (Section 3.2) 
and multivariate (Section 3.3) continuum quantities of interest.

3.1 A proposed general workflow
The sophistication of the cardiac model renders analytical derivation of convergence orders essen
tially impossible, so to proceed these orders must be estimated. However, the computational cost 
of simulating from the model means that data from which convergence orders can be estimated are 
necessarily limited. This motivates us to propose the following pragmatic workflow, which we pre
sent for a general model f (x) and which scales in a reasonable way with the number d of compo
nents of x that can be varied. This workflow requires the user to specify a lo-fi setting xlo−fi as a 
starting point, together with a means to predict the computational cost c(x) of simulating f (x), 
and a total computational budget C: 

1. For each fidelity parameter xi, i = 1, . . . , d:
(a) Simulate f (x) for a range of values of xi, with all of the other components x held fixed to 

their values in xlo−fi.
(b) Fit a univariate numerical analysis-informed GP model (4), (5) to these data, assuming an 

error bound of the form b(xi) = xri
i , where the scale estimate σ̂i from Section 2.6 is used, 

Figure 5. Cardiac model: Left: Schematic indicating the veins and the apical region where spring boundary 
conditions were applied. Right: A subset of the mesh resolutions used in this case study. The finest resolution 
required 3 × 107 finite elements to be used.

2 Simulations for this case study were performed on ARCHER2, a UK national super computing service (https:// 
www.archer2.ac.uk/). Each simulation involved 512 CPUs operating in parallel, so that simulation of one heart beat us
ing setting xdefault required ≈ 4 × 512 CPU hours in total.
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and where the convergence order ri, the kernel smoothness si, and the kernel length-scale 
parameter ℓi are simultaneously estimated using quasi maximum likelihood, as explained 
in Section 2.8.

2. Construct a tensor product covariance model ke(x, x′) = ke(x1, x′1; ℓ1) . . . ke(xd, x′d; ℓd) and 
posit the overall error bound b(x) = σ̂1xr1

1 + . . . + σ̂dxrd
d . Then, perform experimental design 

as described in Section 2.7, with computational budget C. Denote the optimal design Xn.
3. Simulate f (x) for each x ∈ Xn and return the GRE conditional mean (6) as the final approxi

mation to f (0).

Several remarks are in order: First, it is assumed that the Step 1 incurs negligible cost relative to the 
total computational budget; the precise interpretation of this assumption will necessarily be context- 
dependent. Second, the additive form for b(x) is appropriately conservative, in the sense that all 
components of x must be small to control this bound. One could go further and compare the 
performance of GPs based on alternative form of b(x), for example, with interaction terms 
included, selecting among such models using maximum quasi-likelihood, but for the present pur
poses the additive form of b(x) is preferred since it is compatible with the independent estimation 
of convergence orders ri in Step 1. Third, the independent estimation of (ri, si, ℓi) for each 
i = 1, . . . , d can be performed using brute-force search over a 3-dimensional grid to maximize the 
quasi-likelihood, whereas simultaneous estimation of all kernel parameters would be both statistically 
and computationally difficult. The full workflow is demonstrated on our cardiac case study, next.

3.2 Approximation of scalar quantities of interest
The first part of our case study concerned the approximation of physiologically interpretable 
scalar-valued quantities of interest. These were the minimum volume of the left and right ventricles 
and atria, the maximum volume during ventricular contraction for the left and right atria, and the 
time taken for the ventricles to contract in total capacity by one-half; a total of seven test problems 
for GRE.

Though the computational time c(xdefault) is substantial, in this case, study parallel computation 
resources can be exploited. The main computational constraint that we work under here is that we 
will only run experiments for which c(x) ≤ c(xdefault) within our GRE method. To circumvent the 
complication of predicting computational times before experiments are performed, for this case 
study, a discrete set of experiments were performed at the outset and their times recorded. Since 
the continuum limit f (0) is intractable, we additionally computed a reference solution f (xhi−fi) 
with xhi−fi = (0.4 mm, 1 ms) and in what follows we assess how well the GRE point estimate 
mn[f ](xhi−fi) approximates f (xhi−fi). The central question here is whether the workflow proposed 
in Section 3.1 can provide more accurate approximation of f (xhi−fi) compared to f (xdefault), and if 
so what computational budget is required. To the best of our knowledge, there do not exist com
parable methodologies for this task; methods such as emulation and MFM are not applicable 
when θ is fixed, and classical extrapolation methods were not developed with multivariate x in 
mind.

The workflow is illustrated in the left panel of Figure 6. The lo-fi setting was xlo−fi= 
(1.7 mm, 5 ms). The convergence orders r1, r2 were selected from {0.5, 1, 2}, the smoothness pa
rameters s1, s2 were selected from {0, 1, 2}, and the length-scales ℓ1, ℓ2 were selected using grid 
search, all estimated simultaneously using maximum quasi-likelihood. Experimental designs 
were computed based on a candidate set of experiments, each of which incurs a cost no greater 
than c(xdefault), indicated by dots in the left panel of Figure 6. Results for the seven test problems 
are shown in the right panel of Figure 6, where it is observed that the GRE point estimator provides 
a generally better approximation to f (xhi−fi) compared to f (xdefault) when the computational budg
et C reaches or exceeds 105. The optimal design for approximating the minimum volume of the left 
ventricle is depicted in the left-hand panel of Figure 6 for a computational budget C = 105; the de
sign supplements xdefault with 6 additional simulations of lower cost, analogous to a classical ex
trapolation method but here generalized to the multivariate context. Note that for C exceeding 
2 × 105 the optimal design becomes saturated, containing all experiments in the candidate set. 
That GRE should perform worse than f (xdefult) at small computational budgets is not surprising 
given that all convergence orders ri, smoothnesses si, and length-scales ℓi are estimated from the 
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small lo-fi training dataset, and these values largely determine the output of GRE in the absence of 
a sufficient number of experiments in the training dataset Xn. However, for a sufficiently large 
computational budget, it is encouraging to see that information from the experiments in Xn, 
each of which cost no greater than c(xdefault), is exploited in GRE to achieve more accurate estima
tion for 6 of the 7 scalar quantities of interest.

3.3 Approximation of temporal model output
The scalar quantities of interest considered in Section 3.2 are summary statistics obtained from 
4-dimensional temporal model output of the form f(x, t), where here t is a time index ranging 
from 0 to 600 ms and the components of f refer to the volumes of the atria and ventricles. It is, 
therefore, interesting to investigate whether these temporal outputs can be directly approximated, 
providing four test problems for the methodology described in Section 2.9. Here, for simplicity, we 
fixed the discrete values s1, s2, r1, and r2, the median of the values estimated in Section 3.2, and we 
fixed the continuous values σ̂1, σ̂2, ℓ1, and ℓ2 to the mean of the values estimated in Section 3.2. The 
length-scale for the kernel kT was set equal to the length of the time series itself. The computational 
budget was fixed to C = 2 × 105, so that our experimental design is saturated, but recall that no 
individual experiment in this design had cost exceeding c(xdefault). Full results are displayed in 
Figure 7. In each case, the approximation produced by GRE achieves lower mean square error 
relative to f (xdefault, t). Taken together with the results in Section 3.2, these results are an encour
aging and pave the way for subsequent investigations and applications of GRE.

4 Discussion
This paper introduced a probabilistic perspective on extrapolation, presenting a framework in 
which classical extrapolation methods from numerical analysis and modern MFM are unified. 
One approach was developed in detail, which we termed GRE. The GRE method facilitates sim
ultaneous convergence acceleration and uncertainty quantification, and unlocks experimental de
sign functionality for optimization over the set of fidelities at which simulation is performed. The 
end result is a methodology that allows a practitioner to arrive, in a principled manner, at fidelities 

Figure 6. Scalar quantities of interest from the cardiac model. Left: The workflow, illustrated. In Step 1, the effect of 
varying each component of x in turn is explored, with all other components fixed equal to their value in xlo−fi. This 
facilitates the construction of a multivariate Gaussian process model for use in Step 2, where experimental design is 
performed (here shown for a computational budget of C = 105 s). For assessment purposes we aim to predict 
f (xhi−fi) as a ground truth, but in practice the goal is to predict f (0). Right: For each of the seven scalar quantities of 
interest associated with the cardiac model we display the ratio of the absolute error |f (xhi−fi) − mn[f ](xhi−fi)| of the 
GRE method and the absolute error |f (xhi−fi) − f (xdefault)| of the default approximation, as a function of the total 
computational budget C.
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{xi}
n
i=1 such that the associated simulator outputs {f (xi)}

n
i=1 can be combined to produce an 

approximation to the continuum quantity f (0) that is typically more accurate than a single hi-fi 
simulation run at a comparable computational cost. A cardiac modelling case study provided 
an initial positive proof-of-concept, but further case studies—involving different types of 
computer model—will be required to comprehensively assess GRE; we aim to undertake 
domain-specific investigations in future work.

Several methodological extensions to this work can be envisaged, such as considering alterna
tive regression models to GPs, developing theory and methodology for the more challenging cases 
where the regression model is misspecified and computational costs needs to be predicted, and ex
tending the experimental design methodology to include additional degrees of freedom θ, which 
are often present in a mathematical model. In addition, and more speculatively, it would be inter
esting to explore modern computational tasks, such as the super-resolution task in deep learning, 
for which extrapolation methods have yet to be exploited.
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