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Abstract.
Gaussian process (GP) regression is a Bayesian nonparametric method for regression and interpolation,

offering a principled way of quantifying the uncertainties of predicted function values. For the quantified
uncertainties to be well-calibrated, however, the kernel of the GP prior has to be carefully selected. In this
paper, we theoretically compare two methods for choosing the kernel in GP regression: cross-validation and
maximum likelihood estimation. Focusing on the scale-parameter estimation of a Brownian motion kernel in
the noiseless setting, we prove that cross-validation can yield asymptotically well-calibrated credible intervals
for a broader class of ground-truth functions than maximum likelihood estimation, suggesting an advantage of
the former over the latter. Finally, motivated by the findings, we propose interior cross validation, a procedure
that adapts to an even broader class of ground-truth functions.
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1. Introduction. Gaussian process (GP) regression (or kriging) is a Bayesian nonparametric
method for regression and interpolation that has been extensively studied in statistics and
machine learning (O’Hagan, 1978; Stein, 1999; Rasmussen and Williams, 2006). Its key property
is that it enables uncertainty quantification of estimated function values in a principled manner,
which is crucial for applications involving decision-making, safety concerns, and scientific
discovery. As such, GP regression has been a core building block of more applied algorithms,
including Bayesian optimisation (Jones et al., 1998; Shahriari et al., 2015; Garnett, 2023),
probabilistic numerical computation (Hennig et al., 2015; Cockayne et al., 2019; Hennig et al.,
2022), and calibration and emulation of computer models (Sacks et al., 1989; Kennedy and
O’Hagan, 2001; O’Hagan, 2006; Beck and Guillas, 2016; Gu et al., 2018), to name just a few.
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Figure 1. GP interpolation of a fractional Brownian motion with the Hurst parameter H = 0.2 (smoothness
l + α = 0.2) using the Brownian motion kernel (1.2) with three different scale parameters: σ2 = 1 (left),
σ2 = σ̂2

CV = 4.752 given by the LOO-CV estimator (middle) and σ2 = σ̂2
ML = 3.729 obtained with the ML

estimator (right). In each figure, the red trajectory represents the path of the fractional Brownian motion, the
purple circles the training data, the blue curve the posterior mean mN (x) and the green shade the 95 % credible
interval [mN (x)− 1.96σ

√
kN (x),mN (x) + 1.96σ

√
kN (x)].

GP regression estimates an unknown function f from its observations as follows. One first
defines a prior distribution for f as a GP by specifying its kernel (and mean function). Provided
N observations about f , one then derives the posterior distribution of f , which is another GP
with mean function mN and kernel (or covariance function) kN . One can then predict the
function value f(x) at any input x by the posterior mean mN (x) and quantify its uncertainty
using the posterior standard deviation

√
kN (x) :=

√
kN (x, x). Specifically, one can construct a

credible interval of f(x) as the interval [mN (x)− α
√
kN (x),mN (x) + α

√
kN (x)] for a constant

α > 0 (for example, α ≈ 1.96 leads to the 95% credible interval). Such uncertainty estimates
constitute key ingredients in the above applications of GP regression.

For GP uncertainty estimates to be reliable, the posterior standard deviation
√
kN (x)

should, ideally, decay at the same rate as the prediction error |mN (x)− f(x)| decreases, with
the increase of sample size N . Otherwise, GP uncertainty estimates are either asymptotically
overconfident or underconfident. For example, if

√
kN (x) goes to 0 faster than the error

|mN (x) − f(x)|, then the credible interval [mN (x) − α
√
kN (x),mN (x) + α

√
kN (x)] will not

contain the true value f(x) as N increases for any fixed constant α > 0 (asymptotically
overconfident). If

√
kN (x) goes to 0 slower than the error |mN (x)− f(x)|, then the confidence

interval [mN (x)−α
√
kN (x),mN (x)+α

√
kN (x)] will get larger than the error |mN (x)−f(x)| as

N increases (asymptotically underconfident). Both of these cases are not desirable in practice,
as GP credible intervals will not be accurate estimates of prediction errors.

Unfortunately, in general, the posterior standard deviation
√
kN (x) does not decay at the

same rate as the prediction error |f(x) − mN (x)|, because, as is well-known,
√
kN (x) does

not depend on the true function f ; see (2.1b) in Section 2.1. Exceptionally, if the function f
is a sample path of the GP prior (the well-specified case), GP uncertainty estimates can be
well-calibrated. However, in general, the unknown f is not exactly a sample path of the GP
prior (the misspecified case), and the posterior standard deviation

√
kN (x) does not scale with
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Figure 2. GP interpolation of an integrated fractional Brownian motion with the Hurst parameter H = 0.5
(smoothness l + α = 1.5) using the Brownian motion kernel (1.2) with three different scale parameters: σ2 = 1
(left), σ2 = σ̂2

CV = 0.019 given by the LOO-CV estimator (middle) and σ2 = σ̂2
ML = 0.067 obtained with the ML

estimator (right). For the explanation of the figures, see the caption of Figure 1.

the prediction error |f(x)−mN (x)|. Figures 1 and 2 (the left panels) show examples where
the true function f is not a sample of the GP prior and where the GP uncertainty estimates
are not well-calibrated.

1.1. Scale Parameter Estimation. To obtain sensible uncertainty estimates, one thus
needs to adapt the posterior standard deviation

√
kN (x) to the function f . One simple way to

achieve this is to introduce the scale parameter σ2 > 0 and parametrize the kernel as

kσ(x, x
′) := σ2k(x, x′),

where k is the original kernel. GP regression with this kernel kσ yields the posterior mean
function mN , which is not influenced by σ2, and the posterior covariance function σ2k, which
is scaled by σ2. If one estimates σ2 from observed data of f , the estimate σ̂2 depends on f ,
and so does the resulting posterior standard deviation σ̂

√
kN (x).

One approach to scale-parameter estimation is the method of maximum likelihood (ML),
which optimizes σ2 to maximize the marginal likelihood of the GP (Rasmussen and Williams,
2006, Section 5.4). The ML approach is popular for general hyperparameter optimization in
GP regression. Another less common way in the GP literature is cross-validation (CV), which
optimizes σ2 to maximize the average predictive likelihood with held out data (Sundararajan
and Keerthi, 2001). For either approach, the optimized scale parameter can be obtained
analytically in computational complexity O(N3). Figures 1 and 2 (middle and right panels)
demonstrate that both approaches yield uncertainty estimates better calibrated than the original
estimates without the scale parameter.

Do these scale parameter estimators lead to asymptotically well-calibrated uncertainty
estimates? To answer this question, one needs to understand their convergence properties as
the sample size N increases. Most existing theoretical works focus on the well-specified case
where there is a “true” scale parameter σ2

0 such that the unknown f is a GP with the kernel σ2
0k.

In this case, both the ML and CV estimators have been shown to be consistent in estimating
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the true σ2
0 (e.g., Ying, 1991; Zhang, 2004; Bachoc et al., 2017, 2020). However, in general, no

“true” scale parameter σ2
0 exists such that the unknown f is a GP with the covariance σ2

0k. In
such misspecified cases, not much is known about the convergence properties of both estimators.
Karvonen et al. (2020) analyze the ML estimator for the scale parameter, assuming that f is a
deterministic function. They derive upper bounds (and lower bounds in some cases) for the ML
estimator; see Wang (2021) for closely related work. To our knowledge, no theoretical work
exists for the CV estimator for the scale parameter in the misspecified case. Bachoc (2013)
and Petit et al. (2022) empirically compare the ML and CV estimators under different model
misspecification settings. We will review other related works in Section 1.3.

1.2. Contributions. This work studies the convergence properties of the ML and CV
estimators, σ̂2

ML and σ̂2
CV, of the scale parameter σ2 in GP regression, to understand whether

they lead to asymptotically well-calibrated uncertainty estimates. In particular, we provide the
first theoretical analysis of the CV estimator σ̂2

CV when the GP prior is misspecified, and also
establish novel results for the ML estimator σ̂2

ML.
To facilitate the analysis, we focus on the following simplified setting. For a constant T > 0,

let [0, T ] ⊂ R be the input domain. Let k in (1.1) be the Brownian motion kernel

k(x, x′) = min(x, x′) for x, x′ ∈ [0, T ].

With this choice, a sample path of the GP prior has roughly a smoothness of 1/2 (in terms of
the differentiability; we will be more rigorous in later sections).

We assume that the true unknown function f has the smoothness l + α, where l ∈ {0} ∪ N
and 0 < α ≤ 1. The GP prior has well-specified smoothness if l = 0 and α = 1/2. Other
settings of l and α represent misspecified cases. If l = 0 and α < 1/2, the true function f is
rougher than the GP prior (Figure 1); if l = 0 and α > 1/2 or l ≥ 1, the function f is smoother
than the GP prior. We focus on the noise-free setting where one observes the function values
f(x1), . . . , f(xN ) at input points x1, . . . , xN ∈ [0, T ].

Our main results are new upper and lower bounds for the asymptotic rates of the CV
estimator σ̂2

CV and the ML estimator σ̂2
ML as N → ∞ (Section 4). The results suggest that

the CV estimator can yield asymptotically well-calibrated uncertainty estimates for a broader
class of functions f than the ML estimator; thus, the former has an advantage over the latter
(Section 5). More specifically, asymptotically well-calibrated uncertainty estimates may be
obtained with the CV estimator for the range 0 < l + α ≤ 3/2 of smoothness of the true
function, while this range becomes 0 < l + α ≤ 1 with the ML estimator and is narrower. This
finding is consistent with the example in Figure 2, where the true function has smoothness
l + α = 3/2 and is thus smoother than the GP prior. The uncertainty estimates of the CV
estimator appear to be well-calibrated, while those of the ML estimator are unnecessarily wide,
failing to adapt to the smoothness. Motivated by these insights, we propose a method called
interior cross-validation, and show it accommodates an even wider range of smoothness of the
true function than the CV estimator.

This paper is structured as follows. After reviewing related works in Subsection 1.3, we
introduce the necessary background on the ML and CV approaches to scale parameter estimation
for GP regression in Section 2. We describe the setting of the theoretical analysis in Section 3,
present our main results in Section 4, and discuss its consequences on uncertainty quantification
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in Section 5. We report simulation experiments in Section 6, conclude in Section 7, and present
proofs in Section 8.

1.3. Related work. We review here related theoretical works on hyper-parameter selection
in GP regression in the noiseless setting. We categorize them into two groups based on how
the true unknown function f is modelled: random and deterministic.

Random setting. One group of works models the ground truth f as a random function,
specifically as a GP. Most of these works model f as a GP with a Matérn-type kernel and analyze
the ML estimator. Under the assumption that the GP prior is correctly specified, asymptotic
properties of the ML estimator for the scale parameter and other parameters have been studied
(Stein, 1990; Ying, 1991, 1993; Loh and Kam, 2000; Zhang, 2004; Loh, 2005; Du et al., 2009;
Anderes, 2010; Wang and Loh, 2011; Kaufman and Shaby, 2013; Bevilacqua et al., 2019).
Recently Loh et al. (2021) and Loh and Sun (2023) have constructed consistent estimators of
various parameters for many commonly used kernels, including Matérns. Chen et al. (2021)
and Petit (2023) consider a periodic version of Matérn GPs, and show the consistency of the
ML estimator for its smoothness parameter. To our knowledge, the only existing theoretical
result for ML estimation of the scale parameter in the misspecified random setting considers
oversmoothing (Karvonen, 2021, Theorem 4.2). Oversmoothing refers to the situation where
the chosen kernel is smoother than the true function. In Subsection 4.2 (Theorem 4.6), we
provide a result for the undersmoothing case, which occurs when the chosen kernel is less
smooth than the true function.

In contrast, few theoretical works exist for the CV estimator. Bachoc et al. (2017) study
the leave-one-out (LOO) CV estimator for the Matérn-1/2 model (or the Laplace kernel) with
one-dimensional inputs, in which case the GP prior is an Ornstein–Uhlenbeck (OU) process.
Assuming the well-specified case where the true function is also an OU process, they prove the
consistency and asymptotic normality of the CV estimator for the microergodic parameter in
the fixed-domain asymptotic setting. Bachoc (2018) and Bachoc et al. (2020) discuss another
CV estimator that uses the mean square prediction error as the scoring criterion of CV (thus
different from the one discussed here) in the increasing-domain asymptotics. Bachoc (2013) and
Petit et al. (2022) perform empirical comparisons of the ML and CV estimators under different
model misspecification settings. Thus, to our knowledge, no theoretical result exists for the
CV estimator of the scale parameter in the random misspecified setting, which we provide in
Subsection 4.2 (Theorem 4.5).

Deterministic setting. Another line of research assumes that the ground truth f is a fixed
function belonging to a specific function space (Stein, 1993). Xu and Stein (2017) assumed
that the ground truth f is a monomial on [0, 1] and proved some asymptotic results for the ML
estimator when the kernel k is Gaussian. As mentioned earlier, Karvonen et al. (2020) proved
asymptotic upper (and, in certain cases, also lower) bounds on the ML estimator σ̂2

ML of the
scale parameter σ2; see Wang (2021) for a closely related work. Karvonen (2023) has studied
the ML and LOO-CV estimators for the smoothness parameter in the Matérn model; see also
Petit (2023). Ben Salem et al. (2019) and Karvonen and Oates (2023) proved non-asymptotic
results on the length-scale parameter in the Matérn and related models. Thus, there has been
no work for the CV estimator of the scale parameter σ2 in the deterministic setting, which we
provide in Section 4.1 (Theorem 4.1); we also prove a corresponding result for the ML estimator
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(Theorem 4.2).

2. Background. This section briefly reviews GP regression and the ML and LOO-CV
estimators of kernel parameters.

2.1. Gaussian process regression. We first explain GP regression (or interpolation). Let
Ω be a set, and f : Ω → R be an unknown function of interest. Suppose one observes N
function values f(x1), . . . , f(xN ) at pairwise distinct input points x1, . . . , xN ∈ Ω. The task
here is to estimate f based on the data (x, f(x)), where f(x) := [f(x1), . . . , f(xN )]⊤ ∈ RN and
x := [x1, . . . , xN ]⊤ ∈ ΩN .

In GP regression, one first defines a prior distribution of the unknown f as a GP by
specifying its mean function m : Ω → R and covariance function (kernel) k : Ω× Ω → R; we
may write f ∼ GP(m, k) to indicate this. Conditioned on the data (x, f(x)), the posterior
distribution of f is again a GP whose mean function mN : Ω → R and covariance function
kN : Ω× Ω → R are given by

mN (x) := m(x) + k(x,x)⊤k(x,x)−1 (f(x)−m(x)) , x ∈ Ω,(2.1a)

kN (x, x′) := k(x, x′)− k(x,x)⊤k(x,x)−1k(x′,x), x, x′ ∈ Ω,(2.1b)

where m(x) := [m(x1), . . . ,m(xN )]⊤ ∈ RN and k(x,x) := [k(x, x1), . . . , k(x, xN )]⊤ ∈ RN , and

k(x,x) :=

k(x1, x1) . . . k(x1, xN )
...

. . .
...

k(xN , x1) . . . k(xN , xN )

 ∈ RN×N

is the Gram matrix. Throughout this paper, we assume that the points x are such that the
Gram matrix is non-singular. For notational simplicity, we may write the posterior variance as

kN (x) := kN (x, x), x ∈ Ω.

For simplicity and as commonly done, we henceforth assume that the prior mean function m is
the zero function, m(·) ≡ 0.

While the GP prior assumes that the unknown function f is a sample path of the GP with
the specified kernel k, this assumption does not hold in general, i.e., model misspecification
occurs. In this case, as described in Figures 1 and 2 (left), the posterior standard deviation√
kN (x), which is supposed to quantify the uncertainty of the unknown function value f(x),

may not be well calibrated with the prediction error |mN (x)− f(x)|. One could address this
issue by selecting the kernel k or its parameters from the data (x, f(x)); we will explain this
topic next.

2.2. Kernel parameter estimation. The selection of the kernel k is typically performed
by defining a parametric family of kernels {kθ}θ∈Θ and selecting the parameter θ based on an
appropriate criterion. Here Θ is a parameter set, and kθ : Ω×Ω → R for each θ ∈ Θ is a kernel.

Maximum likelihood (ML) estimation. The ML estimator maximises the log-likelihood of the
GP f with kernel kθ under the data (x, f(x)):

log p(f(x) |x, θ) = −1

2

(
f(x)⊤kθ(x,x)

−1f(x) + log det kθ(x,x) + n log(2π)

)
,
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where det kθ(x,x) is the determinant of the Gram matrix kθ(x,x) (see, e.g., Rasmussen and
Williams 2006, Section 5.4.1). With the additive terms that do not depend on θ removed from
log p(f(x) |x, θ), this is equivalent to minimising the loss function

LML(θ) := f(x)⊤kθ(x,x)
−1f(x) + log det kθ(x,x).

In general, LML(θ) may not have a unique minimiser, so that any ML estimator satisfies

θ̂ML ∈ arg min
θ∈Θ

LML(θ).

Leave-one-out cross-validation (LOO-CV). The LOO-CV estimator (e.g., Rasmussen and
Williams, 2006, Section 5.4.2), which we may simply call the CV estimator, is an alternative to
the ML estimator. It maximizes the average log-predictive likelihood

N∑
n=1

log p(f(xn) |xn,x\n, f(x\n), θ)

with held-out data (xn, f(xn)), where n = 1, . . . , N , based on the data (x\n, f(x\n)), where
x\n denotes the input points with xn removed:

x\n = [x1, . . . , xn−1, xn+1, . . . , xN ]⊤ ∈ ΩN−1.

Let mθ,\n and kθ,\n denote the posterior mean and covariance functions of GP regression
with the kernel kθ and the data (x\n, f(x\n). Because each p(f(xn) |xn,x\n, f(x\n), θ) is
the Gaussian density of f(xn) with mean mθ,\n(xn) and variance kθ,\n(xn) := kθ,\n(xn, xn),
removing additive terms that do not depend on θ and reversing the sign in (2.2) yields the
following CV objective function:

LCV(θ) =
N∑

n=1

[
f(xn)−mθ,\n(xn)

]2
kθ,\n(xn)

+ log kθ,\n(xn).

The CV estimator is then defined as its minimizer:

θ̂CV ∈ arg min
θ∈Θ

LCV(θ).

As for the ML estimator, the CV objective function and its first-order gradients can be computed
in closed form in O(N3) time (Sundararajan and Keerthi, 2001).

Scale parameter estimation. As explained in Section 1, we consider the family of kernels
kσ(x, x

′) := σ2k(x, x′) parametrized with the scale parameter σ2 > 0, where k is a fixed
kernel, and study the estimation of σ2 using the CV and ML estimators, denoted as σ̂2

CV

and σ̂2
ML, respectively. In this case, both σ̂2

ML and σ̂2
CV can be derived in closed form by

differentiating (2.2) and (2.2).
Let mn−1 and kn−1 be the posterior mean and variance functions of GP regression using

the kernel k and the first n − 1 training observations (x1, f(x1)), . . . , (xn−1, f(xn−1)). Let
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m0(·) := 0 and k0(x, x) := k(x, x). Then the ML estimator is given by

σ̂2
ML =

f(x)⊤k(x,x)−1f(x)

N
=

1

N

N∑
n=1

[f(xn)−mn−1(xn)]
2

kn−1(xn)
.

This expression of the ML estimator is relatively well known; see e.g. Section 4.2.2 in Xu and
Stein (2017) or Proposition 7.5 in Karvonen and Oates (2023).

On the other hand, the CV estimator σ̂2
CV is given by

σ̂2
CV =

1

N

N∑
n=1

[
f(xn)−m\n(xn)

]2
k\n(xn)

,(2.2)

where m\n and k\n are the posterior mean and covariance functions of GP regression using the
kernel k and data (x\n, f(x\n)) with (xn, f(xn)) removed:

m\n(x) = k(x\n, x)
⊤k(x\n,x\n)

−1f(x\n),

k\n(x, x
′) = k(x, x′)− k(x\n, x)

⊤k(x\n,x\n)
−1k(x\n, x

′).

Notice the similarity between the two expressions (2.2) and (2.2). The difference is that the
ML estimator uses kn−1 and mn−1, which are based on the first n−1 training observations, while
the CV estimator uses k\n and m\n obtained with N − 1 observations, for each n = 1, . . . , N .
Therefore, the CV estimator uses all the data points more evenly than the ML estimator. This
difference may be the source of the difference in their asymptotic properties established later.

Remark 2.1. As suggested by the similarity between (2.2) and (2.2), there is a deeper
connection between ML and CV estimators in general. For instance, Fong and Holmes (2020,
Proposition 2) have shown that the Bayesian marginal likelihood equals the average of leave-p-
out CV scores. We prove this result for the special case of scale parameter estimation in GP
regression in Appendix A. Another notable example is the work in Ginsbourger and Schärer
(2021), where the authors showed that, when corrected for the covariance of residuals, the CV
estimator of the scale parameter reverts to MLE.

3. Setting. This section describes the settings and tools for our theoretical analysis: the
Brownian motion kernel in Section 3.1; sequences of partitions in Section 3.2; the Hölder class
of functions in Section 3.3; fractional Brownian motion in Section 3.4; and functions of finite
quadratic variation in Section 3.5.

3.1. Brownian motion kernel. As explained in Section 1, for the kernel k we focus on the
Brownian motion kernel on the domain Ω = [0, T ] for some T > 0:

k(x, x′) = min(x, x′).

The resulting kernel kσ(x, x′) = σ2k(x, x′) induces a Brownian motion prior for GP regression.
We assume that the input points x = [x1, . . . xN ]⊤ for GP regression are positive and

ordered:

0 < x1 < x2 < · · · < xN ≤ T.
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The positivity ensures that the Gram matrix (2.1) is non-singular; the proof is given in Subsec-
tion 8.1.

As is well known (see, for instance, Diaconis, 1988, Example 1) and can be seen in Figures
1 and 2, the posterior mean function mN in (2.1) using the Brownian motion kernel becomes
the piecewise linear interpolant of the observations (x, f(x)). See (8.1) and (8.1) in Section 8.1
for the proof and explicit expressions of the posterior mean and covariance functions.

3.2. Sequences of partitions. For our asymptotic analysis, we assume that the input
points x1, . . . , xN ∈ [0, T ] cover the domain [0, T ] more densely as the sample size N increases.
To make the dependence on the size N explicit, we write PN := (xN,n)

N
n=1 ⊂ [0, T ] as a point

set of size N , and assume that they are ordered as

0 =: xN,0 < xN,1 < xN,2 < · · · < xN,N = T

Then PN defines a partition of [0, T ] into N subintervals [xN,n, xN,n+1]. When there is no risk
of confusion, we may write xn instead of xN,n for simplicity. Note that we do not require the
nesting PN ⊂ PN+1 of partitions.

We define the mesh size of partition PN as the longest subinterval in the partition:

∥PN∥ := max
n∈{0,1,...,N−1}

(xN,n+1 − xN,n)

The decay rate of the mesh size ∥PN∥ quantifies how quickly the points in PN cover the interval
[0, T ]. In particular, the decay rate PN = O(N−1) implies that the length of every subinterval is
asymptotically upper bounded by 1/N . At the same time, if each subinterval is asymptotically
lower bounded by 1/N , we call the sequence of partitions (PN )N∈N quasi-uniform, more formally
defined in Wendland (2005, Definition 4.6) as follows.

Definition 3.1. For each N ∈ N, let PN := (xN,n)
N
n=1 ⊂ [0, T ]. Define ∆xN,n := xN,n+1 −

xN,n. Then the sequence of partitions (PN )N∈N is called quasi-uniform if there exists a constant
1 ≤ Cqu < ∞ such that

sup
N∈N

maxn∆xN,n

minn∆xN,n
= Cqu.

Quasi-uniformity, as defined here, requires that the ratio of the longest subinterval,
maxn∆xN,n, to the shortest one, minn∆xN,n, is upper-bounded by Cqu for all N ∈ N. Since
minn∆xN,n ≤ TN−1 and maxn∆xN,n ≥ TN−1 for any partition of [0, T ], quasi-uniformity
implies that all subintervals are asymptotically upper and lower bounded by 1/N , as we have,
for all N ∈ N and n0 ∈ {0, . . . , N − 1},

TN−1

Cqu
≤ min

n
∆xN,n ≤ ∆xN,n0 ≤ max

n
∆xN,n ≤ TCquN

−1.

Therefore, quasi-uniform sequences of partitions are space-filling designs that cover the space “al-
most” uniformly. Trivially, equally-spaced points (or uniform grids) satisfy the quasi-uniformity
with Cqu = 1. Wenzel et al. (2021) showed that points chosen sequentially to minimise GP
posterior variance for a Sobolev kernel are quasi-uniform. We refer to Wynne et al. (2021, p. 6)
for further examples and a discussion on quasi-uniformity.
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3.3. Hölder spaces. Subsection 4.1 studies the deterministic setting where the true un-
known function f is assumed to belong to a Hölder space of functions. To define this space, we
first need the following definition.

Definition 3.2. For 0 < α ≤ 1, a function f : [0, T ] → R is α-Hölder continuous if there
exists a constant L ≥ 0 such that, for all x, x′ ∈ [0, T ],

|f(x)− f(x′)| ≤ L|x− x′|α.

Any such constant L is called a Hölder constant of f .

For l ∈ N ∪ {0}, denote by C l([0, T ]) the space of functions f : [0, T ] → R such that the lth

derivative f (l) exists and is continuous. For l = 0, this is the space of continuous functions.
Hölder spaces are now defined as follows.

Definition 3.3. Let l ∈ N ∪ {0} and 0 < α ≤ 1. The Hölder space C l,α([0, T ]) consists of
functions f ∈ C l([0, T ]) whose lth derivative f (l) is α-Hölder continuous.

Intuitively, l + α represents the smoothness of least-smooth functions in C l,α([0, T ]). It is
well known that a sample path of Brownian motion is almost surely α-Hölder continuous if
and only if α < 1/2 (e.g., Mörters and Peres, 2010, Corollary 1.20), and thus it belongs to the
Hölder space C l,α([0, T ]) with l = 0 and α = 1/2− ε almost surely for arbitrarily small ε > 0;
in this sense, the smoothness of a Brownian motion is 1/2. As such, as is well known (e.g.,
Mörters and Peres, 2010, Theorem 1.27), a Brownian motion is almost nowhere differentiable
almost surely.

Note that we have the following strict inclusions:1

• C l1,α1([0, T ]) ⊊ C l2,α2([0, T ]) if (a) l1 > l2 or (b) l1 = l2 and α1 > α2,
• C l+1([0, T ]) ⊊ C l,1([0, T ]).

3.4. Fractional Brownian motion. Subsection 4.2 considers the random setting where f is
a fractional (or integrated fractional) Brownian motion (see Mandelbrot (e.g., 1982, Chapter
IX)). Examples of these processes can be seen in Figures 1, 2, 5 and 6.

A fractional Brownian motion on [0, T ] with Hurst parameter 0 < H < 1 is a Gaussian
process whose kernel is given by

k0,H(x, x′) =
(
|x|2H + |x′|2H − |x− x′|2H

)
/2.

Note that if H = 1/2, this is the Brownian motion kernel: k0,1/2(x, x
′) = min(x, x′). The

Hurst parameter H quantifies the smoothness of the fractional Brownian motion. If fFBM ∼
GP(0, k0,H) for H ∈ (0, 1), then fFBM ∈ C0,H−ε([0, T ]) almost surely for arbitrarily small ε > 0
(e.g., Nourdin, 2012, Proposition 1.6).2

1These inclusions follow from the following facts: By the definition of Hölder continuity, an α1-Hölder
continuous function is α2-Hölder continuous if α1 > α2; continuously differentiable functions are α-Hölder
continuous for any 0 < α ≤ 1; not all Lipschitz functions are differentiable.

2That fFBM /∈ C0,H([0, T ]) almost surely for fFBM ∼ GP(0, k0,H) with H ∈ (0, 1) is a straightforward
corollary of, for example, Theorem 3.2 in Wang (2007).
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An integrated Brownian motion with Hurst parameter H is defined via the integration of a
fractional Brownian motion with the same Hurst parameter: if fFBM ∼ GP(0, k0,H), then

fiFBM(x) =

∫ x

0
fFBM(z) dz, x ∈ [0, T ]

is an integrated Brownian motion with Hurst parameter H. It is a zero-mean GP with the
kernel

k1,H(x, x′) =

∫ x

0

∫ x′

0

(
|z|2H + |z′|2H − |z − z′|2H

)
/2 dz dz′

=
1

2(2H + 1)

(
x′x2H+1 + x(x′)2H+1

− 1

2(H + 1)

[
x2H+2 + (x′)2H+2 − |x− x′|2H+2

])
.

(3.1)

Because differentiating an integrated fractional Brownian motion fiFBM ∼ GP(0, k1,H) yields
a fractional Brownian motion fFBM ∼ GP(0, k0,H), a sample path of the former satisfies
fiFBM ∈ C1,H−ε([0, T ]) almost surely for arbitrarily small ε > 0; therefore the smoothness of
fiFBM is 1 +H.

3.5. Functions of finite quadratic variation. Some of our asymptotic results use the
notion of functions of finite quadratic variation, defined below.

Definition 3.4. For each N ∈ N, let PN := (xN,n)
N
n=1 ⊂ [0, T ], and suppose that ∥PN∥ → 0

as N → ∞. Then a function f : [0, T ] → R is defined to have finite quadratic variation with
respect to P := (PN )N∈N, if the limit

V 2(f) := lim
N→∞

N−1∑
n=0

[
f(xN,n+1)− f(xN,n)

]2
exists and is finite. We write V 2(f,P) when it is necessary to indicate the sequence of partitions.

Quadratic variation is defined for a specific sequence of partitions (PN )N∈N and may take
different values for different sequences of partitions (Mörters and Peres, 2010, Remark 1.36).
For conditions that guarantee the invariance of quadratic variation on the sequence of partitions,
see, for instance, Cont and Bas (2023). Note also that the notion of quadratic variation differs
from that of p-variation for p = 2, which is defined as the supremum over all possible sequences
of partitions whose mesh sizes tend to zero.

If f ∈ C0,α([0, T ]) with α > 1/2 and ∥PN∥ = O(N−1) as N → ∞, then we have V 2(f) = 0,
because in this case

N−1∑
n=0

[
f(xN,n+1)− f(xN,n)

]2 ≤ NL2max
n

(∆xN,n)
2α = O(N1−2α) → 0

as N → ∞. Therefore, given the inclusion properties of Hölder spaces (see Section 3.3), we
arrive at the following standard proposition.



12 M. NASLIDNYK, M. KANAGAWA, T. KARVONEN, AND M. MAHSERECI

Proposition 3.5. Suppose that the partitions (PN )N∈N are such that ∥PN∥ = O(N−1). If
f ∈ C l,α([0, T ]) for l + α > 1/2, then V 2(f) = 0.

If the mesh size tends to zero faster than 1/ logN , in that ∥PN∥ = o(1/ logN), then the
quadratic variation of almost every sample path of the Brownian motion on the interval [0, T ]
equals T (Dudley, 1973). This is of course true for partitions which have the faster decay
∥PN∥ = O(N−1).

4. Main results. This section presents our main results on the asymptotic properties of
the CV and ML estimators, σ̂2

CV and σ̂2
ML, for the scale parameter. Subsection 4.1 considers

the deterministic setting where the true function f is fixed and assumed to belong to a Hölder
space. Subsection 4.2 studies the random setting where f is an (integrated) fractional Brownian
motion. In Subsection 4.3, we use the insights obtained in the proofs for the deterministic and
random settings to propose a interior cross-validation (ICV) estimator, and show its asymptotic
properties are an improvement on those of CV and ML estimators.

4.1. Deterministic setting. We present our main results for the deterministic case where
the true function f is fixed and assumed to be in a Hölder space C l,α([0, T ]). Theorem 4.1
below provides asymptotic upper bounds on the CV estimator σ̂2

CV for different values of the
smoothness parameters l and α of the Hölder space.

Theorem 4.1 (Rate of CV decay in Hölder spaces). Suppose that f is an element of
C l,α([0, T ]), with l ≥ 0 and 0 < α ≤ 1, such that f(0) = 0, and the interval partitions
(PN )N∈N have bounded mesh sizes ∥PN∥ = O(N−1) as N → ∞. Then

σ̂2
CV = O

(
N1−min{2(l+α),3}) =


O
(
N1−2α

)
if l = 0,

O
(
N−1−2α

)
if l = 1 and α < 1/2,

O
(
N−2

)
if l = 1 and α ≥ 1/2,

O
(
N−2

)
if l ≥ 2.

Proof. See Section 8.2.

Theorem 4.2 below is a corresponding result for the ML estimator σ̂2
ML. Note that a similar

result has been obtained by Karvonen et al. (2020, Proposition 4.5), where the function f is
assumed to belong to a Sobolev space and the kernel is a Matérn-type kernel. Theorem 4.2 is
a version of this result where f is in a Hölder space and the kernel is the Brownian motion
kernel; we provide it for completeness and ease of comparison.

Theorem 4.2 (Rate of ML decay in Hölder spaces). Suppose that f is a non-zero element of
C l,α([0, T ]), with l ≥ 0 and 0 < α ≤ 1, such that f(0) = 0, and the interval partitions (PN )N∈N
have bounded mesh sizes ∥PN∥ = O(N−1) as N → ∞. Then

σ̂2
ML = O

(
N1−min{2(l+α),2}) = {O (N1−2α

)
if l = 0,

Θ
(
N−1

)
if l ≥ 1.

Proof. See Section 8.2. The proof is similar to that of Theorem 4.1.

Figure 3 summarises the rates of Theorems 4.1 and 4.2. When l + α ≤ 1 (or l = 0 and
α ≤ 1), the rates of σ̂2

CV and σ̂2
ML are O(N1−2α), so both of them may decay (or grow, for
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σ̂2
ML O(N1−2α) Θ(N−1)

σ̂2
CV O(N1−2α) O(N−1−2α) O(N−2)

σ̂2
ICV O(N1−2α) O(N−1−2α)

α = 0 α = 1/2

l = 0 l = 1

Figure 3. Rates of decay for the ML, CV and ICV estimators from Theorems 4.1, 4.2, and 4.8. Observe
that the CV estimator’s range of adaptation to the smoothness l + α is wider than the ML estimator’s, and the
ICV estimator’s range of adaptation is wider than that for both the CV and ML estimators.

l + α < 1/2) adaptively to the smoothness l + α of the function f . However, when l + α > 1,
the situation is different: the decay rate of σ̂2

ML is always Θ(N−1) and thus insensitive to α,
while that of σ̂2

CV is
(
N−1−2α

)
for l = 1 and α ∈ (0, 1/2]. Therefore the CV estimator may be

adaptive to a broader range of the smoothness 0 < l + α ≤ 3/2 of the function f than the ML
estimator (whose range of adaptation is 0 < l + α ≤ 1).

Note that Theorems 4.1 and 4.2 provide asymptotic upper bounds (except for the case l ≥ 1
of Theorem 4.2) and may not be tight if the function f is smoother than “typical” functions in
C l,α([0, T ]).3 In Subsection 4.2, we show that the bounds are indeed tight in expectation if f
is a fractional (or integrated fractional) Brownian motion with smoothness l + α.

In the deterministic setting, a potential approach for obtaining a matching lower bound
could use the rate of decay of the Fourier coefficients as a notion of smoothness, instead of the
Hölder smoothness condition on the function f . Certain self-similarity conditions based on the
decay rate and behaviour of Fourier coefficients are routinely used to study coverage of Bayesian
credible sets (e.g., Szabó et al., 2015; Hadji and Szabó, 2021) as they define classes of functions
that cannot “deceive” parameter estimators. Motivated by this, we attempted to adapt the
argument in Sniekers and van der Vaart (2015, Section 4.2) and Sniekers and van der Vaart
(2020, Section 10) to derive a matching lower bound under a self-similarity assumption on the
Fourier coefficients. However, the bounds obtained through this approach proved sub-optimal
in our setting. A different technique may therefore be required.

Remark 4.3. The proof of Theorem 4.2 shows that for l = 1 we have σ̂2
ML = Θ(N−1)

whenever ∥PN∥ → 0 as N → ∞. More precisely, it establishes that

Nσ̂2
ML → ∥f ′∥L2([0,T ]) :=

∫ T

0
f ′(x)2 dx as N → ∞.

Note that the L2([0, T ]) norm of f ′ in the right hand side equals the norm of f in the reproducing
kernel Hilbert space of the Brownian motion kernel (e.g., van der Vaart and van Zanten, 2008,
Section 10) Therefore, this fact is consistent with a similar more general statement in Karvonen

3For example, if f(x) = |x− 1/2| with T = 1, we have f ∈ C0,1([0, T ]), as f is Lipschitz continuous in this
case. However, f is almost everywhere infinitely differentiable except at one point x = 1/2, so it is, in this sense,
much smoother than “typical” functions in C0,1([0, T ]).
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et al. (2020, Proposition 3.1).

In addition to the above results, Theorem 4.4 below shows the limit of the CV estimator
σ̂2

CV if the true function f is of finite quadratic variation.

Theorem 4.4. For each N ∈ N, let PN ⊂ [0, T ] be the equally-spaced partition of size N .
Suppose that f : [0, T ] → R has finite quadratic variation V 2(f) with respect to (PN )N∈N,
f(0) = 0, and f is continuous on the boundary, i.e., limx→0+ f(x) = f(0) and limx→T− f(x) =
f(T ). Moreover, suppose that the quadratic variation V 2(f) remains the same for all sequences
of quasi-uniform partitions with constant Cqu = 2.4 Then

lim
N→∞

σ̂2
CV =

V 2(f)

T
.

Proof. See Subsection 8.2.

For the ML estimator σ̂2
ML, it is straightforward to obtain a similar result by using (3.2)

and (8.1) in Section 8.1: Under the same conditions as Theorem 4.4, we have

lim
N→∞

σ̂2
ML =

V 2(f)

T
.

Theorem 4.4 and (4.1) are consistent with Theorems 4.1 and 4.2, which assume f ∈
C l,α([0, T ]) with l + α > 1/2 and imply σ̂2

CV → 0 and σ̂2
ML → 0 as N → ∞. As summarized

in Proposition 3.5, we have V (f) = 0 for f ∈ C l,α([0, T ]) with l + α > 1/2, so Theorem 4.4
and (4.1) imply that σ̂2

CV → 0 and σ̂2
ML → 0 as N → ∞.

When f is a Brownian motion, in which case the Brownian motion prior is well-specified, the
smoothness of f is l + α = 1/2, and the quadratic variation V (f) becomes a positive constant
(Dudley, 1973). Proposition 4.7 in the next subsection shows that this fact, Theorem 4.4, and
(4.1) lead to the consistency of the ML and CV estimators in the well-specified setting.

4.2. Random setting. In Subsection 4.1, we obtained asymptotic upper bounds on the CV
and ML scale estimators when the true function f is a fixed function in a Hölder space. This
section shows that these asymptotic bounds are tight in expectation when f is a fractional (or
integrated fractional) Brownian motion.

That is, we consider the asymptotics of the expectations Eσ̂2
CV and Eσ̂2

ML under the
assumption that f ∼ GP(0, kl,H), where kl,H is the kernel of a fractional Brownian motion
(3.4) for l = 0 or that of an integrated fractional Brownian motion (3.1) for l = 1, with
0 < H < 1 being the Hurst parameter. Recall that f ∼ GP(0, kl,H) belongs to the Hölder space
C l,H−ε([0, T ]) almost surely for arbitrarily small ε > 0, so its smoothness is l +H. Figure 4
summarises the obtained upper and lower rates, corroborating the upper rates in Figure 3.

Theorems 4.5 and 4.6 below establish the asymptotic upper and lower bounds for the CV
and ML estimators, respectively.

Theorem 4.5 (Expected CV rate for fractional Brownian motion). Suppose that (PN )N∈N are

4In Appendix B, we discuss the relaxation of this requirement.
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quasi-uniform and f ∼ GP(0, kl,H) with l ∈ {0, 1} and 0 < H < 1. Then

Eσ̂2
CV = Θ(N1−min{2(l+H),3}) =


Θ
(
N1−2H

)
if l = 0 and H ∈ (0, 1),

Θ
(
N−1−2H

)
if l = 1 and H < 1/2,

Θ
(
N−2

)
if l = 1 and H ≥ 1/2.

Proof. See Section 8.3.

Theorem 4.6 (Expected ML rate for fractional Brownian motion). Suppose that (PN )N∈N are
quasi-uniform and f ∼ GP(0, kl,H) with l ∈ {0, 1} and 0 < H < 1. Then

Eσ̂2
ML = Θ(N1−min{2(l+H),2}) =

{
Θ
(
N1−2H

)
if l = 0 and H ∈ (0, 1),

Θ
(
N−1

)
if l = 1 and H ∈ (0, 1).

Proof. See Section 8.3. The proof is similar to that of Theorem 4.5.

Theorems 4.5 and 4.6 show that the CV estimator is adaptive to the unknown smoothness
l+H of the function f for a broader range 0 < l+H ≤ 3/2 than the ML estimator, whose range
of adaptation is 0 < l+H ≤ 1. These results imply that the CV estimator can be asymptotically
well-calibrated for a broader range of unknown smoothness than the ML estimator, as discussed
in Section 5.

When the smoothness of f is less than 1/2, i.e., when l +H < 1/2, the Brownian motion
prior, whose smoothness is 1/2, is smoother than f . In this case, the expected rates of σ̂2

CV
and σ̂2

ML are Θ
(
N1−2H

)
and increase as N increases. The increase of σ̂2

CV and σ̂2
ML can be

interpreted as compensating the overconfidence of the posterior standard deviation
√
kN (x),

which decays too fast to be asymptotically well-calibrated. This interpretation agrees with the
illustration in Figure 1.

On the other hand, when l+H > 1/2, the function f is smoother than the Brownian motion
prior. In this case, σ̂2

CV and σ̂2
ML decrease as N increases, compensating the under-confidence

of the posterior standard deviation
√
kN (x). See Figure 2 for an illustration.

When l + H = 1/2, this is the well-specified case in that the smoothness of f matches
the Brownian motion prior. In this case, Theorems 4.5 and 4.6 yield Eσ̂2

CV = Θ(1) and
Eσ̂2

ML = Θ(1), i.e., when the CV and ML estimators converge, they converge to a positive
constant. The following proposition, which follows from Theorem 4.4 and (4.1), shows that
this limiting constant is the true value of the scale parameter σ2

0 in the well-specified setting
f ∼ GP(0, σ2

0k), recovering similar results in the literature (e.g., Bachoc et al., 2017, Theorem
2).

Proposition 4.7. Suppose that f ∼ GP(0, σ2
0k) for σ0 > 0 and that partitions (PN )N∈N are

equally-spaced. Then

lim
N→∞

σ̂2
CV = lim

N→∞
σ̂2

ML = σ2
0 almost surely.

Proof. Since the quadratic variation of almost all sample paths of the unscaled (i.e., σ0 = 1)
Brownian motion on [0, T ] equals T (Dudley, 1973), the claim follows from (4.4) and (4.1).
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Eσ̂2
ML Θ(N1−2H) Θ(N−1)

Eσ̂2
CV Θ(N1−2H) Θ(N−1−2H) Θ(N−2)

Eσ̂2
ICV Θ(N1−2H) Θ(N−1−2H)

H = 0 H = 1/2

l = 0 l = 1

Figure 4. Expected decay rates for the ML, CV and ICV estimators from Theorems 4.5, 4.6, and 4.9.
Observe that the CV estimator’s range of adaptation to the smoothness l +H is wider than the ML estimator’s,
and the ICV estimator’s range of adaptation is wider than that for both the CV and ML estimators.

In Section 5, we discuss the implications of the obtained asymptotic rates of σ̂2
CV and σ̂2

ML
on the reliability of the resulting GP uncertainty estimates. But first, motivated by the results
in Theorem 4.1 and Theorem 4.5, we propose a modification to the cross-validation procedure
that may have better asymptotic properties than the CV estimator.

4.3. Interior cross-validation estimators. The proofs of Theorems 4.1 and 4.5 show that
when l = 1 and α ∈ (1/2, 1], the bound on σ̂2

CV is dominated by the bound on what we call the
boundary terms. These are the terms corresponding to n = 1 and n = N in (2.2); see also (10).
That the boundary terms dominate is unsurprising since prediction at boundary points is
a more challenging task than prediction at the interior. Motivated by this observation, we
propose an alternative estimation method called interior cross validation (ICV) that maximises

N−1∑
n=2

log p(f(xn) |xn,x\n, f(x\n), θ).

The corresponding scale parameter estimator is

σ̂2
ICV =

1

N

N−1∑
n=2

[
f(xn)−m\n(xn)

]2
k\n(xn)

.

With the boundary points removed, the estimator’s range of adaptation to the smoothness of
the true function is greater than that for the CV estimator, as illustrated in Figure 3 for the
deterministic setting and Figure 4 for the random setting. We present formal results for the
deterministic and the random settings in the following theorems.

Theorem 4.8 (Rate of ICV decay in Hölder spaces). Suppose that f is an element of
C l,α([0, T ]), with l ≥ 0 and 0 < α ≤ 1, such that f(0) = 0, and the interval partitions (PN )N∈N
have bounded mesh sizes ∥PN∥ = O(N−1) as N → ∞. Then

σ̂2
ICV = O

(
N1−min{2(l+α),4}) =


O
(
N1−2α

)
if l = 0,

O
(
N−1−2α

)
if l = 1,

O
(
N−3

)
if l ≥ 2.

Proof. See Section 8.4.
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Theorem 4.9 (Expected ICV rate for fractional Brownian motion). Suppose that (PN )N∈N
are quasi-uniform and f ∼ GP(0, kl,H) with l ∈ {0, 1} and 0 < H < 1. Then

Eσ̂2
ICV = Θ(N1−min{2(l+H),4}) =

{
Θ
(
N1−2H

)
if l = 0,

Θ
(
N−1−2H

)
if l = 1.

Proof. See Section 8.4.

One may take this idea further. For the Brownian motion kernel, an estimator that does
not attempt to predict on points “close enough” to the boundary,

σ̂2
ICV[N0] =

1

N

N−N0∑
n=N0

[
f(xn)−m\n(xn)

]2
k\n(xn)

for some fixed N0, has the same range of adaptation as σ̂2
ICV = σ̂2

ICV[1], the estimator that only
ignores the points on the boundary. However, for smoother kernels like fractional Brownian
motion (iFBM) and the Matérn family, σ̂2

ICV[N0] may exhibit adaptation beyond the level l = 2.
The number of boundary points N0 to remove would likely depend on the smoothness of the
kernel. Investigating model-dependent cross-validation estimators that discard a proportion of
boundary points would be an interesting direction for future work.

5. Consequences for credible intervals. This section discusses whether the estimated
scale parameter, given by the CV or ML estimator, leads to asymptotically well-calibrated
credible intervals. With the kernel σ̂2k(x, x′), where σ̂2 = σ̂2

CV or σ̂2 = σ̂2
ML, a GP credible

interval at x ∈ [0, T ] is given by

[mN (x)− ασ̂
√

kN (x), mN (x) + ασ̂
√

kN (x)]

where α > 0 is a constant (e.g., α ≈ 1.96 leads to the 95% credible interval).
As discussed in Section 1, this credible interval (5) is asymptotically well-calibrated, if it

shrinks to 0 at the same speed as the decay of the error |mN (x)− f(x)| as N increases, i.e.,
the ratio

|f(x)−mN (x)|
σ̂
√
kN (x)

should neither diverge to infinity nor converge to 0. If this ratio diverges to infinity, the
credible interval (5) is asymptotically overconfident, in that (5) shrinks to 0 faster than the
actual error |f(x)−mN (x)|. If the ratio converges to 0, the credible interval is asymptotically
underconfident, as it increasingly overestimates the actual error. Therefore, the ratio (5) should
ideally converge to a positive constant for the credible interval (5) to be reliable.

For ease of analysis, we focus on the random setting in Section 4.2 where f is a fractional
(or integrated fractional) Brownian motion and where we obtained asymptotic upper and lower
bounds for Eσ̂2

CV and Eσ̂2
ML. We study how the expectation of the posterior variance Eσ̂2kN (x)

scales with the expected squared error E[f(x)−mN (x)]2. Specifically, we analyze their ratio
for σ̂2 = σ̂2

CV and σ̂2 = σ̂2
ML:

RE
CV(x,N) :=

E[f(x)−mN (x)]2

Eσ̂2
CVkN (x)

and RE
ML(x,N) :=

E[f(x)−mN (x)]2

Eσ̂2
MLkN (x)

.
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The ratio diverging to infinity (resp. converging to 0) as N → ∞ suggests that the credible
interval (5) is asymptotically overconfident (resp. underconfident) for a non-zero probability of
the realisation of f . Thus ideally, the ratio should converge to a positive constant.

Theorem 5.1 below establishes the asymptotic rates of the ratios in (5).

Theorem 5.1. Suppose that (PN )N∈N are quasi-uniform and f ∼ GP(0, kl,H) for l ∈ {0, 1}
and 0 < H < 1. Then,

sup
x∈[0,T ]

RE
CV(x,N) =


Θ(1) if l = 0 and H ∈ (0, 1),

Θ(1) if l = 1 and H ∈ (0, 1/2),

Θ
(
N1−2H

)
if l = 1 and H ∈ (1/2, 1),

and

sup
x∈[0,T ]

RE
ML(x,N) =

{
Θ(1) if l = 0 and H ∈ (0, 1),

Θ
(
N−2H

)
if l = 1 and H ∈ (0, 1).

Proof. See Subsection 8.5.

We have the following observations from Theorem 5.1, which suggest an advantage of the
CV estimator over the ML estimator for uncertainty quantification:

• The ratio for the CV estimator neither diverges to infinity nor decays to 0 in the range
0 < l +H < 3/2, which is broader than that of the ML estimator, 0 < l +H < 1. This
observation suggests that the CV estimator can yield asymptotically well-calibrated
credible intervals for a broader range of the unknown smoothness l +H of the function
f than the ML estimator.

• The ratio decays to 0 for the CV estimator in the range 3/2 < l +H < 2 and for the
ML estimator in the range 1 < l + H < 2. Therefore, the ML estimator may yield
asymptotically underconfident credible intervals for a broader range of the smoothness
l +H than the CV estimator.

Moreover, for the interior CV estimator introduced in Subsection 4.3, it immediately follows
from the proof in Subsection 8.5 that

sup
x∈[0,T ]

RE
ICV(x,N) =

{
Θ(1) if l = 0 and H ∈ (0, 1),

Θ(1) if l = 1 and H ∈ (0, 1),

which implies the ICV estimator can yield asymptotically well-calibrated credible intervals for
a broader range of the smoothness than either the CV or the ML estimator.

6. Experiments. This section describes numerical experiments to substantiate the theoret-
ical results in Section 4. We define test functions in Subsection 6.1, show empirical asymptotic
results for the CV estimator in Subsection 6.2, and report comparisons between the CV and
ML estimators in Subsection 6.3.

To this end, for a continuous function f , define l[f ] ∈ N ∪ {0} and α ∈ (0, 1] as

l[f ] := sup{l ∈ N ∪ {0} : f ∈ C l([0, T ])}, α[f ] := sup{α ∈ (0, 1] : f ∈ C l[f ],α([0, T ])}.
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Then, for arbitrarily small ε1 ∈ N and ε2 > 0, we have

f ∈ Cmax(l[f ]−ε1,0),α[f ]−ε2([0, T ]) and f /∈ C l[f ]+ε1,α[f ]+ε2([0, T ]).

In this sense, l[f ] and α[f ] characterize the smoothness of f .

6.1. Test functions. We generate test functions f : [0, 1] → R as sample paths of stochastic
processes with varying degrees of smoothness, as defined below. The left columns of Figures 5
and 6 show samples of these functions.

• To generate nowhere differentiable test functions, we use the Brownian motion (BM),
the Ornstein–Uhlenbeck process (OU), and the fractional Brownian motion (FBM5)
which are zero-mean GPs with kernels

kBM(x, x′) = min(x, x′), kOU(x, x
′) =

(
e−λ|x−x′| − e−λ(x+x′)

)
/4,

kFBM(x, x′) =
(
|x|2H + |x′|2H − |x− x′|2H

)
/2,

where λ > 0 and 0 < H < 1 is the Hurst parameter (recall that the FBM = BM if
H = 1/2). We set λ = 0.2 in the experiments below. Almost all samples f from these
processes satisfy l[f ] = 0. For BM and OU we have α[f ] = 1/2 and for FBM α[f ] = H
(see Subsection 3.4). It is well known that the OU process with the kernel kOU above
satisfies the stochastic differential equation

df(t) = −λf(t)dt+

√
λ

2
dB(t),

where B is the standard Brownian motion whose kernel is kBM.
• To generate differentiable test functions, we use once (iFBM) and twice (iiFBM)

integrated fractional Brownian motions

fiFBM(x) =

∫ x

0
fFBM(z) dz and fiiFBM(x) =

∫ x

0
fiFBM(z) dz,

where fFBM ∼ GP(0, kFBM). See (3.1) for the iFBM kernel. With H the Hurst
parameter of the original FBM, almost all samples f from the above processes satisfy
l[f ] = 1 and α[f ] = H (iFBM) or l[f ] = 2 and α[f ] = H (iiFBM).

• We also consider a piecewise infinitely differentiable function f(x) = sin 10x+ [x > x0],
where x0 is randomly sampled from the uniform distribution on [0, 1] and [x > x0] is 1
if x > x0 and 0 otherwise. This function is of finite quadratic variation with V 2(f) = 1.

Denote σ̂2 = limN→∞ σ̂2
CV. For the above test functions, with equally-spaced partitions,

we expect the following asymptotic behaviours for the CV estimator from Theorems 4.1, 4.4,

5We use https://github.com/crflynn/fbm to sample from FBM.

https://github.com/crflynn/fbm
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and 4.5, Proposition 4.7, the definition of quadratic variation, and Equation (6.1):

BM (l[f ] = 0, α[f ] = 1/2): σ̂2
CV = O(1) and σ̂2 = 1,

OU (l[f ] = 0, α[f ] = 1/2): σ̂2
CV = O(1) and σ̂2 = λ/2,

FBM (l[f ] = 0, α[f ] = H): σ̂2
CV = O(N1−2H) and σ̂2 = 0,

iFBM (l[f ] = 1, α[f ] = H): σ̂2
CV = O(N−1−2H) and σ̂2 = 0,

iiFBM (l[f ] = 2, α[f ] = H): σ̂2
CV = O(N−2) and σ̂2 = 0,

sin 10x+ [x > x0] : σ̂2
CV = O(1) and σ̂2 = 1.

Note that the above rate for the iFBM holds for 0 < H ≤ 1/2. The chosen functions allow us to
cover a range of α[f ] and l[f ] relevant to the varying rate of convergence in Theorems 4.1 and 4.5,
as well as a range of V 2(f) relevant to the limit in Theorem 4.4, limN→∞ σ̂2

CV = V 2(f)/T .

6.2. Asymptotics of the CV estimator. Figure 5 shows the asymptotics of σ̂2
CV, where each

row corresponds to one stochastic process generating test functions f ; the rows are displayed in
the increasing order of smoothness as quantified by l[f ] + α[f ]. The estimates are obtained for
equally-spaced partitions of sizes N = 10, 102, . . . , 105. In each row, the left panel plots a single
sample of generated test functions f . The middle panel shows the mean and confidence intervals
(of two standard deviations) of σ̂2

CV for 100 sample realisations of f for each sample size N .
The right panel describes the convergence rate of σ̂2

CV to its limit point σ̂2 = limN→∞ σ̂2
CV on

the log scale.
We have the following observations:
• The first two rows (the FBM and OU) and the last (the piece-wise infinitely differentiable

function) confirm Theorem 4.4, which states the convergence σ̂2
CV → V 2(f)/T as

N → ∞. While Theorem 4.4 does not provide convergence rates, the rates in the first
two rows appear to be N−1/2. In the last row the rate is N−2.

• The remaining rows show that the observed rates of σ̂2
CV to 0 are in complete agreement

with the rates predicted by Theorems 4.1 and 4.5. In particular, the rates are adaptive
to the smoothness l[f ] + α[f ] of the function if l[f ] + α[f ] ≤ 3/2, as predicted.

6.3. Comparison of CV and ML estimators. Figure 6 shows the decay rates of σ̂2
CV and

σ̂2
ML to 0 for test functions f with l[f ] = 1, under the same setting as for Figure 5. In this case,

Theorems 4.2 and 4.6 predict that σ̂2
ML decays at the rate Θ(N−1) regardless of the smoothness;

this is confirmed in the right column. In contrast, the middle column shows again that σ̂2
CV

decays with a rate that adapts to l[f ] and α[f ] as long as l[f ] + α[f ] ≤ 3/2, as predicted by
Theorems 4.1 and 4.5. These results empirically support our theoretical finding that the CV
estimator is adaptive to the unknown smoothness l[f ]+α[f ] of a function f for a broader range
of smoothness than the ML estimator.

Additionally, in Appendix D, we compare the asymptotics of the CV and ML estimators
when the underlying kernel is a Matérn kernel and the Sobolev smoothness of the true functions
differs from that of the kernel. Similarly to the results presented in this section, we observe
that the CV estimator exhibits a larger range of adaptation than the ML estimator.

7. Conclusion and future work. We have analysed the asymptotics of the CV and ML
estimators for the scale parameter in GP interpolation with the Brownian motion kernel. As
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Figure 5. Asymptotics of CV estimators for functions of varying smoothness as quantified by l[f ] and α[l]
in (6). Runs on individual 100 samples from f are in gray, means and confidence intervals (of two standard
deviations) are in black.
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Figure 6. Asymptotics of CV estimator compared to asymptotics of ML estimators, for once differentiable
functions.

a novel contribution, our analysis covers the misspecified case where the smoothness of the
true function f is different from that of the samples from the GP prior. Our main results in
Theorems 4.1, 4.2, 4.5, and 4.6 indicate that both CV and ML estimators can adapt to the
unknown smoothness of f , but the range of smoothness for which this adaptation happens
is broader for the CV estimator. Accordingly, the CV estimator can make GP uncertainty
estimates asymptotically well-calibrated for a wider range of smoothness than the ML estimator,
as indicated in Theorem 5.1. In this sense, the CV estimator has an advantage over the ML
estimator. The experiments provide supporting evidence for the theoretical results.

Natural next steps include the following:
• Supplement the asymptotic upper bounds in Theorems 4.1 and 4.2 of the deterministic

setting with matching lower bounds.
• Extend the analyses (of both the deterministic and random settings) to more generic

finitely smooth kernels, higher dimensions, and a noisy setting.
The matching lower bounds, if obtained, would allow one to analyse the ratio between

the prediction error |f(x) − mN (x)| and the posterior standard deviation σ̂
√
kN (x) in the

deterministic setting, corresponding to the one in Section 5 for the random setting. Such an
analysis would need additional assumptions on the true function f , such as the homogeneity of
the smoothness of f across the input space. It also requires a sharp characterisation of the error
|f(x)−mN (x)|, which could use super convergence results in Wendland (2005, Section 11.5)
and Schaback (2018). Most natural kernel classes for extension are Matérns and other kernels
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whose RKHS are norm-equivalent to Sobolev spaces; we conduct initial empirical analysis
in Appendix D and observe results consistent with the main results in this paper. To this end, it
would be possible to adapt the techniques used in Karvonen et al. (2020) for analyzing the ML
estimator to the CV estimator. In any case, one would need much more advanced techniques
than those used here. A potentially more straightforward extension could be one to multiple
times integrated Brownian motion kernels for which Gaussian process interpolation corresponds
to spline interpolation (Wahba, 1990, Chapter 1). In particular, finding analytic expression
for the mean and variance of a cubic spline kernel given in, for example, Equation (6.28) of
Rasmussen and Williams (2006) can be reduced to the problem of inverting a tridiagonal matrix
targeted in Mallik (2001) and Kılıç (2008).

8. Proofs. This section provides the proofs of the main results and other lengthy compu-
tations. For x0 = 0 and x1, . . . , xN ∈ [0, T ], we will use the following notation whenever it can
improve the readability or highlight a point:

∆xn := xn+1 − xn, n = 0, 1, . . . , N − 1,

fn := f(xn), n = 0, 1, . . . , N.(8.1)

8.1. Explicit expressions for the CV and ML estimators. Let us define x0 = 0 and use
the convention f(x0) = 0. By a direct computation it is straightforward to verify that the
inverse of the Gram matrix of the Brownian motion kernel k(x, x′) = min(x, x′) over the points
0 = x0 < x1 < x2 < · · · < xN is the band matrix

k(x,x)−1 =



x1 x1 x1 . . . x1 x1
x1 x2 x2 . . . x2 x2
x1 x2 x3 . . . x3 x3
...

...
...

. . .
...

...
x1 x2 x3 . . . xN−1 xN−1

x1 x2 x3 . . . xN−1 xN



−1

=



b1 c1 0 . . . 0 0
c1 b2 c2 . . . 0 0
0 c2 b3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . bN−1 cN−1

0 0 0 . . . cN−1 bN


,

where

bi =
xi+1 − xi−1

(xi−1 − xi)(xi − xi+1)
for i ∈ {2, . . . , N − 1}, bN = − 1

xN−1 − xN
,

ci =
1

(xi − xi+1)
for i ∈ {1, . . . , N − 1}.

It follows that the posterior mean and covariance functions in (2.1) can be expressed as

mN (x) =


(xn − x)f(xn−1) + (x− xn−1)f(xn)

xn − xn−1
if x ∈ [xn−1, xn] for some 1 ≤ n ≤ N,

f(xN ) if x ∈ [xN , T ]
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and

kN (x, x′) =


(xn − x′)(x− xn−1)

xn − xn−1
if xn−1 ≤ x ≤ x′ ≤ xn for some 1 ≤ n ≤ N,

x− xN if xN ≤ x ≤ x′ ≤ T,

0 otherwise.

We omit the case x′ ≤ x for kN (x, x′) as this case is obtained by the symmetry kN (x, x′) =
kN (x′, x).

Using these expressions, we have, for each 1 ≤ n < N :

m\n(xn) =
(xn − xn+1)f(xn−1) + (xn−1 − xn)f(xn+1)

xn−1 − xn+1

and

k\n(xn) = k\n(xn, xn) =
(xn − xn+1)(xn − xn−1)

xn−1 − xn+1

For n = N , we have m\N (xN ) = f(xN−1) and k\N (xN ) = xN − xN−1. Inserting these
expressions in (2.2) and using the notation (8.1), the CV estimator can be written as

σ̂2
CV =

1

N

[
(x2f1 − x1f2)

2

x1x2∆x1
+

N−1∑
n=2

(∆xn−1[fn+1 − fn]−∆xn[fn − fn−1])
2

(∆xn +∆xn−1)∆xn∆xn−1

+
(fN − fN−1)

2

∆xN−1

]
.

(8.2)

For the ML estimator (2.2), we obtain the explicit expression

σ̂2
ML =

1

N

N∑
n=1

[f(xn)− f(xn−1)]
2

∆xn−1

by observing that mn−1(xn) = f(xn) and kn−1(xn) = xn − xn−1.

Remark 8.1. The leave-p-out estimator σ̂2
CV(p) can be expressed in a form similar (albeit

more complicated) to Equation (8.2). We derive this expression in Appendix C. This suggests
that the analysis in Section 4 could potentially be generalised to apply to the leave-p-out
estimators, a possibility that we leave open for future research to explore.

8.2. Proofs for Section 4.1.

Proof of Theorem 4.1. The estimator σ̂2
CV in (8.2) may be written as

σ̂2
CV = B1,N + IN +B2,N

in terms of the boundary terms

B1,N =
1

N
· (x2f1 − x1f2)

2

x1x2∆x1
and B2,N =

1

N
· (fN − fN−1)

2

∆xN−1
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and the interior term

IN =
1

N

N−1∑
n=2

(∆xn−1[fn+1 − fn]−∆xn[fn − fn−1])
2

(∆xn +∆xn−1)∆xn∆xn−1
.

The claimed rate in (4.1) is O(N−2) if l ≥ 2 or l = 1 and α ≥ 1/2. By the inclusion properties
of Hölder spaces in Section 3.3, it is therefore sufficient to consider the cases (a) l = 0 and (b)
l = 1 and α ∈ (0, 1/2].

Suppose first that l = 0. Let L be a Hölder constant of a function f ∈ C0,α([0, T ]). Using
the Hölder condition, the bounding assumption on ∆xn, and f0 = f(0) = 0, the boundary
terms can be bounded as

B1,N =
1

N
· (x1(f1 − f2) + ∆x1(f1 − f0))

2

x1x2∆x1
≤ 1

N
· 2(x

2
1(f1 − f2)

2 +∆x21(f1 − f0)
2)

x1x2∆x1

≤ 1

N
· 2L

2(x21∆x2α1 + x2α1 ∆x21)

x1x2∆x1

= O(N−1∆x2α−1
1 )

= O(N−2α)(8.3)

and

B2,N =
1

N
· (fN − fN−1)

2

∆xN−1
≤ 1

N
L2∆x2α−1

N−1 = O(N−2α).

Similarly, the interior term is bounded as

IN ≤ 2

N

N−1∑
n=2

∆x2n−1(fn+1 − fn)
2 +∆x2n(fn − fn−1)

2

(∆xn +∆xn−1)∆xn∆xn−1

≤ 2L2

N

N−1∑
n=2

∆x2n−1∆x2αn +∆x2n∆x2αn−1

(∆xn +∆xn−1)∆xn∆xn−1

=
2L2

N

N−1∑
n=2

∆xn−1∆x2α−1
n +∆xn∆x2α−1

n−1

∆xn +∆xn−1

=
2L2

N

N−1∑
n=2

(
∆xn−1

∆xn +∆xn−1
∆x2α−1

n +
∆xn

∆xn +∆xn−1
∆x2α−1

n−1

)

≤ 2L2

N

N−1∑
n=2

(
∆x2α−1

n +∆x2α−1
n−1

)
= O(N1−2α).

Inserting the above bounds in (10) yields σ̂2
CV = O(N−2α +N1−2α) = O(N1−2α), which is the

claimed rate when l = 0.
Suppose then that l = 1 and α ∈ (0, 1/2], so that the first derivative f ′ of f ∈ C1,α([0, T ])

is α-Hölder and hence continuous. Because a continuously differentiable function is Lipschitz,
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we may set α = 1 in the estimates (8.3) and (10) for the boundary terms B1,N and B2,N in the
preceding case. This shows these terms are O(N−2). Because f is differentiable, we may use
the mean value theorem to write the interior term as

IN =
1

N

N−1∑
n=2

∆xn−1∆xn
∆xn−1 +∆xn

(
fn+1 − fn

∆xn
− fn − fn−1

∆xn−1

)2

=
1

N

N−1∑
n=2

∆xn−1∆xn
∆xn−1 +∆xn

[
f ′(x̃n)− f ′(x̃n−1)

]2
,

where x̃n ∈ (xn, xn+1). Let L be a Hölder constant of f ′. Then the Hölder continuity of f ′ and
the assumption that ∥PN∥ = O(N−1) yield

IN ≤ L2

N

N−1∑
n=2

∆xn−1∆xn
∆xn−1 +∆xn

|x̃n − x̃n−1|2α ≤ L2

N

N−1∑
n=2

∆xn−1∆xn
∆xn−1 +∆xn

(∆xn−1 +∆xn)
2α

≤ L2

N

N−1∑
n=2

∆xn(∆xn−1 +∆xn)
2α

= O(N−2α−1).

Using the above bounds in (10) yields σ̂2
CV = O(N−2 +N−2α−1) = O(N−2α−1), which is the

claimed rate when l = 1.

Proof of Theorem 4.2. From (8.1) we have

σ̂2
ML =

1

N

N∑
n=1

(fn − fn−1)
2

∆xn−1
.

Suppose first that l = 0. As in the proof of Theorem 4.1, we get

σ̂2
ML =

1

N

N∑
n=1

(fn − fn−1)
2

∆xn−1
≤ L2

N

N∑
n=1

∆x2α−1
n−1 = O

(
N1−2α

)
when ∥PN∥ = O(N−1). Suppose then that l = 1. By the mean value theorem there are
ξn ∈ (xn−1, xn) such that

σ̂2
ML =

1

N

N∑
n=1

(fn − fn−1)
2

∆xn−1
=

1

N

N∑
n=1

∆xn−1

(
fn − fn−1

∆xn−1

)2

=
1

N

N∑
n=1

∆xn−1f
′(ξn)

2.

Since f ′ is continuous on [0, T ] and hence Riemann integrable, we obtain the asymptotic
equivalence

Nσ̂2
ML →

∫ T

0
f ′(x)2 dx as N → ∞

when ∥PN∥ → 0 as N → ∞. The integral is positive because f has been assumed non-constant.
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Proof of Theorem 4.4. For equally-spaced partitions, ∆xn = x1 = T/N for all n ∈
{0, . . . , N − 1}, the estimator σ̂2

CV in (8.2) takes the form

σ̂2
CV =

1

T

[
(x2f1 − x1f2)

2

x1x2
+

1

2

N−1∑
n=2

((fn+1 − fn)− (fn − fn−1))
2 + (fN − fN−1)

2

]
.

Recall from the proof of Theorem 4.1 the decomposition

σ̂2
CV = B1,N + IN +B2,N

in terms of the boundary terms B1,N and B2,N in (10) and the interior term IN in (10). Because
f is assumed continuous on the boundary and equispaced partitions are quasi-uniform, both
B1,N and B2,N tend to zero as N → ∞. We may therefore focus on the interior term, which
decomposes as

IN =
1

2

N−1∑
n=2

((fn+1 − fn)− (fn − fn−1))
2

=

N−1∑
n=2

(fn+1 − fn)
2 + (fn − fn−1)

2 − 1

2
(fn+1 − fn−1)

2

The sums
∑N−1

n=2 (fn+1 − fn)
2 and

∑N−1
n=2 (fn − fn−1)

2 tend to V 2(f) by definition. To establish
the claimed bound we are therefore left to prove that

N−1∑
n=2

(fn+1 − fn−1)
2 → 2V 2(f) as N → ∞.

We may write the sum as

N−1∑
n=2

(fn+1 − fn−1)
2 =

⌊N−1
2

⌋∑
n=1

(f2n+1 − f2n−1)
2 +

⌊N−2
2

⌋∑
n=1

(f2n+2 − f2n)
2.

Consider a sub-partition of PN that consists of odd-index points x1, x3, . . . x2⌊N−1
2

⌋+1 of PN .
The sequence of these sub-partitions is quasi-uniform with constant 2. The assumption that
the quadratic variation is V 2(f) for all partitions with quasi-uniformity constant 2 implies that

lim
N→∞

⌊N−1
2

⌋∑
n=1

(f2n+1 − f2n−1)
2 = V 2(f).

The same will hold for sub-partitions formed of even-index points of PN , giving

lim
N→∞

⌊N−2
2

⌋∑
n=1

(f2n+2 − f2n)
2 = V 2(f).

Thus, (12) holds. This completes the proof.
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8.3. Proofs for Section 4.2.

Proof of Theorem 4.5. Recall the explicit expression of σ̂2
CV in (8.2):

σ̂2
CV =

1

N

[
(x2f1 − x1f2)

2

x1x2∆x1
+

N−1∑
n=2

(∆xn−1[fn+1 − fn]−∆xn[fn − fn−1])
2

(∆xn +∆xn−1)∆xn∆xn−1

+
(fN − fN−1)

2

∆xN−1

]
.

(8.4)

We consider the cases l = 0 and l = 1 separately. Recall that f ∼ GP(0, kl,H) implies that
E[f(x)f(x′)] = kl,H(x, x′).

Suppose first that l = 0, in which case f ∼ GP(0, k0,H) for the fractional Brownian motion
kernel k0,H in (3.4). In this case the expected values of squared terms in the expression for
σ̂2

CV are E[x2f1 − x1f2]
2 = x1x2∆x1(x

2H−1
1 +∆x2H−1

1 − (x1 +∆x1)
2H−1),

E
[
∆xn−1(fn+1 − fn)−∆xn(fn − fn−1)

]2
=
(
∆x2H−1

n +∆x2H−1
n−1 − (∆xn−1 +∆xn)

2H−1
)
∆xn−1∆xn(∆xn +∆xn−1),

and E[fN − fN−1]
2 = ∆x2HN−1. Substituting these in the expectation of σ̂2

CV and using the fact
that ∆xn = Θ(N−1) for all n by quasi-uniformity we get

Eσ̂2
CV =

1

N

[
(x2H−1

1 +∆x2H−1
1 − (x1 +∆x1)

2H−1)

+

N−1∑
n=2

(
∆x2H−1

n−1 +∆x2H−1
n − (∆xn−1 +∆xn)

2H−1
)
+∆x2H−1

N−1

]

=
1

N

[
∆x2H−1

1

( x1
∆x1

)2H−1

+ 1−
(

x1

∆x2H−1
1

+ 1

)2H−1


+∆x2H−1
n

N−1∑
n=2

((
∆xn−1

∆xn

)2H−1

+ 1−
(
∆xn−1

∆xn
+ 1

)2H−1
)

+∆x2H−1
N−1

]

=:
1

N

[
∆x2H−1

1 c1 +∆x2H−1
n

N−1∑
n=2

cn +∆x2H−1
N−1

]
.

Notice that the function x 7→ x2H−1 + 1 − (x + 1)2H−1 is positive for x > 0 and H ∈ (0, 1),
and increasing for H ∈ (1/2, 1) and non-increasing for H ∈ (0, 1/2]. By quasi-uniformity we
have C−1

qu ≤ ∆xn−1/∆xn ≤ Cqu, and can bound cn for any n and N as

0 < C2H−1
qu + 1− (Cqu + 1)2H−1 ≤ cn ≤ C1−2H

qu + 1− (C−1
qu + 1)2H−1 if H ∈ (0, 1/2],

0 < C1−2H
qu + 1− (C−1

qu + 1)2H−1 ≤ cn ≤ C2H−1
qu + 1− (Cqu + 1)2H−1 if H ∈ (1/2, 1).

Finally, by quasi-uniformity ∆xn = Θ(N−1), and Eσ̂2
CV = Θ(N−2H)+Θ(N1−2H)+Θ(N−2H) =

Θ(N1−2H).
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Suppose then that l = 1, in which case f ∼ GP(0, k1,H) for the integrated fractional
Brownian motion kernel k1,H in (3.1). It is straightforward (though, in the case of the second
expectation, somewhat tedious) to compute that the expected values of squared terms in the
expression (8.4) for σ̂2

CV are

E[x2f1 − x1f2]
2 =

x1x2∆x1
2(H + 1)(2H + 1)

(
x2H+1
2 − x2H+1

1 −∆x2H+1
1

)
and

E
[
∆xn−1(fn+1 − fn)−∆xn(fn − fn−1)

]2
=

∆xn∆xn−1(∆xn +∆xn−1)

2(H + 1)(2H + 1)

[
(∆xn +∆xn−1)

2H+1 −∆x2H+1
n −∆x2H+1

n−1

](8.5)

and

E[fN − fN−1]
2 =

∆xN−1

2H + 1

(
x2H+1
N − x2H+1

N−1 − 1

2(H + 1)
∆x2H+1

N−1

)
.

Therefore, by (8.4),

Eσ̂2
CV =

(
x2H+1
2 − x2H+1

1 −∆x2H+1
1

)
2(H + 1)(2H + 1)N

+
1

2(H + 1)(2H + 1)N

N−1∑
n=2

[
(∆xn +∆xn−1)

2H+1 −∆x2H+1
n −∆x2H+1

n−1

]
+

1

(2H + 1)N

(
x2H+1
N − x2H+1

N−1 − 1

2(H + 1)
∆x2H+1

N−1

)
=:

1

2(H + 1)(2H + 1)
B1,N +

1

2(H + 1)(2H + 1)
IN +

1

(2H + 1)
B2,N .

By quasi-uniformity, B1,N ≤ N−1x2H+1
2 = O(N−2−2H). Consider then the interior term

IN =
1

N

N−1∑
n=2

∆x2H+1
n

[(
1 +

∆xn−1

∆xn

)2H+1

−
(
1 +

(
∆xn−1

∆xn

)2H+1)]

=:
1

N

N−1∑
n=2

∆x2H+1
n c′n.

(8.6)

Because the function x 7→ (1 + x)2H+1 − (1 + x2H+1) is positive and increasing for x > 0 if
H ∈ (0, 1) and C−1

qu ≤ ∆xn−1/∆xn ≤ Cqu by quasi-uniformity, we have

0 < (1 + C−1
qu )2H+1 − (1 + C−(2H+1)

qu ) ≤ c′n ≤
(
1 +

∆xn−1

∆xn

)2H+1

≤ (1 + Cqu)
2H+1

for every n. Because N−1
∑N−1

n=2 ∆x2H+1
n = Θ(N−1−2H) by quasi-uniformity, we conclude

from (8.6) that IN = Θ(N−1−2H). For the last term B2,N , recall that we have set xN = T .
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Thus

B2,N =
1

N

(
T 2H+1 − (T −∆xN−1)

2H+1 − 1

2(H + 1)
∆x2H+1

N−1

)
.

By the generalised binomial theorem,

T 2H+1 − (T −∆xN−1)
2H+1 = (2H + 1)T 2H∆xN−1 +O(∆x2N−1)

as ∆xN−1 → 0. It follows that under quasi-uniformity we have B2,N = Θ(N−2) for every
H ∈ (0, 1). Putting these bounds for B1,N , IN and B2,N together we conclude that

Eσ̂2
CV =

1

2(H + 1)(2H + 1)
B1,N +

1

2(H + 1)(2H + 1)
IN +

1

(2H + 1)
B2,N

= O(N−2−2H) + Θ(N−1−2H) + Θ(N−2),

which gives Eσ̂2
CV = Θ(N−1−2H) if H ∈ (0, 1/2] and Eσ̂2

CV = Θ(N−2) if H ∈ [1/2, 1).

Observe that in the proof of Theorem 4.5 it is the boundary term B2,N that determines the
rate when there is sufficient smoothness, in that l = 1 and H ∈ [1/2, 1). Similar phenomenon
occurs in the proof of Theorem 4.1. The smoother a process is, the more correlation there
is between its values at far-away points. Because the Brownian motion (as well as fractional
and integrated Brownian motions) has a zero boundary condition at x = 0 but no boundary
condition at x = T and no information is available at points beyond T , the importance of B2,N

is caused by the fact that around T one has the least information about the process.

Proof of Theorem 4.6. From (8.1) we get

Eσ̂2
ML =

1

N

N∑
n=1

E[fn − fn−1]
2

∆xn−1
.

We may then proceed as in the proof of Theorem 4.5 and use quasi-uniformity to show that

Eσ̂2
ML =

1

N

N∑
n=1

E[fn − fn−1]
2

∆xn−1
=

1

N

N∑
n=1

∆x2Hn−1

∆xn−1
=

1

N

N∑
n=1

∆x2H−1
n−1 = Θ(N1−2H)

when l = 0 and

Eσ̂2
ML =

N∑
n=1

E[fn − fn−1]
2

∆xn−1

=
1

(2H + 1)N

N∑
n=1

(
x2H+1
n − x2H+1

n−1 − 1

2(H + 1)
∆x2H+1

n−1

)

=
1

(2H + 1)N

N∑
n=1

(
(2H + 1)x2Hn ∆xn−1 +O(∆x2n−1)−

1

2(H + 1)
∆x2H+1

n−1

)
= Θ(N−1)

when l = 1.
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8.4. Proofs for Subsection 4.3. For the Brownian motion kernel, the ICV estimator
defined in (4.3) takes the explicit form

σ̂2
ICV =

1

N

N−1∑
n=2

(∆xn−1[fn+1 − fn]−∆xn[fn − fn−1])
2

(∆xn +∆xn−1)∆xn∆xn−1
.

We analyse this estimator below.

Proof of Theorem 4.8. The proof of Theorem 4.1 shows that when l = 1 and α ∈ (1/2, 1],
the bound is dominated by the bound on the boundary terms, B1,N = O(N−2) and B2,N =
O(N−2), since

σ̂2
CV = B1,N + IN +B2,N = O(N−2) +O(N−1−2α) +O(N−2) = O(N−2).

As σ̂2
ICV = IN , it follows that σ̂2

ICV = O(N−1−2α) when l = 1.

Proof of Theorem 4.9. The proof of Theorem 4.5 shows that when l = 1 and H ∈ [1/2, 1),
the bound is dominated by the bound on the right boundary terms, B2,N = Θ(N−2), since

Eσ̂2
CV =

1

2(H + 1)(2H + 1)
B1,N +

1

2(H + 1)(2H + 1)
IN +

1

(2H + 1)
B2,N

= O(N−2−2H) + Θ(N−1−2H) + Θ(N−2)

As Eσ̂2
ICV = IN/(2(H + 1)(2H + 1)), it follows that σ̂2

ICV = Θ(N−1−2H) when l = 1.

8.5. Proofs for Section 5.

Proof of Theorem 5.1. We only provide the proof for the case l = 1 and leave the simpler
case l = 0 to the reader. Let x ∈ (xn−1, xn). From the expression for mN in Subsection 8.1, we
get

E[f(x)−mN (x)]2 = E

[
f(x)− (xn − x)f(xn−1) + (x− xn−1)f(xn)

∆xn−1

]2
=

1

∆x2n−1

E
[
(x− xn−1)(f(xn)− f(x))− (xn − x)(f(x)− f(xn−1))

]2
.

Then, we can use (8.5) with xn instead of xn+1 and x instead of xn to get

E[f(x)−mN (x)]2 =
(xn − x)(x− xn−1)

CH∆xn−1

[
∆x2H+1

n−1 − (xn − x)2H+1 − (x− xn−1)
2H+1

]
,

where CH = 2(H + 1)(2H + 1). The expression for kN in Subsection 8.1 gives

E[f(x)−mN (x)]2

kN (x)
=

1

CH

[
∆x2H+1

n−1 − (xn − x)2H+1 − (x− xn−1)
2H+1

]
.

By removing the negative terms and using the quasi-uniformity (3.2), we obtain

sup
x∈[0,T ]

E[f(x)−mN (x)]2

kN (x)
≤ (TCqu)

2H+1

CH
N−1−2H ,
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To see that this bound is tight, observe that for the midpoint x = (xn + xn−1)/2 we have
xn − x = x− xn−1 = ∆xn−1/2 and

E[f(x)−mN (x)]2

kN (x)
=

1

CH

(
1− 1

22H

)
∆x2H+1

n−1 ≥ T 2H+1

CHC2H+1
qu

(
1− 1

22H

)
N−1−2H

by the quasi-uniformity. Therefore

sup
x∈[0,T ]

E[f(x)−mN (x)]2

kN (x)
= Θ(N−1−2H)

when l = 1. One can similarly show that

sup
x∈[0,T ]

E[f(x)−mN (x)]2

kN (x)
= Θ(N1−2H)

when l = 0. The claims then follow from the rates for Eσ̂2
CV and Eσ̂2

ML in Theorems 4.5
and 4.6.
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COMPARING SCALE PARAMETER ESTIMATORS FOR GAUSSIAN PROCESSES: LOO-CV AND ML 33

Appendix A. Connection between the ML and CV estimators.
Here we prove a connection between the ML and CV estimators; see Remark 2.1. Let

C(N, p) =

(
N

p

)
=

N !

p!(N − p)!

denote the binomial coefficient. The leave-p-out cross-validation (LPO-CV) estimator of σ2 is

σ̂2
CV(p) =

1

C(N, p)

C(N,p)∑
i=1

1

p

p∑
n=1

[f(xp,i,n)−m\{p,i}(xp,i,n)]
2

k\{p,i}(xp,i,n)
,

where i indexes the N -choose-p possible sets of held-out datapoints, x\{p,i}, among x and n ≤ p
the data points left out of each of these sets. That is, for each p and i we have

x = x\{p,i} ∪ {xp,i,1, . . . , xp,i,p}.

The functions m\{p,i} and k\{p,i} are the GP conditional mean and variance based on the set
x\{p,i}, which contains N − p points. The purpose of this section is to prove that

σ̂2
ML =

1

N

N∑
p=1

σ̂2
CV(p).

Denote ν(x) = f(x)⊤k(x,x)−1f(x). The block matrix inversion formula applied to
g(x\{p,i} ∪ {x}) and the equations in Section 2 for the conditional mean and variance yield

[f(x)−m\{p,i}(x)]
2

k\{p,i}(x)
= ν(x\{p,i} ∪ {x})− ν(x\{p,i})

for any 1 ≤ p ≤ N and x /∈ x{p,i}, where we use the convention ν(x\{N,i}) = ν(∅) = 0. For each
1 ≤ p ≤ N , i ≤ C(N, p) and n ≤ p there is a unique index j(p, i, n) ≤ C(N, p− 1) such that

x\{p,i} ∪ {xp,i,n} = x\{p−1,j(p,i,n)}.

Setting x = xp,i,n in (A) gives

[f(xp,i,n)−m\{p,i}(xp,i,n)]
2

k\{p,i}(xp,i,n)
= ν(x\{p,i} ∪ {xp,i,n})− ν(x\{p,i}).

Therefore

N∑
p=1

σ̂2
CV(p) =

1

N

N∑
p=1

1

C(N, p)

C(N,p)∑
i=1

1

p

p∑
n=1

[f(xp,i,n)−m\{p,i}(xp,i,n)]
2

k\{p,i}(xp,i,n)

=
N∑
p=1

1

C(N, p)

C(N,p)∑
i=1

1

p

p∑
n=1

[
ν(x\{p,i} ∪ {xp,i,n})− ν(x\{p,i})

]
.

(A.1)
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By (A) from each set x\{p,i} on level p (i.e., sets from which p points have been left out) one
can obtain p sets on level p− 1 by adding one of the left-out datapoints. However, there are
C(N, p) sets on level p and C(N, p− 1) sets on level p− 1. Hence for each set x\{p−1,j} on level
p− 1 there are

p · C(N, p)

C(N, p− 1)
= p · N !(p− 1)!(N − p+ 1)!

N !p!(N − p)!
= N − p+ 1

combinations of sets x\{p,i} on level p and points xp,i,n left out of these sets such that x\{p,i} ∪
{xp,i,n} = x\{p−1,j}. Therefore

C(N,p)∑
i=1

1

p

p∑
n=1

[
ν(x\{p,i} ∪ {xp,i,n})− ν(x\{p,i})

]
=

C(N,p)∑
i=1

1

p

p∑
n=1

ν(x\{p,i} ∪ {xp,i,n})−
C(N,p)∑
i=1

1

p

p∑
n=1

ν(x\{p,i})

=
N − p+ 1

p

C(N,p−1)∑
j=1

ν(x\{p−1,j})−
C(N,p)∑
i=1

ν(x\{p,i})

and consequently (A.1) writes

N∑
p=1

σ̂2
CV(p) =

N∑
p=1

1

C(N, p)

[
N − p+ 1

p

C(N,p−1)∑
j=1

ν(x\{p−1,j})−
C(N,p)∑
i=1

ν(x\{p,i})

]

=

N∑
p=1

[
1

C(N, p− 1)

C(N,p−1)∑
j=1

ν(x\{p−1,j})−
1

C(N, p)

C(N,p)∑
i=1

ν(x\{p,i})

]
,

which is a telescoping sum. We are left with

N∑
p=1

σ̂2
CV(p) =

1

C(N, 0)

C(N,0)∑
j=1

ν(x\{0,j})−
1

C(N,N)

C(N,N)∑
i=1

ν(x\{N,i}),

where ν(x\{0,j}) = f(x)⊤k(x,x)−1f(x) and ν(x\{N,i}) = ν(∅) = 0. Thus

1

N

N∑
p=1

σ̂2
CV(p) =

f(x)⊤k(x,x)−1f(x)

N
= σ̂2

ML,

which establishes (A).

Appendix B. Further discussion on Theorem 4.4 . The requirement of having the
same V 2(f) for all sequences of partitions quasi-uniform with constant 2 can be relaxed
somewhat: trivially, it is sufficient that the quadratic variation is V 2(f) specifically with respect
to even-points and odd-points sequences of sub-partitions used in the proof in Subsection 8.2.
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Furthermore, we may even have different quadratic variations with respect to said sequences.
Then the results becomes

lim
N→∞

σ̂2
CV =

ν

T
for ν =

V 2
0 (f) + V 2

1 (f)

2
,

where V 2
0 (f) and V 2

1 (f) are quadratic variations with respect to the even- and odd-points
sub-partitions respectively, meaning that

V 2(f) = lim
N→∞

N−1∑
n=1

(fn+1 − fn)
2,

V 2
0 (f) = lim

N→∞

⌊N−2
2

⌋∑
n=1

(f2n+2 − f2n)
2,

V 2
1 (f) = lim

N→∞

⌊N−1
2

⌋∑
n=1

(f2n+1 − f2n−1)
2.

Appendix C. Explicit expression for the leave-p-out estimator.
Using the expressions for posterior mean and covariance functions in (8.1) and (8.1), we

may derive an explicit expression for the leave-p-out cross-validation (LPO-CV) estimator of
the scale parameter, given in (A) by

σ̂2
CV(p) =

1

C(N, p)

C(N,p)∑
i=1

1

p

p∑
n=1

[f(xp,i,n)−m\{p,i}(xp,i,n)]
2

k\{p,i}(xp,i,n)
.

The expression is less straightforward than that for p = 1. Denote by x⌊p,i,n⌋ the largest
point in the set x\{p,i} = x \ {xp,i,1, . . . , xp,i,p} that does not exceed xp,i,n, and by x⌈p,i,n⌉ the
smallest point in the set x\{p,i} that exceeds xp,i,n. Through somewhat cumbersome arithmetic
derivations one can show that the estimator takes the form

σ̂2
CV(p) =

1

C(N, p)

C(N,p)∑
i=1

[
Bp,i,1 +

p−1∑
n=2

Ip,i,n +Bp,i,p

]

where, for ∆x−p,i,n = (xp,i,n − x⌊p,i,n⌋) and ∆x+p,i,n = (x⌈p,i,n⌉ − xp,i,n), the inner term is

Ip,i,n =
∆x−p,i,n(f⌈p,i,n⌉ − fp,i,n)−∆x+p,i,n(fp,i,n − f⌊p,i,n⌋)

(∆x+p,i,n +∆x−p,i,n)∆x+p,i,n∆x−p,i,n
,

and the boundary terms Bp,i,1 and Bp,i,p depend on whether the ith set contains x1 or xN ,



36 M. NASLIDNYK, M. KANAGAWA, T. KARVONEN, AND M. MAHSERECI

σ̂2
ML Θ(N1−4νtrue) Θ(N−1)

σ̂2
CV Θ(N1−4νtrue) Θ(N−2)

νtrue = 1/2 νtrue = 3/4

Figure 7. Rates of decay for the ML and CV estimators for the Matérn kernel of order 1, and a true
function that is a linear combination of Matérn kernels of order νtrue. The ML rate is given in Karvonen et al.
(2020, Equation 5.2). The CV rate is empirically observed in Figure 8. Observe that the CV estimator’s range
of adaptation to the smoothness νtrue is wider than the ML estimator’s.

respectively. Specifically,

Bp,i,1 =


(x⌈p,i,1⌉fp,i,1−xp,i,1f⌈p,i,1⌉)

2

xp,i,1x⌈p,i,1⌉∆x+
p,i,1

if the ith set contains x1,

Ip,i,1 otherwise,

Bp,i,p =


(fp,i,p−f⌊p,i,p⌋)

2

∆x−
p,i,p

if the i’th set contains xN ,

Ip,i,p otherwise.

Though more cumbersome, it may be feasible to conduct convergence analysis similar to that
in Section 4 for σ̂2

CV(p). We leave this up to future work.

Appendix D. Comparison of CV and ML estimators for Matérn kernels.
A natural next step is extending the analysis to kernels whose reproducing kernel Hilbert

spaces (RKHSs) are norm-equivalent to Sobolev spaces, such as the commonly used Matérn
kernels. The ML estimator for Matérn kernels was analysed in Karvonen et al. (2020). Their
experiments in Section 5.1 suggest that, for x+ := max(x, 0),

σ̂2
ML = Θ(N2(νmodel−2νtrue)+−1)

when kνmodel
is a Matérn kernel of order νmodel and f is a finite linear combination of the form

f =
∑m

i=1 αikνtrue(·, xi) for some m ∈ N, αi ∈ R, xi ∈ [0, 1], and the Matérn kernel kνtrue of
order νtrue. Empirically, we compare this to the rate of the CV estimator in Figure 8. The
test functions f are posterior means of a GP with the kνtrue kernel conditioned on points
{(x1, y1), . . . , (x10, y10)}, where each xi and yi is sampled i.i.d from the uniform distribution on
[0, 1]. Since such f are of the form f =

∑10
i=1 αikνtrue(·, xi), we expect the MLE rate in (D) to

apply; we use experimental data and the results in Theorems 4.1 and 4.6 to hypothesise what
the rate in each individual example is. Similarly to the observations for the Brownian motion
kernel, we see that the CV estimator adapts to the smoothness of the true function over a
larger ranger of smoothness compared to the ML estimator. For instance, for νmodel = 1, the
experimental results suggest that the dependence of rate on νtrue is as illustrated in Figure 7.
While the CV and the ML estimators adapt to the function smoothness when νtrue ≤ 1/2,
for νtrue ∈ [1/2, 3/4] only the CV estimator continues adapting to the smoothness. This
implies the CV estimator is less likely to become asymptotically overconfident in the event of
undersmoothing.



COMPARING SCALE PARAMETER ESTIMATORS FOR GAUSSIAN PROCESSES: LOO-CV AND ML 37

0.0

0.2

0.4

0.6

0.8

Tr
ue

 
=

0.
2

10
3

10
2

10
1

10
0

10
1

Model = 0.5
CV2
MLE2
O(N 0.8)
O(N 0.8)

10
0

10
1

10
2

10
3

Model = 1.0
CV2
MLE2
O(N0.2)
O(N0.2)

0.2

0.4

0.6

0.8

1.0

Tr
ue

 
=

0.
3

10
3

10
2

10
1

10
0

10
1 CV2

MLE2
O(N 1.2)
O(N 1.0)

10
0

10
1

10
2

10
3

CV2
MLE2
O(N 0.2)
O(N 0.2)

0.2

0.4

0.6

0.8

1.0

Tr
ue

 
=

0.
5

10
5

10
3

10
1

10
1

CV2
MLE2
O(N 2.0)
O(N 1.0)

10
1

10
1

10
3

CV2
MLE2
O(N 1.0)
O(N 1.0)

0.0

0.2

0.4

0.6

0.8

Tr
ue

 
=

0.
7

10
6

10
4

10
2

10
0

10
2

CV2
MLE2
O(N 2.0)
O(N 1.0) 10

3

10
1

10
1

10
3

CV2
MLE2
O(N 1.8)
O(N 1.0)

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

Tr
ue

 
=

0.
8

10
1

10
2

10
3

10
4

10
5

10
3

10
1

10
1

10
3

CV2
MLE2
O(N 2.0)
O(N 1.0)

10
1

10
2

10
3

10
4

10
3

10
1

10
1

10
3

CV2
MLE2
O(N 2.0)
O(N 1.0)

Figure 8. Asymptotics of CV estimator compared to asymptotics of the ML estimator, for the Matérn kernel
νmodel, and a true function that is a finite linear combination of Matérn kernels νtrue.
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