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Kumpulan kampuskirjasto

Kalmanin suodin ja sen approksimatiiviset yleistykset epälineaarisille systeemeille ovat stokastisten
dynaamisten systeemien tilaestimoinnin perustyökaluja. Oleellinen kysymys näitä suotimia käy-
tettäessä on, ovatko ne jossakin mielessä stabiileja. Lineaarisella Kalmanin suotimella on vahvoja
eksponentiaalisia stabiilisuusominaisuuksia, mutta epälineaarisille Kalmanin suotimille osoitetut
stabiilisuustulokset ovat hyvin heikkoja. Näiden tulosten tarkentaminen ja vahvistaminen ovat
avoimia tutkimuskohteita.

Tässä tutkielmassa esitellään lineaarisen Kalmanin suotimen merkittävimmät stabiilisuustu-
lokset ja olemassa olevat tulokset epälineaarisille Kalmanin suotimille. Lineaarisen Kalmanin
suotimen stabiilisuus vaatii säätötekniset oletukset systeemin havaittavuudesta (englanniksi de-
tectability) ja stabiloituvuudesta. Näiden oletusten pohjalta on mahdollista konstruoida sellainen
epäoptimaalinen lineaarinen tilaestimaattori, johon liittyvä virhekovarianssimatriisi on rajoitettu,
jolloin Kalmanin suotimen lineaarisen minimivarianssin ominaisuutta voidaan hyödyntää. Varsi-
naisessa stabiliisuustodistuksessa käytetään erästä Ljapunovin stabiilisuusteorian yleistystä.

Epälineaarisista Kalmanin suotimista tutkielmassa käsitellään pääasiassa laajennettua Kal-
manin suodinta ja hajustamatonta Kalmanin suodinta. Molemmille suotimille todistetaan
stokastisia stabiilisuustuloksia erittäin tiukin oletuksin, jotka eivät mahdollista stabiilisuuden
toteamista etukäteen. Tulokset saadaan erään stokastista stabiilisuutta koskevan lemman melko
suoraviivaisella soveltamisella, vaikkakin hajustamattomalle Kalmanin suotimille todistettaviin
tuloksiin vaaditaan myös eräiden approksimaatioiden muuntamista yhtälöiksi diagonaalisten
satunnaismatriisien avulla. Hajustamatonta Kalmanin suodinta koskevat tulokset voidaan yleis-
tää kaikilla epälineaarisille Kalmanin suotimille (tai gaussisille suotimille). Nämä tulokset ovat
kuitenkin hyvin kvalitatiivisia ja niiden ainoa konkreettinen anti on kohinakovarianssimatriisien
virittämisen vaikutuksen selventäminen, mistä tutkielmassa esitetään muutamia yksinkertaisia
numeerisia esimerkkejä.

Tutkielman lopussa kartoitetaan eräitä mahdollisesti lupaavia menetelmiä, joita ei ole tähän
mennessä käytetty epälineaaristen Kalmanin suotimien stabiilisuuden tutkimiseen. Näitä mene-
telmiä ovat Fourier’n–Hermiten sarjakehitelmä ja teleskooppisummamenetelmä, jonka avulla on
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Notation Conventions

The notation follows for the most part that of Särkkä (2013).

Vectors and Matrices

Throughout this thesis matrices are denoted by boldface upper-case letters
and (column) vectors by boldface lower-case letters. The same convention
is taken for matrix or vector valued functions. Naturally, scalars and scalar
valued functions are then denoted by non-bolded letters. However, if the
situation so dictates, matrices can be vectors and vectors scalars. Identity
matrix is I and null matrix 0, dimensions of which are not stated unless
not self-evident. In this case a subscript revealing the dimensionality is
added: In,0n. Vectors are sometimes denoted by n-tuples. The compo-
nents of a vector x ∈ Rn and a function f : Rn → Rm are x1, . . . , xn and
f1(x), . . . , fm(x), respectively.

The notions of positive-definite and positive-semidefinite (or non-
negative-definite) matrices are frequently employed. For such matrices
A > B (A ≥ B) means thatA−B is positive-definite (positive-semidefinite).
Every positive-definite matrix A admits a unique square root

√
A which is

a symmetric positive-definite matrix such that
√
A
√
A = A.

The transpose of a matrix A is AT and the inverse of the transpose (or
the transpose of the inverse) is A−T. The trace, that is, the sum of diagonal
elements, of a square matrixA is tr(A). The smallest and largest eigenvalues
of a matrix A are denoted by λmin(A) and λmax(A), respectively.

Norms

Unless otherwise specified, the norm ‖x‖ of a vector x ∈ Rn is the usual
Euclidean norm

‖x‖ =

√√√√
n∑

i=1

x2
i =
√
xTx .

Similarly, the norm ‖A‖ of a matrix A ∈ Rn×m is

‖A‖ = sup

{‖Ax‖
‖x‖ : x ∈ Rm, ‖x‖ 6= 0

}
.

For square matrices this norm is the same as the spectral norm given
by
√
λmax(ATA). In fact, in the end it is of little importance which matrix

norm is chosen.
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The L2-norm of a function f : Ω → Rn is defined as usual (with µ a
measure in a σ-algebra of Ω) by

‖f‖2 =

(∫

Ω
‖f‖2 dµ

)1/2

.

When supi∈I ‖Ai‖ <∞, where I is any index set, Ai is called uniformly
bounded. The definition applies to scalars also.

Probability Theory

The terms probability distribution and probability density, usually denoted
by p(·), are frequently used interchangeable and the notation for probability
density functions abused. The context is such that there should be no risk
of serious ambiguity. The underlying probability measure is P.

The expectation of a random vector ξξξ is E(ξξξ). The conditional expec-
tation of a random vector ξξξ with respect to another random vector ηηη (or
the σ-algebra generated by it) is E(ξξξ | ηηη). The covariance matrix of a ran-
dom vector ξξξ with mean m is Cov(ξξξ) = E((ξξξ −m)(ξξξ −m)T).

Gaussian (normal) distribution with mean m and covariance matrix P

is denoted by N (m,P). This is the only special distribution explicitly used.

Miscellaneous Matters

The Hessian matrix of second partial derivatives of a smooth enough func-
tion f is Hess(f).

The thesis is mostly concerned with dynamic systems that have some sys-
tem state xk of which measurements yk are obtained. It will be throughout
assumed that xk ∈ Rn, yk ∈ Rm and 1 ≤ m ≤ n, which is no restriction.
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1 Introduction

The optimal linear Kalman filters (Kalman, 1960b) and their approxima-
tive non-linear extensions (non-linear Kalman filters) for state estimation of
stochastic dynamic systems have been around since the 1960s. During the
last 20 years a considerable number of new approximative non-linear filters
have emerged (Särkkä, 2013). Through experience it has been seen that most
of these filters seem to be stable in some sense under moderate conditions.

Fortunately, one is not left to trust mere experience in all cases.
For linear Kalman filters, very strong stability results, obtained by Lya-
punov stability techniques, have existed almost since their inception
(Jazwinski, 1970) requiring only weak assumptions that have been further
relaxed (Anderson and Moore, 1981). However, most practical models are
not linear. The stability of optimal non-linear filters has received consid-
erable attention (van Handel, 2007), but as the optimal non-linear filter is
rarely implementable, these results are of little use in practice.

The stability of most approximative non-linear filters was not backed by
any rigorous analysis until late 1990s when it was proven (Reif et al., 1999)
by the use of a certain supermartingale boundedness lemma that under very
strict conditions, rarely satisfied in practice and impossible to verify before-
hand, boundedness of the estimation error can be concluded for the extended
Kalman filter that is one of the most used of non-linear filters. Similar anal-
ysis has been since then carried out for a large number of different filters,
without essential improvements in the results however. Most important of
these extensions are those for the unscented Kalman filter and the wide class
of Gaussian filters (Xiong et al., 2006, 2009a; Li and Xia, 2012) even though
they provide only qualitative insight. As such, the stability of approximative
non-linear filters remains an open research problem that would significantly
benefit from new methods.

This thesis reviews the classical stability results of the linear Kalman
filter and the existing stability results for some non-linear filters. The non-
linear case is exhaustively referenced. The results are critically discussed
and some of the proofs are given minor improvements. Also, some new tools
that might in the future contribute to better stability results for Gaussian
filters are introduced. These are partly based on the ideas of Simo Särkkä.

The treatment is limited to the discrete-time case, which is to curb the
length of the thesis as well as to keep the content somewhat consistent as the
stability of continuous-time non-linear Kalman filters has generated very lit-
tle research. Detailed proofs are presented selectively and moderate amount
of historical commentary is included. Sections 2 and 3 briefly cover the basics
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of Bayesian filtering theory and general stability notions and results that are
used in the sequel. Section 4 is about the stability of the time-varying linear
Kalman filter and Section 5 contains the most important stability results
for the non-linear Kalman filters. Some simple numerical examples, mainly
investigating the effects of the practice known as covariance matrix tuning,
are included. Section 6 contains some suggestions for new methods to ap-
proach the problem of stability of Gaussian filters. Also attached is a short
appendix that contains some elementary matrix results and a derivation of
the linear Kalman filter equations.

1.1 Literature Review

The general stability theory for deterministic dynamic systems is covered
by Willems (1970) and for difference equations by Lakshmikantham and
Trigiante (2002). For stocastic stability there seems to be not a single great
source, but some material can be found in Gard (1988) which serves also as
an introduction to stochastic differential equations.

The classical source on Kalman filtering containing the early stability
results is Jazwinski (1970) and another one, though lacking detailed dis-
cussion on stability, is Maybeck (1979). An excellent reference, where sta-
bility is treated in the time-invariant case, is Anderson and Moore (1979).
A more recent and corrected work is Kamen and Su (1999). Generaliza-
tions of the early linear Kalman filter stability results are to be found in
Moore and Anderson (1980) and Anderson and Moore (1981).

Indispensable sources on different non-linear filtering algorithms are
Särkkä (2013), which also serves as a Bayesian introduction to filter-
ing and smoothing, and Simon (2006) where treatment is less exten-
sive but more detailed. Stability results for these filters in English ex-
ist currently only in research papers, most important of which are Reif
et al. (1999) and Kluge et al. (2010) for the extended Kalman filter and
Xiong et al. (2006, 2009a) as well as Li and Xia (2012) for the unscented
Kalman filter and related Gaussian filters.

1.2 Acknowledgements

This thesis began as a report on the stability of non-linear Kalman filters
serving as my summer project in the Bayesian Statistical Methods group
in the Department of Biomedical Engineering and Computational Science
(BECS) at Aalto University.

I would like to thank my advisor Simo Särkkä from BECS for his guidance
and providing me this opportunity to explore for me hitherto unknown world
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of filtering. I would also like to thank Arno Solin from BECS for his support
and advice during this project.
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2 Bayesian Filtering

In every measurement of any conceivable quantity there is some uncertainty
introduced by measuring devices, always at least to some degree inherently
inaccurate, and the lack of thorough knowledge of the measuring situation
and environment. Also, if the measured quantity is modeled as a time-
varying system of some sort, there may lurk inaccuracies due to incomplete
understanding of the underlying model as well as the sheer complexity of
taking into account every tiny variable capable of causing disturbance in the
system. Consequently, one can never know exactly what the quantity mea-
sured in reality is. In such a regrettable situation one must then settle for the
best one can hope for, that is, the best possible estimate — in some sense —
of the quantity given all available knowledge of the model and the measure-
ments obtained. To tackle this problem the filtering theory was developed.
The precursor of the this theory is least-squares method of Gauss in the 19th
century but its modern origins lie in the work of Norbert Wiener and Andrey
Kolmogorov in the 1940s (Sorenson, 1970) that led to the discovery of the
recursive linear optimal mean square estimator by Rudolf Kalman in 1960
(Kalman, 1960b), still one of the most celebrated achievement of the field.

This section gives a brief introduction to filtering theory in Bayesian
framework. The presentation is rather light in mathematical terms as
the emphasis of this thesis is in investigating discrete-time linear filtering
and approximative non-linear filtering, neither of which requires advanced
stochastic machinery or stochastic calculus. The section is primarily based
on Särkkä (2013). A more general account can be found for example in
Bain and Crisan (2009).

2.1 Overview of Bayesian Filtering

Suppose the unknown quantity one is interested in determining with as much
accuracy as possible is a vector-valued (of vectors of dimension n) time-series
{x0,x1,x2, . . .} of states of which one is only able to acquire noisy measure-
ments {y1,y2, . . .}. Figure 2.1 contains an illustration of this situation in a
simple setting. The problem of determining the states x0:T = {x0, . . . ,xT }
up to time-step T from the noisy measurements y1:T = {y1, . . . ,yT } is then
that of statistical inversion which in the Bayesian framework amounts to
computing the joint posterior distribution of all the states given the mea-
surements. The joint posterior distribution can be, in principle, computed
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Figure 2.1: An example of a discrete-time sine signal. The true signal state remains unknown
but noisy measurements are obtained of it. The objective of filtering is to infer the unknown state
when only the measurements are known.

by an application of Bayes’ rule, result being the posterior distribution

p(x0:T | y1:T ) =
p(y1:T | x0:T )p(x0:T )

p(y1:T )
,

where p(x0:T ) is the prior distribution determined by the underlying model
and the normalization constant in the denominator is

p(y1:T ) =

∫

Rn×T

p(y1:T | x0:T )p(x0:T ) dx0:T .

However, the burden of computing this full posterior distribution quickly
becomes unbearable, particularly so if the measurements are obtained one
at a time and an estimate for the state corresponding to the measurement
just obtained is to be computed immediately. This amounts to computing
the whole joint posterior distribution of ever increasing dimensionality every
time a new measurement is obtained. This issue of computational complexity
is circumvented if one consents to be satisfied only with certain marginal dis-
tributions of the states and supposes that the states form a Markov sequence
and that each measurement depends only on the corresponding state. The
Markov assumption p(xk | x0:k−1,y1:k−1) = p(xk | xk−1), which means that
the states are dependent only on the very previous state instead of possibly
all the preceding ones, provides in the end the luxury of recursive computa-
tions. In this way the states and the measurements can be presented by the



2 Bayesian Filtering 6

probabilistic model

x0 ∼ p(x0) ,

xk ∼ p(xk | xk−1) ,

yk ∼ p(yk | xk) .

What are then the marginal posterior distributions to settle for? The
three such distributions of interest are the following:

• Filtering distributions are the marginal distributions of the current
state xk given the measurements up to and including the one corre-
sponding to the current state,

p(xk | y1:k) . (2.1)

• Prediction distributions are the marginal distributions of the future
state xk+m given only the measurements up to some preceding time-
step,

p(xk+m | y1:k) . (2.2)

• Smoothing distributions are the marginal distributions of the state xk
given also measurements after the time-step k up to T th time-step,

p(xk | y1:T ) , T > k . (2.3)

The computation of filtering distributions is called filtering and that of
smoothing distributions smoothing. The corresponding terms for equations
to achieve these tasks are filter and smoother. One-step prediction distribu-
tions arise naturally in the Bayesian filtering equations of Theorem 2.1 and
as such are intrisically connected to the filtering distributions. In this thesis
smoothing is not addressed in its own right, although a certain smoothed
estimate will be constructed in the technical proof of Theorem 4.14.

Having in some way calculated the filtering distribution, one is faced with
the task of choosing a single suitable state estimator. The conventional choice
is the conditional expectation E(xk | y1:k) which is the best state estimator
in the sense of minimizing the mean square estimation error (MSE). This
follows from the orthogonality property of the conditional expectation in the
space of square integrable random variables (Williams, 1991, Chapter 9).
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2.2 Bayesian Filtering Equations

Of course, none of these definitions are worthwhile if there is no way to actu-
ally compute the distributions (2.1)–(2.3) in a meaningful recursive way.
That the filtering distributions can be computed recursively arises from
Bayes’ rule

p(xk | y1:k) = p(xk | yk,y1:k−1) ∝ p(yk | xk)p(xk | y1:k−1) .

Therefore, an expression for the predictive distribution p(xk | y1:k−1) in
terms of the preceding filtering distribution p(xk−1 | y1:k−1) would provide
one with a recursive formula for the filtering distributions. This is easily
achieved, the following theorem yielding the general recursive equations for
doing this. Similar equations are easily obtained for the smoothing problem
also (Särkkä, 2013, Theorem 8.1).

Theorem 2.1 (Bayesian filtering equations). The Bayesian filtering equa-
tions for computing the filtering distribution p(xk | y1:k) at the time-step
k consist of the prediction step for computing the prediction distribution
p(xk | y1:k−1) by the Chapman–Kolmogorov equation

p(xk | y1:k−1) =

∫

Rn

p(xk | xk−1)p(xk−1 | y1:k−1) dxk−1 (2.4)

and the update step that utilizes the prediction distribution for computing
the filtering distribution by Bayes’ rule

p(xk | y1:k) =
1

Zk
p(yk | xk)p(xk | y1:k−1) , (2.5)

where the normalization constant Zk is

Zk =

∫

Rn

p(yk | xk)p(xk | y1:k−1) dxk . (2.6)

In the case of discrete state components the corresponding integrals are re-
placed by sums.

Proof. (Särkkä, 2013, Theorem 4.1) The joint distribution of xk and xk−1

given y1:k−1 is

p(xk,xk−1 | y1:k−1) = p(xk | xk−1,y1:k−1)p(xk−1 | y1:k−1)

= p(xk | xk−1)p(xk−1 | y1:k−1) ,
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since the measurement history does not affect the state by the Markov prop-
erty of the model. Then the prediction distribution, that is, the marginal
distribution of xk given y1:k−1, can be computed by integrating out xk−1.
This way one obtains the Chapman–Kolmogorov equation

p(xk | y1:k−1) =

∫

Rn

p(xk | xk−1)p(xk−1 | y1:k−1) dxk−1 .

Then the distribution of xk given y1:k, or in other words, given yk and y1:k−1

is by Bayes’ rule

p(xk | y1:k) = p(xk | yk,y1:k−1)

=
1

Zk
p(yk | xk,yk−1)p(xk | yk−1)

=
1

Zk
p(yk | xk)p(xk | yk−1) ,

where the normalization constant Zk is given by (2.6) and the past mea-
surement history y1:k−1 can be dropped from the last equality as the current
measurement yk is conditionally independent, given xk, of the past measure-
ments.

In the prediction step the filtering distribution is propagated through
the system dynamics and in the update step this propagated distribution is
conditioned on the new measurement to obtain a new filtering distribution.

Unfortunately, Equations (2.4) and (2.5) can be solved in a closed form
only if the dependencies between the current and the preceding state as well
as that of the current state and measurement of it are linear and noise is
additive and Gaussian. The resulting recursion is known as the Kalman filter
and is treated in Section 4.

If the dependencies are non-linear, no simple solution in closed form exists
in general. For an efficient approximative solution of this non-linear filtering
problem a great multitude of different approximative non-linear filters have
been proposed. Some of the most widely applied of these are the topic of
Section 5. Of course, the Bayesian filtering equations can be studied as
such without employing any approximation. Such filters are called optimal
filters and naturally include the Kalman filter. In this thesis optimal non-
linear filters are only briefly mentioned even though there is extensive theory
concerning them.
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3 Concepts of Stability

This section discusses several different concepts of stability that will be of
use later. For linear dynamic systems a few strong deterministic notions
of Lyapunov stability are introduced. Since the non-linear Kalman filters
whose stability is investigated are approximative and sub-optimal, the sta-
bility properties one can hope they possess are far weaker. The much more
complex nature of non-linear systems also forces one to have the stability
notions stochastic. As a small sidenote, one notion of optimal filter stability
is also discussed.

3.1 Lyapunov Stability of Linear Systems

First, the stability of linear dynamic systems is considered. A discrete-time
linear dynamic system is of the form

xk = Ak−1xk−1 + Bk−1uk−1 (3.1)

for k ≥ 1. The vector xk ∈ Rn is the system state, uk−1 ∈ Rp the input,
control or the forcing function and Ak−1 and Bk−1 possibly time-varying co-
efficient matrices of appropriate dimensions. This system is commonly called
forced, referring to the dynamics being disturbed be uk−1. The homogeneous
part of (3.1) is the same system but with the forcing term disregarded. The
homogeneous part of the system has the equilibrium state at the origin as
having reached this state it is impossible to escape. The starting time of the
system is taken to be k = 0 and the initial state is thus x0. It is very much
possible for distinct initial states to induce totally different behavior in the
system; the interest lies in pinning down the conditions that ensure that the
initial state is essentially forgotten in the long run.

The state transition matrix of the system (3.1) from time-step j to i ≥ j
is the matrix

ΦΦΦi,j :=

i−1∏

m=j

Am

with properties ΦΦΦj,j = I and ΦΦΦi,j = ΦΦΦ−1
j,i if the matrices Ak−1 are non-

singular.

Definition 3.1 (Linear system stability). The homogeneous part of
the linear dynamic system (3.1) is called uniformly asymptotically stable
if ‖xk‖ → 0 as k →∞ regardless of the initial state x0. An equivalent def-
inition (Bucy and Joseph, 1968, Theorem 1.4) is that there are c1, c2 > 0,
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independent of k, such that

‖ΦΦΦk,0‖ ≤ c1 exp(−c2k)

for all k ≥ 0. This inspires the terms exponentially stable1 and uni-
formly exponentially stable, former of which shall be used in this thesis.
The forced system (3.1) is bounded-input-bounded-output (BIBO) stable if
bounded inputs produce bounded outputs, that is, supk≥1 ‖uk−1‖ < ∞ im-
plies supk≥0 ‖xk‖ <∞.

Definitions of stability can be frequently given in terms of either
the system state or the state transition matrix as can be seen in
the equivalence of uniform asymptotic stability and exponential stability
(Willems, 1970, Chapter 4). An important property of linear systems is that
exponential stability implies BIBO stability if the matrix Bk−1 is uniformly
bounded.

Theorem 3.2. An exponentially stable linear dynamic system (3.1) is BIBO
stable if Bk−1 is uniformly bounded.

Proof. (Willems, 1970, p. 12 and Theorem 3.1)

These two notions of linear system stability, though only a fraction of
all existing notions, are sufficient for this thesis. Large number of other
definitions in different forms are usually given in the literature covering the
subject. Especially for exponential stability there are numerous distinct
definitions and characterizations arising from the fact that the concept is
not so straightforward as it seems by this exposition if the dynamic system
is allowed to be non-linear.

Then, under what conditions is a system stable? The simplest situation
is that when Ak−1 is contractive, that is, ‖Ak−1‖ ≤ c < 1 for all k ≥ 1

and some positive c and Bk−1uk−1 remains uniformly bounded. In this case
the convergence of the geometric series implies the uniform boundedness
of xk and the homogeneous part is clearly exponentially stable. However,
such contractive systems are rarities and one thus needs some more general
criteria.

1Exponential stability can of course be extended to any sequence of scalars with an
analogous condition. Furthermore, a condition equivalent to the exponential stability of
a sequence ak of positive scalars is that

lim
n→∞

1

k
log ak < 0 .

This form (or limes superior version of it) is often used in the stability analysis of optimal
filters briefly discussed in Section 3.3.
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In giving sufficient more general conditions for the stability of linear
systems the work of Lyapunov (1907), originally published in Russian in 1892
and translated into French in 1907, is utilized. Specifically, the so-called
second method of Lyapunov will be used. The point of this method is to
infer about stability of a system without explicit knowledge of the solutions.
The idea of the second method is in the analogy of energy: if the energy of
a physical system is decreasing for every possible state except for a single
equilibrium state, then the the energy continues to decrease until it assumes
its minimum value at that equilibrium state. Translation of this physical
analogy to precise mathematical formulation means roughly that one needs
to find a scalar function V of the system state, termed Lyapunov function,
that is positive and strictly decreasing outside the equilibrium state such
that V (x) = V ′(x) = 0 if and only if x is the equilibrium state. Such a
function is usually called positive-definite.

Books devoted to the stability theory of dynamic systems are the
classical, though somewhat outdated, one by Hahn (1963), contain-
ing a short treatment of the discrete-time case, Willems (1970), an
excellent source on the relations of different notions of stability, and
Michel et al. (2008) with a good exposition of Lyapunov functions.
Lakshmikantham and Trigiante (2002) cover the discrete-time case. The ar-
ticles of Kalman and Bertram (1960a,b) also cover most of the material
needed.

The following theorem will be of use in proving the exponential stabil-
ity of the linear Kalman filter. As the discrete-time versions of stability
theorems can usually be obtained as easy consequences of continuous-time
counterparts, there is not much literature dealing explicitly with discrete-
time systems.

Theorem 3.3 (Lyapunov stability theorem). The homogeneous part of
the discrete-time linear dynamic system (3.1) is exponentially stable if
there exists a scalar function V (xk, k) with V (0, k) ≡ 0, continuous
non-decreasing scalar functions γ1(‖xk‖) and γ2(‖xk‖) and a continuous
scalar function γ3(‖xk‖) with γ1(0) = γ2(0) = γ3(0) = 0 and γ1(‖xk‖)→∞
when ‖xk‖ → ∞, such that, for some integers N,M > 0,

0 < γ1(‖xk‖) ≤ V (xk, k) ≤ γ2(‖xk‖) (3.2)

for all xk 6= 0, k ≥M and

V (xk, k)− V (xk−N , k −N) ≤ γ3(‖xk‖) < 0 (3.3)
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for all xk 6= 0 and k ≥ M . The function V is called a Lyapunov function
for the system (3.1).

Proof. Let ε > 0 be arbitrary and choose δ > 0 such that γ2(δ) < γ1(ε). This
is possible since γ1(0) = γ2(0) = 0, γ1 and γ2 are continuous and γ1 acquires
every non-negative real value. Let k ≥M and suppose that ‖xk‖ ≤ δ. Then
the assumptions (3.2) and (3.3) imply that

γ1(ε) > γ2(δ) ≥ V (xk, k) > V (xk+N , k +N) ≥ γ1(‖xk+N‖) ,

and γ1 being non-decreasing, it follows, with a shift of k, that ‖xk‖ < ε

when k ≥M +N and ‖xk−N‖ ≤ δ.
Let then c1 > 0 be arbitrary and choose r > 0 such that γ2(r) < γ1(c1),

which is again possible. Fix l ≥ M + N and suppose that ‖xl−N‖ ≤ r.
Then, by the preceding part of the proof and Equation (3.3), ‖xl+kN‖ < c1

for all k ≥ 0. Take any 0 < µ ≤ ‖xl−N‖ and ν > 0 such that γ2(ν) < γ1(µ).
Denote c2 := maxν≤‖x‖≤c1 γ3(‖x‖) < 0 and define m = −bγ2(r)/c2c > 0,
where bac is the largest integer smaller than or equal to a ∈ R. Now,
suppose that ‖xl+kN‖ > ν for all −1 ≤ k ≤ m. By the definition of c2 and
an iterated use of (3.3), it follows that

0 < γ1(ν) ≤ V (xl+mN , l +mN) ≤
m∑

k=0

γ3(‖xl+kN‖) + V (xl−N , l −N)

≤ (m+ 1)c2 + γ2(r) ≤ γ2(r)− c2

⌊
γ2(r)

c2

⌋
+ c2 ≤ c2 < 0 ,

which is a contradiction. Therefore ‖xl+k1N‖ ≤ ν for some −1 ≤ k1 ≤ m.
Thus, for all k ≥ k1, one has

0 < γ1(ν) ≤ V (xl+kN , l + kN) ≤ V (xl+k1N , l + k1N) ≤ γ2(ν) < γ1(µ)

and hence ‖xl+kN‖ < µ for all k ≥ m ≥ k1. Since µ > 0 can be chosen arbi-
trarily small, ‖xl+kN‖ → 0 as k →∞. Having assumed that γ1(‖xk‖)→∞
when ‖xk‖ → ∞, one can choose r to be arbitrarily large, provided that c1

is first chosen to be large enough. Therefore there is no need to impose an
upper bound on ‖xl−N‖. Furthermore, since no other restriction than that
of being bounded from below by N + M was placed on l, the convergence
of ‖xl+kN‖ to zero holds for any such l. Thus ‖xk‖ → 0 as k → ∞ which
proves the exponential stability.

The above theorem and its proof are slight modifications of
Kalman and Bertram (1960a, Theorem 1) as a consequence of which the the-
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orem is stated in Jazwinski (1970, p. 240); Deyst and Price (1968) and Kamen
and Su (1999, Appendix C). In this version the time domain is discrete and
the Lyapunov function is required to decrease only over N steps instead of
being decreasing at every step. In this form the theorem is particularly suited
for the assumptions that will be made when the stability of the Kalman filter
is being proven in Section 4.4. An extended version of this theorem is needed
in Section 4.5 but as it is intrinsically connected with certain definitions from
control theory and somewhat non-classical, it is not presented yet.

3.2 Stochastic Stability

In this section the boundedness of stochastic processes is investigated. For
the purposes of this thesis this amounts to finding conditions that guarantee
the mean square and stochastic boundedness of the process. So, under con-
sideration is a discrete-time stochastic process ξξξk, k ≥ 0 with state space Rn.
No dynamic structure as in the preceeding section is assumed for the process.

An intuitive extension of the Lyapunov stability ideas to the stochastic
framework would be to consider the conditional expectations of some Lya-
punov function (which in this case is too a stochastic process) and infer
something about stochastic stability from their behavior. An important ob-
servation that positive supermartingales correspond to Lyapunov functions
was made by Bucy (1965). This is well supported by intuition since a su-
permartingale tends to decrease in time and is in analogy with Lyapunov
functions that are decreasing outside the equilibrium. By the aid of this
observation a stochastic stability theory similar to that of the ordinary Lya-
punov stability theory has been developed (Bucy and Joseph, 1968, Chapter
VI). However, the most elegant part of this theory will not be needed, for the
stability analysis of the linear Kalman filter can be done with classical Lya-
punov stability theory and with non-linear Kalman filters the assumptions
needed to use strong stochastic stability theorems are rarely satisfied.

Further treatment of the stochastic stability can be found in
Kushner (1967); Aoki (1967) and Gard (1988), where the treatment is
geared towards the stability questions of stochastic differential equa-
tions. This subject is also taken up by Khasminskii (2011), while
Dragan et al. (2006, Section 2.5) discuss exponential mean square conver-
gence to zero for linear systems.

The following four modes of stochastic stability are relevant in the setting
of non-linear Kalman filters, although it appears that it can only be proven
that two of them hold for these filters.
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Definition 3.4. A stochastic process ξξξk is exponentially bounded in mean
square if there are constants η, ν > 0 and 0 < ϑ < 1 such that

E(‖ξξξk‖2) ≤ ηE(‖ξξξ0‖2)ϑk + ν

for all k ≥ 0.

Definition 3.5. A stochastic process ξξξk is stochastically bounded if for
any ε > 0 there is M > 0 such that supk≥0 P(‖ξξξk‖ ≥M) ≤ ε.

Definition 3.6. A stochastic process ξξξk is stochastically sample path bounded
if for any ε > 0 there is M > 0 such that P(supk≥0 ‖ξξξk‖ ≥M) ≤ ε.

Definition 3.7. A stochastic process ξξξk is almost surely bounded
if supk≥0 ‖ξξξk‖ <∞ holds almost surely.

Clearly, a stochastic process is exponentially bounded in mean square if
and only if it is uniformly bounded in mean square, which means that there
exists a bound M > 0 such that E(‖ξξξk‖2) ≤ M for all k ≥ 0. As will be
seen, mean square boundedness implies stochastic boundedness.

The following lemma and similar forms of it have been essential in al-
most every stability proof for non-linear Kalman filters. The version here is
only concerned with exponential mean square boundedness and stochastic
boundedness, rest of the notions are for a brief discussion.

Lemma 3.8 (Stochastic stability lemma). Let ξξξk be a Markov process. Sup-
pose there is a scalar-valued stochastic process Vk(ξξξk), adapted to the same
σ-algebra, and positive real numbers v1, v2, µ and 0 < α ≤ 1 such that

v1 ‖ξξξk‖2 ≤ Vk(ξξξk) ≤ v2 ‖ξξξk‖2 (3.4)

and
E[Vk+1(ξξξk+1) | ξξξk]− Vk(ξξξk) ≤ µ− αVk(ξξξk) (3.5)

hold for every k ≥ 0. Then the stochastic process ξξξk is exponentially bounded
in mean square. Specifically,

E(‖ξξξk‖2) ≤ v2

v1
E(‖ξξξ0‖2)(1− α)k +

µ

v1

k−1∑

i=0

(1− α)i

≤ v2

v1
E(‖ξξξ0‖2)(1− α)k +

µ

v1α

for every k ≥ 0. Furthermore, ξξξk is stochastically bounded.
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Clearly Vk(ξξξk) is not generally a supermartingale. The meaning of (3.5)
is then that if Vk(ξξξk) increases enough (Vk(ξξξk) ≥ µ/α), so that the left hand
side of the inequality becomes non-positive, the supermartingale inequality
is satisfied.

Proof of Lemma 3.8. (Tarn and Rasis, 1976, Theorem 2) Assumption (3.5)
implies that

E[Vk+1(ξξξk+1) | ξξξk] ≤ µ+ (1− α)Vk(ξξξk)

and noting that

E[Vk(ξξξk) | ξξξk−2] = E[E(Vk(ξξξk) | ξξξk−1) | ξξξk−2] ,

it follows that

E[Vk(ξξξk) | ξξξk−2] ≤ E[µ+ (1− α)Vk−1(ξξξk−1) | ξξξk−2]

= µ+ (1− α)E[Vk−1(ξξξk−1) | ξξξk−2]

≤ µ+ µ(1− α) + (1− α)2Vk−2(ξξξk−2) .

Continuing this finally results to

E[Vk(ξξξk) | ξξξ0] ≤ (1− α)kV0(ξξξ0) + µ

k−1∑

i=0

(1− α)i

and taking of expectations yields

E[Vk(ξξξk)] ≤ (1− α)kE[V0(ξξξ0)] + µ
k−1∑

i=0

(1− α)i . (3.6)

Then, using (3.4), one obtains

E(‖ξξξk‖2) ≤ v2

v1
E(‖ξξξ0‖2)(1− α)k +

µ

v1

k−1∑

i=0

(1− α)i .

To see that mean square boundedness implies stochastic boundedness,
Markov’s inequality is used. According to it, for any a > 0,

P
(√

Vk(ξξξk) ≥
√
a
)
≤ E[Vk(ξξξk)]

a
.
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Inequalities (3.4) and (3.6) then yield

P
(
‖ξξξk‖ ≥

√
a/v2

)
≤ E[V0(ξξξ0)] + µ/α

a

≤ v2E(‖ξξξ0‖2) + µ/α

a
,

which implies that ξξξk is stochastically bounded.

Usually, the much more powerful almost sure boundedness of the process
is stated instead of stochastic boundedness. However, the proof of Agniel
and Jury (1971, Section 4.1, Theorem 1) cited for this fact may contain an er-
ror in asserting that the process Wk(ξξξk) := Vk(ξξξk)− µ/α is supermartingale
(see also Xie and Khargonekar, 2012, Lemma 8). Martingale convergence
theorems (Loève, 1978, pp. 59–60) would then imply the almost sure bound-
edness of this process and hence that of ξξξk. A similar proof is to be found in
Yaz (1990). Stochastic sample path boundedness is claimed to hold in the
analogous version for continuous-time processes (Reif et al., 2000).

In this lemma the stochastic process Vk(ξξξk) is a stochastic analogy, in
some weak sense, of the deterministic Lyapunov function of the preceding
section. Consequently, it will be called a stochastic Lyapunov function. As
seen, the upper bound on the mean square of the process is completely deter-
mined by the mean square at the initial time-step and the constants v1, v2, µ

and α. When the lemma is used in Section 5, some conditions, such as that
‖ξξξ0‖ ≤ ε for some positive ε, are imposed. Then the stability statements
are of course to be understood in the sense of being restricted to the set of
outcomes for which the conditions given are satisfied.

3.3 Stability of Filters with Respect to Initial Conditions

This section summarizes some stability results and methods used in the gen-
eral optimal filtering theory of Markov processes. Nothing in this section will
be used in the sequel; the sole purpose is to provide some context, especially
for the treatment of the approximative non-linear filters. Good general sur-
veys of these results can be found in Chigansky (2006); van Handel (2007)
and Heine (2007).

In optimal filtering theory one is concerned with a discrete-time Markov
process (Xk)k≥0 and its observation process (Yk)k≥0 (such that the joint pro-
cess is Markov) whose state spaces can be any suitable abstract spaces. The
filtering densities are of course obtained from the Bayesian filtering equations
of Theorem 2.1. As one does not always know the initial distribution of Xk,
a central question becomes whether filters with distinct initial distributions
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converge towards each other with respect to some suitable metric. This is
referred to as the stability of the optimal filter with respect to its initial con-
ditions. The classical choice is the metric induced by the total variation
norm ‖·‖TV that is defined in the space of probability distributions (that is,
measures) P(E), where (E,F) is some probability space, by setting

‖µ− ν‖TV := sup
A∈F
|µ(A)− ν(A)| = 1

2

∫

E
|pµ − pν | dπ , (3.7)

for µ, ν ∈ P(E). The functions pµ, pν are the Radon–Nikodym derivatives
of µ and ν with respect to some reference measure π ∈ P(E) that must of
course be chosen such that µ and ν are absolutely continuous with respect to
it. In the case E = Rn and probability distributions absolutely continuous
with respect to the Lebesque measure this definition is spelled out as

‖µ− ν‖TV =
1

2

∫

Rn

|pµ(x)− pν(x)|dx .

The filtering distribution with initial distribution µ corresponding to (2.1)
at time-step k is customarily denoted by πµk . So the problem is to find
sufficient conditions for

lim
k→∞

E ‖πµk − πνk‖TV = 0 .

Under certain assumptions that include the ergodicity of Xk it can
be shown that the above convergence holds and is exponential (Afar and
Zeitouni, 1997). This is achieved by utilizing the Hilbert projective metric
on the set P(E). The advantage of this metric, defined for µ, ν ∈ P(E) that
satisfy a certain comparability condition, by

h(µ, ν) = log
supA∈F ,ν(A)>0 µ(A)/ν(A)

infA∈F ,ν(A)>0 µ(A)/ν(A)
,

is that it is invariant under scaling. This property simplifies the treatment of
the update equation (2.5) as the normalization constant can be disregarded.
Finally, the Hilbert projective metric is linked to the total variation norm
by the inequality

‖µ− ν‖TV ≤
2

log 3
h(µ, ν) ,

that is, convergence with respect to the Hilbert projective metric implies
convergence with respect to the total variation norm. However, the use
of the Hilbert projective metric usually requires a compact state space or
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that the Markov transition kernel of the filtering process satisfies certain
restrictive mixing conditions.

Another approach is to use the Dobrushin ergodic coefficient (Del Moral
and Guionnet, 2001). For Markov transition kernels K on E the Dobrushin
ergodic coefficient α(K) is defined as

α(K) := 1− sup |K(x,A)−K(y,A)| ,

where the supremum is taken over all x, y ∈ E and A ∈ F . Unfortunately,
also this technique is dependent on mixing conditions of some form.
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4 Stability of the Linear Kalman Filter

In this section the stability of Kalman filters for linear dynamic systems
is treated. A discrete-time linear dynamic system disturbed by zero-mean
Gaussian noise processes can be written as

xk = Ak−1xk−1 + qk−1 ,

yk = Hkxk + rk ,
(4.1)

where xk ∈ Rn is the system state, yk ∈ Rm is the measurement,
qk−1 ∼ N (0,Qk−1) is the process noise and rk ∼ N (0,Rk) is the measure-
ment noise. The system is initialized from k = 0 with initial system state
distribution x0 ∼ N (m0,P0). The noise processes are assumed uncorrelated
and independent of the initial state. The matrices Ak−1 are dynamic model
matrices and Hk measurement model matrices. The state transition matrix
of xk is denoted as in the preceding section. Figure 4.1 (p. 20) illustrates the
workings of this system. In probabilistic terms the model can be written as

p(xk | xk−1) = N (xk | Ak−1xk−1,Qk−1) ,

p(yk | xk) = N (yk | Hkxk,Rk) .
(4.2)

Many linear dynamic systems of interest have constant dynamic and mea-
surement model matrices as well as constant noise covariance matrices. Such
systems are called time-invariant and for them strong stability and conver-
gence results are obtainable with significantly reduced complexity (Anderson
and Moore, 1979, Chapter 4).

Often a deterministic control signal uk−1 is added to the state part
of (4.1). This term is omitted here as it does not affect the stability analysis
and would simply lengthen the already lengthy formulas. Also, it is not im-
perative to have the noise processes uncorrelated with each other, but this
too would make the notation more cumbersome.

4.1 The Kalman Filter Equations

For linear dynamic systems one has the celebrated Kalman filter equations
that provide closed form solutions to the Bayesian filtering equations (2.4)
and (2.5).
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· · · xk−1 Ak−1 xk Ak xk+1 · · ·

qk−1 qk qk+1

Hk−1 Hk Hk+1

yk−1 yk yk+1

rk−1 rk rk+1

Figure 4.1: Diagram of the discrete-time dynamic system (4.1). At each time-step k the previous
system state xk−1 is propagated through matrix Ak−1 and augmented with a noise term qk−1

to obtain the next state xk. However, the state is not directly observed but measurements are
instead received of xk by a linear transformation by Hk with an added unknown noise term rk.

Theorem 4.1 (Kalman filter). The Bayesian filtering equations of Theo-
rem 2.1 for linear dynamic system (4.1) can be evaluated in closed form.
The resulting distributions are

p(xk | y1:k−1) = N (xk |m−k ,P−k ) ,

p(xk | y1:k) = N (xk |mk,Pk) ,

where the parameters are calculated with the following prediction step

m−k = Ak−1mk−1 ,

P−k = Ak−1Pk−1A
T
k−1 + Qk−1 (4.3)

and the update step

vk = yk −Hkm
−
k ,

Sk = HkP
−
kH

T
k + Rk , (4.4)

Kk = P−kH
T
kS
−1
k , (4.5)

mk = m−k + Kkvk , (4.6)

Pk = P−k −KkSkK
T
k . (4.7)

Proof. (See Appendix A.2)

In the above algorithm the matrix Kk is called Kalman gain matrix. The
vector mk is the optimal mean-square estimate of the state xk and the ma-
trix Pk is the covariance matrix of estimation error ξξξk := xk −mk. The
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vector m−k is the predicted state estimate and P−k the predicted error co-
variance, which are obtained by propagating the state through the system
dynamics but not yet conditioning it on the latest measurement. The vec-
tor vk is sometimes called the innovation and Sk is the covariance matrix
of the innovation. The recursion is started from the initial estimate m0 and
initial error covariance P0.

The discrete-time Kalman filter equations were first derived by
Kalman (1960b). In his paper, Kalman used the concept of orthogonal
projections by considering the space spanned by measurements and observ-
ing that the optimal estimate (in the sense of minimizing the quadratic
loss function) of the current state is the orthogonal projection of the state
into this space. Unlike the derivation presented in the appendices, that of
Kalman does not require Gaussian noise processes — them having mean
zero is enough. However, such a relaxation of assumptions provides one
only with the optimal estimate and error covariance, not closed form so-
lutions to the Bayesian filtering equations as with the Gaussian assump-
tion. Jazwinski (1970, Chapter 7) gives a wealth of other possible deriva-
tions. Yet, it is important to have a Gaussian initial distribution as with
a non-Gaussian initial distribution the Kalman filter is not the optimal fil-
ter. For the much more complicated form of the filtering distribution in this
case, see the results by Beneš and Karatzas (1983, Theorems 4.1 and 5.1).
Some stability results concerning such a situation are referenced at the end
of Section 4.5.

The state estimates mk of the Kalman filter constitute a linear dynamic
system of their own, since Equation (4.6) can easily be modified into a re-
cursive form

mk = (I−KkHk)Ak−1mk−1 + Kkyk . (4.8)

For the predicted state estimates the analogous recursive form is

m−k+1 = Ak(I−KkHk)m
−
k + AkKkyk , (4.9)

and the relationship between these estimates can be written as

mk = (I−KkHk)m
−
k + Kkyk . (4.10)

An important property of the Kalman filter is that it is the linear min-
imum variance state estimator (Anderson and Moore, 1979, Chapter 5).
This means that among the state estimators given by a linear system as that
above the Kalman filter has the smallest error covariance, that is, any mk

used to estimate xk and obtained recursively by mk = Fk−1mk−1 + zk−1 for
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some Fk−1 and zk−1 satisfies E[(xk −mk)(xk −mk)
T] ≥ Pk. This property

is an essential one in proving the stability of the Kalman filter.
The stability of the Kalman filter is to be understood as the stability

of the homogeneous part of the dynamic system (4.8). Clearly one cannot
obtain a result to the end that ‖xk −mk‖ → 0 unless the measurement
noise vanishes. The best one could hope for then is that this difference
is dominated by the measurements in the long run, which means that the
homogeneous part must decay. Rigorously,

ξξξk = xk −mk = Ak−1(xk−1 −mk−1)−Kkvk + qk−1

= (I−KkHk)Ak−1ξξξk−1 + (I−KkHk)qk−1 −Kkrk ,
(4.11)

and so it is seen that the expected estimation error is

E(ξξξk) = (I−KkHk)Ak−1E(ξξξk−1) ,

and hence governed by exactly the same dynamics as the homogeneous part
of (4.8).

Reformulation of Equation (4.3) for P−k into a recursive form gives rise
to a discrete-time Riccati equation

P−k+1 = AkP
−
kA

T
k−(AkP

−
kH

T
k )(HkP

−
kH

T
k+Rk)

−1(HkP
−
kA

T
k )+Qk. (4.12)

There exists an extensive theory covering the behavior of equations of
this type partly motivated by the prevalence of the equation in filtering
theory. The time-invariant Riccati equation is comprehensively covered
in Lancaster and Rodman (1995). More commentary and results, with
the focus on the context of filtering, can be found in De Nicolao (1992);
Ahlbrandt and Heifetz (1995) and Costa and Astolfi (2008). For the pur-
poses of a stability analysis a more useful recursive form of the predicted
error covariance matrix is

P−k+1 = Ak(I−KkHk)P
−
k (I−KkHk)

TAT
k +Qk +AkKkRkK

T
kA

T
k , (4.13)

readily derived from the definition of this matrix and the Kalman filter equa-
tions. As for the updated error covariance matrix, the matrix inversion
lemma (found as Lemma A.1 in the appendices) yields a useful form

Pk =
[
(P−k )−1 + HT

kR
−1
k Hk

]−1
, (4.14)

inverse of which is usually known as the information matrix (Anderson and
Moore, 1979, Section 6.3). As can be seen, the error covariance matrices do
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not depend on the measurements and therefore, being completely determin-
istic, can be calculated offline before the filter is being run. Another relation
for the error covariance matrices is the Joseph form

Pk = (I−KkHk)P
−
k (I−KkHk)

T + KkRkK
T
k . (4.15)

Related to the Riccati equation is the slightly simpler Lyapunov equa-
tion (Gajić and Qureshi, 2008) that is encountered for example when the
measurement noise is singular (Halevi, 1989). An example of this equation
is (4.23) and its properties will be exploited in Theorem 4.7 that is of cen-
tral importance in proving the most general results on the stability of the
Kalman filter.

4.2 Some Concepts from Control Theory

In control theory one frequently employs the concepts of observability and
controllability and their generalizations detectability and stabilizability. As-
suming either pair of these two suffices for the exponential stability of the
Kalman filter. In the following all the matrices are assumed to be of appro-
priate dimensions.

Definition 4.2 (Observability). The pair [Fk,Gk] of matrices for k > 0 is
said to be completely observable if the observability Gramian

OOOk,l :=
k∑

i=l

( i−1∏

j=l

Fj

)T

GT
i Gi

( i−1∏

j=l

Fj

)
, (4.16)

defined for l < k, is positive-definite for some such k and l. Furthermore, the
pair is said to be uniformly observable (or uniformly completely observable)
if there exists a positive integer N and positive constants α1 and α2 such
that

0 ≤ α1I ≤OOOk,k−N ≤ α2I

for all k ≥ N . Complete or uniform observability of the system (4.1) means
that of the pair [Ak,R

−1/2
k Hk]. In this case, the observability Gramian is

simply

OOOk,l =
k∑

i=l

ΦΦΦT
i,lH

T
i R
−1HiΦΦΦi,l .
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Definition 4.3 (Controllability). The pair [Fk,Gk] of matrices for k > 0 is
said to be completely controllable if the controllability Gramian (or control-
lability matrix )

CCCk,l :=
k−1∑

i=l

( k−1∏

j=i+1

Fj

)
GiG

T
i

( k−1∏

j=i+1

Fj

)T

, (4.17)

defined for l < k, is positive-definite for some such k and l. Furthermore, the
pair is said to be uniformly controllable (or uniformly completely controllable)
if there exists a positive integer N and positive constants β1 and β2 such that

0 ≤ β1I ≤ CCCk,k−N ≤ β2I

for all k ≥ N . Complete or uniform controllability of the system (4.1) means
that of the pair [Ak,Q

1/2
k ]. In this case, the controllability Gramian is simply

CCCk,l :=
k−1∑

i=l

ΦΦΦk,i+1QiΦΦΦ
T
k,i+1 .

A related concept to the observability Gramian is the observability matrix
that is defined when Fk are non-singular by

ÕOOk,l :=

k∑

i=l

( k−1∏

j=i

Fj

)−T
GT
i Gi

( k−1∏

j=i

Fj

)−1

. (4.18)

For the system (4.1) this is

ÕOOk,l =
k∑

i=l

ΦΦΦT
l,iH

T
i R
−1HiΦΦΦl,i .

This matrix is closely related to the observability Gramian as one is able
to observe that (Aoki, 1967, p. 215)

OOOk,l =

( k−1∏

j=l

Fj

)T

ÕOOk,l
( k−1∏

j=l

Fj

)
,

which implies that if Fk is uniformly bounded, one can equivalently use the
observability matrix in the definitions of complete observability and uniform
observability. In the literature this connection is rarely made explicit and de-
pending on the authors the results are formulated for either the observability
Gramian or the observability matrix.
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The discussion on the meaning of these notions is postponed until their
generalizations detectability and stabilizability have been presented.

Definition 4.4 (Detectability). The pair [Fk,Gk] of matrices for k > 0 is
said to be uniformly detectable if there are non-negative integers s and t

with s ≥ t and constants 0 ≤ d < 1 and b > 0 such that when

∥∥∥∥
( k+t−1∏

i=k

Fi

)
z

∥∥∥∥ ≥ d ‖z‖ (4.19)

for some k and a vector z, then

zTOOOk+s,kz ≥ bzTz .

Similarly to observability, uniform detectability of the system (4.1) means
that of the pair [Ak,R

−1/2
k Hk] and in this case (4.19) is

‖ΦΦΦk+t−1,kz‖ ≥ d ‖z‖ . (4.20)

Definition 4.5 (Stabilizability). The pair [Fk,Gk] of matrices for k > 0 is
said to be uniformly stabilizable if there are non-negative integers s and t

with s ≥ t and constants 0 ≤ d < 1 and b > 0 such that when

∥∥∥∥
( k∏

i=k+1−t
Fi

)
z

∥∥∥∥ ≥ d ‖z‖ (4.21)

for some k and a vector z, then

zTCCCk,k−sz ≥ bzTz .

Similarly to controllability, uniform stabilizability of the system (4.1) means
that of the pair [Ak,Q

1/2
k ], (4.21) having a form analogous to (4.20).

Uniform observability clearly implies the uniform detectability, for then
by the definition there are positive integer N and positive scalar α1 such
that

OOOk,k−N − α1I ≥ 0

for all k ≥ N . For any vector z multiplication from left by zT and right by
z produces, by the definition of positive-semidefiniteness,

zTOOOk,k−Nz ≥ α1z
Tz .

An identical argument establishes that uniform controllability implies uni-
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Figure 4.2: An example of a linear system uniformly detectable but not uniformly observable
with dynamics (4.22). Depicted is a sample path with x0 = (0, 0, 50). It is seen that this system
is not uniformly observable because the observability Gramian is never positive-definite. This
is evident from the choice of measurement model matrix as no information is carried in the
measurements about the third component xk,3 of the system state. However, this component
decays exponentially to zero, as can be easily seen, and so it is intuitive that the system should
be uniformly detectable. Through some rather straightforward calculations it can be verified that
this indeed is the case.

form stabilizability.
The notions of controllability and observability were introduced by

Kalman (1960a) and further elaborated in Kalman (1961). Detectabil-
ity and stabilizability were first defined for time-invariant systems only by
Wonham (1967, 1968) but Hager and Horowitz (1976) and Anderson and
Moore (1981) soon extended the definitions to cover also time-varying sys-
tems. In addition to these articles, much discussion and interpretation about
these four notions can be found in Kwakernaak and Sivan (1972).

Complete controllability of the system (3.1) means that the system can be
transferred from the initial state x0 to any possible state in a finite number
of time-steps with a suitable construction of the input function uk−1. A
system with measurement part is completely observable if its state can be
inferred from the measurements. These physical aspects are more discussed
in, for example, Kalman et al. (1963).

Detectability and stabilizability generalize observability and controllabil-
ity in that they do not require all the modes of the system be observable or
controllable, but all such modes must be stable so that insufficient knowl-
edge or inability to control them causes no complications. In Figure 4.2 this
distinction is demonstrated for observability and detectability. The system
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is (4.1) with dynamic model matrices

A2k =




1.001 0 0

0 1 0

0 0 0.99


 , A2k+1 =




1.001 0.005 0

−0.7 1 0

0 0 0.99


 (4.22)

and measurement model matrix

Hk =

(
1 0 0

0 1 0

)
.

The noise terms are set to be distributed according toN (0, I) and the system
is initialized from x0 = (0, 0, 50).

The following property of uniform stabilizability, called invariance under
feedback, plays an important part in the proof of Kalman filter stability.

Theorem 4.6 (Invariance under feedback). Suppose that the matrices
Fk,Gk and Tk are uniformly bounded. Then the pair [Fk,Gk] is uniformly
stabilizable if and only if the pair [Fk + GkTk,Gk] is.

Proof. (Anderson and Moore, 1981, Section 3)

The next theorem is a specific kind of generalization of Lyapunov stability
theorem 3.3. It gives a strong connection between the boundedness of the
solutions of a Lyapunov equation and the exponential stability of a certain
system.

Theorem 4.7. Suppose that the pair [Fk,Gk] is uniformly stabilizable,
that Fk and Gk are uniformly bounded and that there exists a bounded se-
quence ΠΠΠk of positive-semidefinite matrices satisfying the Lyapunov equation

ΠΠΠk+1 = FkΠΠΠkF
T
k + GkG

T
k (4.23)

for k ≥ 0. Then the system zk+1 = Fkzk is exponentially stable.

Proof. (Anderson and Moore, 1981, Theorems 4.2 and 4.3)

There also exist versions of the two preceding theorems with uniform
stabilizability replaced by uniform detectability.

For time-invariant systems there exist simple matrix rank conditions for
uniform observability and controllability. The equivalence of these rank
conditions to the ones previously given seems not to have been clearly
stated in the literature but follows rather uncomplicatedly. Some ver-
sions can be found in Lancaster and Rodman (1995, Corollary 4.3.2) and
Bucy and Joseph (1968, Corollaries 3.1 and 3.2).
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Theorem 4.8. Let F ∈ Rp×p. The pair [F,G] is uniformly observable if
and only if it satisfies the observability rank condition according to which
the matrix

OOO :=




G

GF

GF2

...
GFn−1




has rank p. The pair [F,G] is uniformly controllable if and only if it satisfies
the controllability rank condition according to which the matrix

CCC :=
(
G GF G2F · · · Fn−1G

)

has rank p.

Proof. The equivalences follow from the simple remarks that OOOk,k−p =OOOTOOO
and CCCk,k−p = CCCCCCT and the use of the properties of matrix rank.

Similar conditions will be encountered in the study of non-linear Kalman
filters.

4.3 Overview of Linear Stability Results

The main result of this section is Theorem 4.14 that asserts that the expo-
nential stability of the Kalman filter is guaranteed if the dynamic system
is uniformly detectable and uniformly stabilizable. This result was estab-
lished by Anderson and Moore (1981) but was preceded by one requiring the
somewhat more restrictive assumptions of uniform observability and control-
lability (Deyst and Price, 1968). Despite this earlier result being less general,
its proof is also presented. This is mainly for two reasons. The first is that it
is interesting to see the development of the reasoning used as tedious matrix
manipulations filling multiple pages are replaced by arguments surprisingly
straightforward and more general (albeit less trivial in many aspects). The
second reason, equally interesting, is that the original proof of Deyst and
Price (1968) contained a small error, only affecting certain bounds for the
error covariance matrices, but still sometimes overlooked despite having been
pointed out by Hitz (1970).

Now a brief sketch of the stability proofs is presented. The proofs are inti-
mately connected with the time-varying Riccati equation (4.12) for the error
covariance matrix. It is possible to prove that the solution to time-invariant
Riccati equation converges to a certain matrix. For the time-varying version
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the situation is not that simple, but nevertheless under uniform detectability
and stabilizability it can be shown that the solution is uniformly bounded.
The proof of this relies on the linear minimum variance property of the
Kalman filter. One can construct such a sub-optimal state estimator that
the associated error covariance matrix can be seen to admit an upper bound
which then is also the upper bound for the error covariance of the Kalman
filter. The construction of such an estimator by Anderson and Moore (1981)
is the most complicated part of the stability proof and a task far from trivial
as even the authors themselves note. The original sub-optimal estimator
of Deyst and Price (1968) is much simpler and even provides one with an
explicit upper bound. This was the part in the original proof that contained
an error. The boundedness of the error covariance matrix is then used to
show that a certain function constructed out of it is a Lyapunov function
from which the exponential stability of the homogeneous part of the filter
equation (4.8) can be concluded.

Next follows a historical account on the development of these stability re-
sults, beginning from the conception of the Kalman filter by Kalman (1960b)
and culminating in the generalized results of Anderson and Moore (1981).

Unlike the continuous-time Kalman–Bucy filter for which stability results
existed from the beginning (Kalman and Bucy, 1961), it took some some time
for the analogous results to develop in the discrete-time case for systems uni-
formly observable and controllable. The first attempt to establish bounds for
the error covariance matrix was by Sorenson (1967) who used a decomposi-
tion property of linear systems, but his bounds were not of much use in prov-
ing the stability of the filter. The first proof was finally given by Deyst and
Price (1968) and incorporated into the influential book by Jazwinski (1970).
However, Deyst and Price (1968) committed a small error, duplicated by
Jazwinski (1970), in the proof of an upper bound for the error covariance
matrix, pointed out in Hitz (1970, Section 2.2) and Hitz et al. (1972). Fol-
lowing the exposure of this error, Tse (1973) was quick to pronounce the
stability an open question. The error does not invalidate the stability re-
sults; Deyst (1973) keenly provided a correction that supplied a different
upper bound. Some, but not all, authors seem to be aware of the error and
Jazwinski (1970) is frequently cited as the only source on the subject. Discus-
sion or references about the error are included, as a part of presentation of the
stability of the Kalman filter, in for example Maybeck (1979, Section 5.8)
and Rhudy and Gu (2013). Kim et al. (2006, Appendix A) give a very terse
version of the correct proof. Kerr (1985, Section V) warns about this error
among other problems and flaws in the field one should be cautious about.
The early proofs (Kalman, 1963; Bucy and Joseph, 1968, Theorem 5.4) of
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the stability of the continuous-time linear optimal filter, the Kalman-Bucy
filter developed by Kalman and Bucy (1961), contained an analogous error in
the bounds for the error covariance matrix and it is notable that a corrected
version was not provided until by Delyon (2001).

During the 1970s there emerged a desire to generalize the results for
uniformly detectable and stabilizable systems as it is quite intuitive that
unobservable or uncontrollable states that decay fast or are stable should
have no effect on the stability of the filter. Although not directly to this
end, Anderson (1971) was able to pinpoint conditions for stability weaker
than exponential. In the beginning of the 1980s the assumption of the non-
singularity of the state transition matrices of the dynamic system (having
been assumed in all the preceding proofs) was first discarded (Moore and
Anderson, 1980) and then uniform observability and controllability of the
system were weakened to uniform detectability and stabilizability (Anderson
and Moore, 1981), proofs being more direct than previously. Curiously,
Engwerda (1990) claimed that this proof too was erroneous by constructing
an alleged counterexample that turned out not to be uniformly detectable
(Anderson and Moore, 1992; Bittanti et al., 1992).

In the expository presentation of the earlier results, the account given by
Kamen and Su (1999, Appendix C) is followed. They in turn follow Jazwin-
ski (1970, Chapter 7); Deyst and Price (1968) and Deyst (1973). The more
general proof is taken solely from Anderson and Moore (1981).

The Kalman filter being the optimal filter for linear systems, it is no
wonder that is possesses these strong stability properties. Nevertheless, it
is of course necessary to actually prove that these properties hold instead
of merely assuming stability would follow trivially from optimality as has
sometimes been done in a similar setting (Kalman, 1960a, p. 160). Although
the Kalman filter should usually be stable, modeling and numerical errors
can easily cause filters to diverge (Schlee et al., 1967; Fitzgerald, 1971). This
is a matter outside the scope of this thesis.

4.4 Original Stability Proof

This section presents the original exponential stability results of the Kalman
filter in the corrected form. In this section it is assumed that Ak−1 is non-
singular and uniformly bounded. The non-singularity of the dynamic model
matrices is required in several matrix manipulations of this original proof.
The proof utilizes the observability matrix instead of observability Gramian
and the boundedness assumption guarantees the equivalence of using either
of these matrices. Originally this boundedness assumption was missing and
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the proof done using a definition of uniform observability that had the ob-
servability Gramian replaced with the observability matrix (4.18).

One begins the proof by obtaining bounds for the error covariance ma-
trix via construction of a sub-optimal linear estimate of the system state.
The proofs are given here rather sketchily so as to avoid lengthy chains of
matrix manipulations and present only the core idea of the proofs. In the
following α1, α2, β1, β2 and N are the quantities in the definitions of uniform
observability and controllability.

Lemma 4.9. If the dynamic system (4.1) is uniformly observable and uni-
formly controllable, then

Pk ≤
(
α1 +Nα2

2β2

α2
1

)
I

for all k ≥ N .

Proof. (Deyst, 1973; Kamen and Su, 1999, Lemma C.2) The proof relies on
the linear minimum variance property of the Kalman filter. For k ≥ N ,
define a state estimate

m̃k = ÕOO−1

k,k−N

k∑

i=k−N
ΦΦΦT
i,kH

T
i R
−1
i yi . (4.24)

Since this estimate is not the optimal one and thus not of minimum variance,
one has the inequality

Pk ≤ Cov(mk − m̃k) .

Through somewhat tedious evaluations, the error covariance matrix for this
sub-optimal estimate can be reduced to

Cov(mk − m̃k) = ÕOO−1

k,k−N + ÕOO−1

k,k−N

k−1∑

j=k−N




j∑

i=k−N
ΦΦΦT
i,kH

T
i R
−1
i HiΦΦΦi,k




×ΦΦΦk,j+1QjΦΦΦ
T
k,j+1




j∑

i=k−N
ΦΦΦT
i,kH

T
i R
−1
i HiΦΦΦi,k


 ÕOO−1

k,k−N .

For this, and thus for Pk, an upper bound is obtained owing to the assump-
tions of uniform observability and uniform controllability.

Originally, an error was committed by Deyst and Price (1968) in the
purported proof of the above lemma. They claimed a particularly simple
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upper bound, namely

Pk ≤ ÕOO
−1

k,k−N + CCCk,k−N , (4.25)

but in course of the proof committed an error that was pointed out in
Hitz (1970, Section 2.2) and Hitz et al. (1972) in asserting that

Cov


ÕOO−1

k,k−N

k∑

i=k−N
ΦΦΦT
i,kH

T
i R
−1
i HiΦΦΦi,k

k−1∑

j=i

ΦΦΦk,j+1Qj




≤ Cov


ÕOO−1

k,k−N

k∑

i=k−N
ΦΦΦT
i,kH

T
i R
−1
i HiΦΦΦi,k

k−1∑

j=k−N
ΦΦΦk,j+1Qj


 .

The incorrect bound (4.25) still appears sometimes in the literature. A
counterexample to it seems to have not been given when Ak−1 are non-
singular. Nevertheless, only the existence of the bound is important, not its
exact form.

Lemma 4.10. If the dynamic system (4.1) is uniformly observable and uni-
formly controllable, and if P0 is positive-definite, then

Pk ≥
(

β2
1

β1 +Nα2β2
2

)
I ,

for all k ≥ N .

Proof. (Kamen and Su, 1999, Lemma C.3) Define matrices

S̄k := P−1
k −HT

kR
−1
k Hk ,

S̄−k := A−Tk−1P
−1
k−1A

−1
k−1 .

Using (4.3) and (4.14) these can be manipulated into

S̄k =
(
(S̄−k )−1 + Qk−1

)−1
,

S̄−k = A−Tk−1S̄k−1A
−1
k−1 + A−Tk−1H

T
k−1R

−1
k−1Hk−1A

−1
k−1 .

Comparison with (4.14) and (4.3) shows that S̄k can be thought as the error
covariance matrix for the system

x̄k = A−Tk−1x̄k−1 + q̄k−1 ,

ȳk = x̄k + r̄k ,
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where the system noise is q̄k−1 ∼ N (0,A−Tk−1H
T
k−1R

−1
k−1Hk−1A

−1
k−1) and the

measurement noise r̄k ∼ N (0,HkQk−1H
T
k ). It is easily seen that this system

is uniformly observable and uniformly controllable whenever the system (4.1)
is. Thus the proof of Lemma 4.9 can be applied to obtain the claimed uniform
lower bound for Pk.

Lemma 4.11. If the dynamic system (4.1) is uniformly observable and P0

is positive-semidefinite, then Pk is positive-definite for all k ≥ N .

Proof. (Jazwinski, 1970, Theorem 7.3; Kamen and Su, 1999, Lemma C.1)
From (4.3) and (4.14) it is seen that if PN is positive-definite, then so are Pk

for k ≥ N . Since from the same equations PN is seen to be positive-
semidefinite, it suffices to prove that PN is non-singular. Assuming to the
contrary, an equation contradicting the assumption of uniform controllability
can be derived by tedious matrix manipulations.

Theorem 4.12. If the dynamic system (4.1) is uniformly observable and
uniformly controllable, and if P0 is positive-semidefinite, then the Kalman
filter of Theorem 4.1 is exponentially stable.

Proof. (Deyst and Price, 1968; Jazwinski, 1970, Theorem 7.4; Kamen and
Su, 1999, Lemma C.4 and Theorem C.2) The final proof utilizes Theorem 3.3.
Choose a Lyapunov function

V (mk, k) = mT
kP
−1
k mk .

Lemmas 4.9 and 4.10 enable the construction of the bounding functions γ1

and γ2 of V . The construction of γ3 is not so easy. Again, through tedious
manipulations, one obtains the inequality

V (mk, k)− V (mk−N−1, k −N − 1)

≤ −
k∑

i=k−N

(
mT
i H

T
i R
−1
i Himi + rTi (P−i )−1ri

)
.

By minimizing the right-hand side of this inequality with respect to sequence
{rn−N , . . . , rn} an upper bound

V (mk, k)− V (mk−N−1, k −N − 1) ≤ −β ‖mk−N−1‖2

is obtained for some β > 0. Furthermore, ‖mk−N−1‖ can be proven to be
bounded below by δ‖mk‖ for some δ > 0, and so a suitable choice is

γ3(‖mk‖) := −βδ ‖mk‖ < 0 .
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4.5 Generalization to Detectable and Stabilizable Systems

This sections contains a generalization, due to Anderson and Moore (1981),
of the results of the preceding section to systems that are only uniformly
detectable and stabilizable. Useful references on the matter, in addition to
the one already cited, are Moore and Anderson (1980) and Anderson (1982).
The latter one is particularly helpful in providing some additional clarity
to the construction of a sub-optimal estimator needed to bound the error
covariance matrices as Anderson and Moore (1981) is occasionally rather
terse.

In this section the matrices Ak−1,Hk,Qk−1,Rk and R−1
k are assumed

uniformly bounded. Non-singularity assumptions as in the preceding section
are not needed. The proof is based on elegant use of general Theorems 4.6
and 4.7.

First, a counterpart to Lemmas 4.9 and 4.10 is proven. The same fact
of the Kalman filter being the linear minimum variance estimator is used
but the construction of a suitable sub-optimal estimate is considerably more
convoluted.

Lemma 4.13. If the dynamic system (4.1) is uniformly detectable, then the
matrices P−k and Pk remain uniformly bounded.

Proof. (Anderson and Moore, 1981, Lemma 5.1; Anderson, 1982, Lemma 3.1
and Proposition 3.1) Let s, t, d and b have the same meaning as in the
definition of uniform detectability. Defining a new system x̄k = Tkxk
for orthogonal Tk, it is seen that the corresponding observability Gramian
is ŌOOk+s,k = TT

kOOOk+s,kTk. As the observability Gramian is symmetric, it is
possible to choose Tk such that it orthogonally diagonalizes OOOk+s,k, which
means that ŌOOk+s,k is diagonal (Murty, 2014, Chapter 6). Therefore, as or-
thogonal transformations preserve the norm, one may assume that OOOk+s,k is
diagonal for each k. Further, as seen in the orthogonal diagonalization algo-
rithm, it can be assumed that the diagonal elements of OOOk+s,k are ordered
in decreasing magnitude. Thus this matrix can be written as

OOOk+s,k =OOO1
k+s,k ⊕OOO2

k+s,k ,

where ⊕ is the direct sum. The matrices OOO1
k+s,k and OOO2

k+s,k are diago-
nal matrices of dimensions n1 and n2, respectively, such that OOO1

k+s,k ≥ bI

and OOO2
k+s,k < bI.

Define then mk+t|k+s, a smoothed estimate of xk+t given the measure-
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ments up to time-step k + s, by

mk+t|k+s = ΦΦΦk+t,k

[(
[OOO1

k+s,k]
−1 ⊕ 0n2

) k+s∑

i=k

ΦΦΦT
i,kH

T
i R
−1
i yi

+
(
0n1 ⊕ In2

)
mk|k+s−t

]
,

(4.26)

initialization being mk|k+s−t = 0 for k < t. For i ≥ k the measurement yi
can be written as

yi = HiΦΦΦi,kxk + ri + Hi

i−k∑

j=1

ΦΦΦi,i−jqi−j .

Denoting by Bi the last two terms in the above expression and inserting this
into (4.26) one obtains

mk+t|k+s

= ΦΦΦk+t,k

[(
[OOO1

k+s,k]
−1 ⊕ 0n2

)(
OOO1
k+s,k ⊕OOO2

k+s,k

)
xk +

(
0n1 ⊕ In2

)
mk|k+s−t

]

+ ΦΦΦk+t,k

[
(OOO1

k+s,k)
−1 ⊕ 0n2

] k+s∑

i=k

ΦΦΦT
i,kH

T
i R
−1
i Bi .

Further, by using Ck for the second term in this equality and noting that

xk+t = ΦΦΦk+t,kxk + Dk ,

where Dk =
∑t

i=1 ΦΦΦk+t,k+iqk+i−1, a slight rearrangement yields the form

mk+t|k+s − xk+t = ΦΦΦk+t,k

(
0n1 ⊕ In2

)
(mk|k+s−t − xk) + Ck −Dk . (4.27)

Choose z = (0, 0, . . . , 0, 1). Then zTOOOk+s,kz = zTOOO2
k+s,kz < bzTz = b.

Therefore by the definition of uniform detectability,

‖ΦΦΦk+t,k

(
0n1 ⊕ In2

)
‖ = ‖ΦΦΦk+t,k

(
0n1 ⊕ In2

)
z‖ = ‖ΦΦΦk+t,kz‖ < d ‖z‖ = d < 1 .

Then, since by the uniform boundedness assumption of system matrices
Ck −Dk is merely a linear combination of the noise terms with uniformly
bounded coefficients and by the above inequality the system (4.27) is con-
tractive, it follows that E(‖mk+t|k+s − xk+t‖2) remains uniformly bounded.

Error dynamics of a non-optimal filter estimate that is defined
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by mk+s := ΦΦΦk+s,k+tmk+t|k+s are given as

mk+s − xk+s = ΦΦΦk+s,k+t(mk+t|k+s − xk+t)−
s−t∑

i=1

ΦΦΦk+s,k+iqk+i−1 ,

the covariance of which is uniformly bounded as a consequence of the pre-
ceding remarks. From optimality of the Kalman filter it now follows that Pk

is uniformly bounded and from uniform boundedness of Ak−1 and Qk−1 it
is seen from (4.3) that so is P−k .

Adding to this the assumption of uniform stabilizability then leads to the
main result about the exponential stability of the Kalman filter.

Theorem 4.14. If the dynamic system (4.1) is uniformly detectable and
uniformly stabilizable and P0 is positive-semidefinite, then the Kalman filter
of Theorem 4.1 is exponentially stable.

Proof. (Anderson and Moore, 1981, Theorem 5.3) The form (4.13) can be
equivalently written as

P−k+1 = Ak(I−KkHk)P
−
k (I−KkHk)

TAT
k + GkG

T
k ,

where
Gk =

(
Q

1/2
k AkKkR

1/2
k

)
.

As the pair [Ak,Q
1/2
k ] has been assumed uniformly stabilizable, it readily

follows that so is the pair [Ak,Gk] since (4.21) is not changed and the con-
trollability matrix of the latter pair grows, compared to that of the former,
in terms of positive-definitess. Now, one can write

Ak(I−KkHk) = Ak + GkTk ,

where

Tk =

(
0n

−R−1/2
k Hk

)
.

From Lemma 4.13 and the boundedness assumptions of the system matri-
ces it follows that the matrices Ak,P

−
k ,Bk and Tk are uniformly bounded.

Therefore, applying invariance under feedback of Theorem 4.6 the pair
[A + GTk,Gk] is found uniformly stabilizable. Thus, by Theorem 4.7 the
system zk+1 = Ak(I−KkHk)zk is exponentially stable. This is exactly the
homogeneous part of the predicted state estimate equation (4.9). Finally,
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since the matrix I − KkHk is uniformly bounded, the relationship (4.10)
shows that the Kalman filter is exponentially stable.

By interpreting the measurements in (4.8) as input it is seen by Theo-
rem 3.2 that the filter is also BIBO stable. In fact, there is a strong connec-
tion between exponential stability and BIBO stability (Anderson, 1982).

An important and immediate consequence of the above theorem is that
the Kalman filter forgets its initial state: the sequences of error covariances
initialized with different P0 converge to each other and the same is true of
the state estimates mk.

Theorem 4.15. Suppose that the dynamic system (4.1) is uniformly de-
tectable and uniformly stabilizable. If m1

k and P1
k are the state estimate and

error covariance of the Kalman filter with initial distribution N (m1
0,P

1
0)

and m2
k and P2

k those of the filter with initial distribution N (m2
0,P

2
0), then

lim
k→∞

‖P1
k −P2

k‖ = 0 ,

lim
k→∞

E(‖m1
k −m2

k‖) = 0 .

Proof. The first part of the proof on the convergence of the error co-
variance matrices has been given by Jazwinski (1970, Theorem 7.5) and
Kamen and Su (1999, Theorem C.4).

The difference ‖P1
k −P2

k‖ can be written as

‖P1
k −P2

k‖ = ‖ΨΨΨ1
k,0(P1

0 −P2
0)(ΨΨΨ2

k,0)T‖ ≤ ‖ΨΨΨ1
k,0‖ ‖(P1

0 −P2
0)‖ ‖(ΨΨΨ2

k,0)T‖ ,

where ΨΨΨ1
k,0 and ΨΨΨ2

k,0 are the state transition matrices of the filter (4.8),
corresponding to P1

k and P2
k, respectively. Since the Kalman filter is expo-

nentially stable with these assumptions, both these state transition matrices
converge to zero exponentially and the first claim of the theorem follows.
This was particularly easy as the error covariance matrix does not depend
on the mean of the initial distribution. The state estimates however depend
on the measurements and the error covariance matrices.

Let m2,1
k be a state estimate at time-step k of a Kalman filter with initial

distribution N (m2
0,P

1
0). Then

m1
k −m2

k = (m1
k −m2,1

k ) + (m2,1
k −m2

k) .

The first term on the right-hand side is merely

m1
k −m2,1

k = ΨΨΨ1
k,0(m1

0 −m2
0)
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which converges to zero. The second term, a somewhat trickier one, is

m2,1
k −m2

k = ΨΨΨ1
k,0m

2
0 −ΨΨΨ2

k,0m
2
0 +

k∑

i=1

(ΨΨΨ1
k,iK

1
i −ΨΨΨ2

k,iK
2
i )yi

= (ΨΨΨ1
k,0 −ΨΨΨ2

k,0)m2
0

+
k∑

i=1

(ΨΨΨ1
k,iK

1
i −ΨΨΨ2

k,iK
2
i )Hi

(
ΦΦΦi,0x0 +

i−1∑

j=0

ΦΦΦi,j+1qj

)

+
k∑

i=1

(ΨΨΨ1
k,iK

1
i −ΨΨΨ2

k,iK
2
i )ri ,

where K1
i and K2

i are the Kalman gains of the filters initialized with P1
0

and P2
0, respectively. Because ΨΨΨ1

k,i and ΨΨΨ2
k,i converge exponentially to each

other, it follows that E(‖m2,1
k −m2

k‖)→ 0 as k →∞. Hence

lim
k→∞

E(‖m1
k −m2

k‖) = 0 .

Note that only the case with a Gaussian initial distribution has been
treated. Results allowing for more general initial distributions are few. Sow-
ers and Makowski (1992) show that the estimates produced by the linear
Kalman filter and the optimal filter for a linear time-invariant system with
non-Gaussian initial distribution converge to each other exponentially under
certain stabilizability conditions. They limit the complete analysis to scalar
systems, however. A more general approach can be found in Ocone and Par-
doux (1996) where almost sure asymptotic stability results are proved for the
time-invariant Kalman filter with possibly non-Gaussian initial distribution.
It seems there are no analogous results for systems not time-invariant.
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5 Stability of Non-Linear Kalman Filters

In this section non-linear dynamic systems are treated. A general discrete-
time non-linear dynamic system can be written as

xk = f(xk−1,qk−1) ,

yk = h(xk, rk) .
(5.1)

In this general system the manner by which the process and measurement
noises enter the system may be non-additive as opposed to additive linear
systems considered in the previous section. As such, a special case of this
system is a system in which the process and measurement noises are assumed
additive. The focus will be on this kind of additive systems as the stability
results for them were proven first and the proofs of analogous results for
general systems are not essentially different. So, an additive discrete-time
non-linear dynamic system can be written as

xk = f(xk−1) + qk−1 ,

yk = h(xk) + rk .
(5.2)

In both (5.1) and (5.2), xk ∈ Rn is the system state, yk ∈ Rm is the mea-
surement, qk−1 ∼ N (0,Qk−1) is the process noise and rk ∼ N (0,Rk) is
the measurement noise. The noise processes are assumed uncorrelated and
independent of the initial state. Function f is the dynamic model function
and h the measurement model function, both assumed continuously differen-
tiable. In addition to the system state, the functions f and h can very well
depend on time also. As this causes no changes in the proofs such notation
is suppressed.

Similarly to the linear case, inclusion of a control signal uk−1 to the
model is possible, causing no effect to the proofs. In this case, the state part
of (5.1) would take the form

xk = f(xk−1,uk−1,qk−1)

or an analogous additive term would appear in (5.2).

5.1 Approximative Non-Linear Filters

Section 3.3 briefly discussed stability results of general optimal filters. In
practice these results cannot be applied for two reasons. Firstly, the assump-
tions made are far too restrictive to be satisfied by any practical model. The
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second reason, and the more important one, is that, as previously remarked,
it is not possible to efficiently implement an optimal filter when the model
is non-linear. Some minor exceptions do exist, though (Chen, 2003). There-
fore one is forced to resort to approximative sub-optimal filters. There exists
a great number of such filters, more being constantly developed. Perhaps
the most widely used are the extended Kalman filter (EKF), the unscented
Kalman filter (UKF) and particle filters. This section is concerned with the
stability properties, theory of which is still very limited, of the EKF and the
UKF as well as a more general class of Gaussian filters or non-linear Kalman
filters.

Consider Gaussian approximations to the filtering distributions. To con-
sider just a single step of filtering, one has a random variable x ∼ N (m,P)

and its non-linear transformation y = g(x) + q, where g is some non-linear
function and q ∼ N (0,Q). To obtain a Gaussian approximation to the
distribution of x | y, the joint distribution of x and y is given a Gaussian
approximation, (

x

y

)
∼ N

((
m

µµµ

)
,

(
P C

CT S

))
. (5.3)

Then, by Lemma A.5, x | y has an approximative Gaussian distribution
N [m + CS−1(y −µµµ),P−CS−1CT]. It is up to the particular approxima-
tive filtering algorithm to obtain approximations to the joint mean and co-
variance of x and y. This procedure can then be iterated to obtain the
particular approximative non-linear filter. See Särkkä (2013) for a more
thorough treatment.

Naturally, there are multiple ways to determine the parameters of (5.3).
The ones considered in this thesis use the following three methods:

• The extended Kalman filter that uses a local first-order linearization
at the latest estimate is somewhat of a standard in non-linear estima-
tion but can easily diverge if the model is too non-linear or the initial
estimate is poor.

• The unscented Kalman filter utilizes a sigma-point approximation in
which a set of deterministically chosen points is used to approximate
the mean and covariance. The UKF is a more recent algorithm and
works usually better than the EKF.

• Gaussian filters are based on matching the first and second moments
of the distribution. This provides the linear minimum mean square
estimator (García-Fernández et al., 2014). However, the algorithm
necessitates the computation of integrals that may not have a solution
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in closed form so that approximations to these integrals (of which the
UKF is in fact one) must be used.

Approximating the filtering distribution with a single Gaussian distribu-
tion usually works well enough if non-linearity of the model is sufficiently
restricted, but multi-modality of the filtering distribution may cause serious
complications for these unimodal approximations. In such a case, multiple
weighted Gaussian distributions could naturally be used instead of a sin-
gle one as any density function can be arbitrarily accurately approximated
by such a sum of weighted Gaussian densities. Variants of this idea are
known as Gaussian sum filters (Alspach and Sorenson, 1972). A more pop-
ular choice in this situation is to use Monte Carlo simulation based particle
filters (Särkkä, 2013, Chapter 7).

The non-linear Kalman filters of this section, in contrast to the Kalman
filter of the preceding section, are in general sub-optimal. As such, the state
estimate mk produced by them loses its probabilistic interpretation as the
conditional mean E(xk | y1:k) and Pk can no longer be regarded as the error
covariance matrix. However, for convenience and convention Pk will also in
sequel called the error covariance matrix.

5.2 Overview of the Non-Linear Stability Results

None of the stability results for the non-linear filters considered are compa-
rable in the simplicity of assumptions or in strength of implications to those
obtained in the linear case. In every stability theorem one has to assume
numerous matrix inequalities, some of which cannot be verified beforehand.
This is coupled with the requirement that the initial estimation error be
sufficiently small. In fact, the theorems for the EKF produce a quantitative
bound for the initial estimation error — a bound so small and conservative
that the results are of little practical use. In the linear case the initial esti-
mate is of no importance as by Theorem 4.15 the Kalman filters initialized
with different initial distributions convergence towards each other.

The theorems for the UKF and Gaussian filters in general are based
on the use of random matrices that are introduced to transform certain
approximations to equalities. The use of this method does not provide any
quantitative bounds and the assumptions become very difficult to verify. The
results are very qualitative in nature and mainly tell that noise covariance
matrix tuning may induce filter stability.

These constraints stem from the fact that all these non-linear filters are
based on some kind of heuristic approximation, losing the optimality of the
linear Kalman filter, and hence no minimum-variance based arguments can
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be employed as in the linear case. To form some kind of convenient recursive
form for the filter estimates as (4.8) of the linear case one has to perform
a linearization of some type. But linearization (be it Taylor series based or
statistical) is dependent on the filter estimates to be of any use and so there
are not many quantities that do not depend on the observations. This is a
serious problem, particularly for the error covariance matrix that just has to
be assumed uniformly bounded from above and below. To this day, no one
has been able to perform analysis of its behavior.

Since the filter performance is not anyway optimal, there is no rea-
son not to discard the use of the actual noise covariance matrices Qk

and Rk in the filtering algorithms. In fact, by tuning these matrices
one can often achieve better filter performance (Bolognani et al., 2003;
Xiong et al., 2006), which is not by any means a recent discovery (Ander-
son, 1973; Maybeck, 1979, Section 6.8). Tuning (usually enlargement) of
these matrices in order to achieve stability, with the possible drawback of
deteriorating accuracy, is discussed in several occasions during this section.
By this procedure surprisingly useful, although still difficult to verify, stabil-
ity results are possible. In practice, it is often impossible to determine the
real covariances of the noise terms and hence Qk and Rk often remain out
of necessity mere guesses even in the linear case.

Regrettably, not all stability results for non-linear Kalman filters can be
discussed here, for there exist a body of theory known as contraction theory
(Jouffroy and Fossen, 2010) that utilizes differential geometric arguments to
study stability. Using contraction theory, Maree et al. (2014) have recently
been able to prove some stability results for the UKF.

As the general stability results for approximative non-linear filters began
to appear only in the 1990s, there is not much general literature available
commenting them. This is amplified by the uselessness of the current results
in applications. Some commentary is given by Simon (2006, Section 13.5).

5.3 The Extended Kalman Filter

The extended Kalman filter, obtained by local first-order linearization, is
the standard tool for practical non-linear filtering, having been around since
the 1960s when it was proposed by Stanley Schmidt (Simon, 2006, p. 400).
However, the results on the stability of the EKF have been very lacking,
owing to its highly heuristic nature.

Until recently there have been no results for the EKF in the general
setting of stochastic non-linear systems. Special cases, such as the EKF used
as a parameter estimator for linear systems have been treated (Ljung, 1979;
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Ursin, 1980). These seem to be one of the first stability results concerning
the EKF, given remarks on the absence of such results by Ljung (1979) and
Anderson and Moore (1979, p. 206). The stability of the constant gain EKF
and the modified gain EKF were considered by Safonov and Athans (1978)
and Song and Speyer (1985), respectively. Using the total stability theorem
(Anderson et al., 1986, Section 1.3.2), stability results were obtained by
La Scala et al. (1995) for a system with linear measurement model.

The stability of the EKF as an observer for non-linear deterministic sys-
tems, that is, for systems without any noise, has received relatively much
attention. Baras et al. (1988) constructed observers for continuous-time non-
linear systems with a linear measurement model and provided some stability
results. Song and Grizzle (1992, 1995) were able to prove that the EKF is
a local asymptotic observer for discrete-time non-linear deterministic sys-
tems if the initial estimation error or the non-linearities of the system are
sufficiently small and the system satisfies a non-linear observability rank con-
dition related to that of Theorem 4.8. The most advanced work to this end is
that of Reif and Unbehauen (1999) who proved that the EKF is an exponen-
tial observer, that is, the difference equation for the EKF estimation error
admits an exponentially stable equilibrium at the origin. They do not need
sufficiently small initial estimation error to establish their result which they
achieve by standard results on Lyapunov functions. Krener (2003) showed
by an extension of the methods of Baras et al. (1988) the exponential conver-
gence to zero of the estimation error of the EKF observer for continuous-time
systems with non-linear measurement model.

Reif et al. (1999) were first to prove general results about the stability
of the EKF in the general stochastic case. They proved that the estimation
error is exponentially bounded in mean square and almost surely bounded
(though latter of the claims may not hold given the discussion in Section 3.2).
This they accomplished by using stochastic stability lemma as a substitute
of some variant of deterministic Lyapunov stability theorem, and the one-
step formulation of the EKF equations. However, the practicality of these
results is hindered by the fact that the noise covariance matrices and initial
errors have very conservative bounds and the non-linearities of the dynamic
model and measurement model functions permitted by the result are severely
bounded. Kluge et al. (2010) were able to drop the assumption of additive
noises and consider the general non-linear dynamic model (5.1) using a proof
very similar to that of Reif et al. (1999), but the problem of very conservative
bounds remains even though Rhudy et al. (2012) have been able to relax them
slightly.

It would be interesting to know more closely the exact history behind
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these results, for Reif et al. (1999) was not the first general EKF stabil-
ity results to appear in print. Before it similar results were published in
Unbehauen (1998, Section 6.2) and Reif et al. (1998), both in German.

After a brief introduction of the EKF equations the proof of
Reif et al. (1999) for the boundedness of the EKF estimation error is pre-
sented. Then the same result is presented in terms of a certain non-linear
observability condition, applying the preceding theorem. Finally the gener-
alization of Kluge et al. (2010) to non-additive system is given.

5.3.1 The Extended Kalman Filter Equations

Consider the additive non-linear dynamic system (5.2). As the dynamic
model function f and the measurement model function h are assumed to be
at least once continuously differentiable, a Taylor series based linearization
can be used. Let Fx and Hx denote the Jacobians ∂f/∂x and ∂h/∂x of
the functions f and h with respect to x, respectively, and let Q̂k−1 and R̂k

for k ≥ 1 be some, possibly time-varying, positive-definite matrices. Then
the extended Kalman filter equations are given by the following algorithms.

Algorithm 5.1 (Two-step extended Kalman filter). The two-step extended
Kalman filter equations for the non-linear dynamic system (5.2) consists of
the prediction step

m−k = f(mk−1) ,

P−k = Fx(mk−1)Pk−1F
T
x(mk−1) + Q̂k−1

and the update step

vk = yk − h(m−k ) ,

Sk = Hx(m−k )P−kH
T
x(m−k ) + R̂k ,

Kk = P−kH
T
x(m−k )S−1

k ,

mk = m−k + Kkvk ,

Pk = P−k −KkSkK
T
k .

These equations are obtained by local first-order linearization of f and h

at the latest estimate, which is to be understood as calculating their Ja-
cobians at mk−1 and m−k and using them to approximate these non-linear
functions. Then one just applies the usual linear Kalman filter of Theo-
rem 4.1 on these linear estimates on each step. Therefore, as can readily be
seen, the EKF algorithm is just the usual linear Kalman filter with dynamic
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and measurement model matrices replaced by the Jacobians of the dynamic
model and measurement functions, respectively. A statistical linearization
based derivation can be found in Särkkä (2013, Chapter 5). Other sources,
from the vast number of possibilities, are Jazwinski (1970, Chapter 9) and
Anderson and Moore (1979, Chapter 8).

Of course, one could use a linearization of higher order (assuming of
course the existence of such derivatives of higher order), including more
than the first term of the Taylor series, though this is rarely done. The
second-order EKF (Särkkä, 2013, Algorithm 5.6) is sometimes use, but the
more involved nature of Taylor series in higher dimensions complicates the
use of such enhancements.

The usual choice is to take Q̂k−1 and R̂k to be the covariance matrices of
the noise terms, Q̂k−1 = Qk−1 and R̂k = Rk, but this is not by any means
necessary since the EKF is not an optimal filtering algorithm even to start
with. By choosing these matrices appropriately one can hope to tune the
filter stability and performance.

In dealing with the stability of the EKF the following one-step formula-
tion of the EKF, found for example in Goodwin and Sin (1984, Section 7.7),
will be of use. The practical effectivity of the two-step and one-step algo-
rithms may be different (Ljung, 1979) but the convergence properties are the
same. The use of this one-step formulation somewhat simplifies the inequal-
ities involved in analysis of a Lyapunov function in the proof of Theorem 5.4
(Rapp, 2004, Section 3.2.2), although it is still possible to achieve similar
results with the two-step formulation.

Note that in this algorithm the state and covariance estimates are ob-
tained as estimates to the predicted mean and predicted covariance, but this
poses no problem as the EKF estimates are approximative even to begin
with.

Algorithm 5.2 (One-step extended Kalman filter). The one-step extended
Kalman filter equations for the non-linear dynamic system (5.2) are

mk+1 = f(mk) + Fx(mk)Kk[yk − h(mk)] ,

Pk+1 =Fx(mk)PkF
T
x(mk) + Q̂k

− Fx(mk)Kk[Hx(mk)PkH
T
x(mk) + R̂k]K

T
kF

T
x(mk) ,

(5.4)

where the Kalman gain is

Kk =PkH
T
x(mk)[Hx(mk)PkH

T
x(mk) + R̂k]

−1. (5.5)

Finally, there is an analogous two-step version for the non-additive sys-
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tem (5.3), found in Särkkä (2013, Algorithm 5.5).

Algorithm 5.3 (Non-additive extended Kalman filter). The extended
Kalman filter equations for the non-linear dynamic system (5.1) consist of
the prediction step

m−k = f(mk−1,0) ,

P−k = Fx(mk−1)Pk−1F
T
x(mk−1) + Fq(mk−1)Q̂k−1F

T
q(mk−1)

and the update step

vk = yk − h(m−k ,0) ,

Sk = Hx(m−k )P−kH
T
x(m−k ) + Hr(m

−
k )R̂kH

T
r (m−k ) ,

Kk = P−kH
T
x(m−k )S−1

k ,

mk = m−k + Kkvk ,

Pk = P−k −KkSkK
T
k .

5.3.2 Stability of the Additive EKF

First, the standard result on the EKF stability of Reif et al. (1999) is pre-
sented. Since f and h are continuously differentiable, for any points y and z

in their domains it is possible to write

f(y)− f(z) = Fx(z)(y − z) +ϕϕϕ(y, z) ,

h(y)− h(z) = Hx(z)(y − z) +χχχ(y, z) ,

where the remainder terms of Taylor series ϕϕϕ and χχχ are some, generally
non-linear, functions. For notational convenience, denote Fk = Fx(mk)

and Hk = Hx(mk).
The estimation error ξξξk = xk−mk can be, in the light of Algorithm 5.2,

written recursively as

ξξξk+1 = Fk(I−KkHk)ξξξk + ρρρk + σσσk , (5.6)

where

ρρρk := ϕϕϕ(xk,mk)− FkKkχχχ(xk,mk) , (5.7)

σσσk := qk − FkKkrk .

Theorem 5.4. Consider the discrete-time non-linear dynamic system (5.2)
and the extended Kalman filter of Algorithms 5.1 and 5.2. Suppose that the
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following conditions hold:

(1) There exist f, h, p1, p2, q̂, r̂ > 0 such that the following bounds hold for
every k ≥ 0:

‖Fk‖ ≤ f , ‖Hk‖ ≤ h , (5.8)

p1I ≤ Pk ≤ p2I , (5.9)

q̂I ≤ Q̂k , r̂I ≤ R̂k .

(2) Fk is non-singular for every k ≥ 0.

(3) There exist εϕϕϕ, εχχχ, κϕϕϕ, κχχχ > 0 such that the functions ϕϕϕ and χχχ are
bounded from above by

‖ϕϕϕ(y, z)‖ ≤ κϕϕϕ ‖y − z‖2 ,
‖χχχ(y, z)‖ ≤ κχχχ ‖y − z‖2

(5.10)

for all points y and z in their domains satisfying ‖y − z‖ ≤ εϕ
and ‖y − z‖ ≤ εχ, respectively.

Then there exist ε, δ > 0 such that the conditions ‖ξξξ0‖ ≤ ε and Qk,Rk ≤ δI
guarantee that the estimation error ξξξk is exponentially bounded in mean
square and stochastically bounded.

The proof of this theorem requires three technical lemmas that provide
necessary upper bounds for terms that will in appear the stochastic Lya-
punov function to be constructed. For notational convenience, denote in the
following ΠΠΠk := P−1

k .
Note the resemblance of (5.10) to local Hölder continuity and that the

proofs that follow can be carried out with the exponent 2 on the right-hand
side of these equations replaced by any number on the interval (1, 2].

Lemma 5.5. Under the assumptions of Theorem 5.4 there exists 0 < α < 1

such that

(I−KkHk)
TFT

kΠΠΠk+1Fk(I−KkHk) ≤ (1− α)ΠΠΠk

for all k ≥ 0.

Proof. (Reif et al., 1999, Lemma 3.1) From the one-step EKF equations of
Algorithm 5.2 it follows that

Pk+1 = FkPkF
T
k + Q̂k − FkPkH

T
kK

T
kF

T
k ,
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which can be rearranged to

Pk+1 = Fk(I−KkHk)Pk(I−KkHk)
TFT

k + Q̂k

+ FkKkHkPk(I−KkHk)
TFT

k .
(5.11)

First, it will be shown that the last term in this equation is positive-
semidefinite. This amounts to showing thatKkHkPk(I−KkHk)

T is positive-
semidefinite. By the definition of the gain matrix and the matrix inversion
lemma

KkHkPk(I−KkHk)
T

= PkH
T
k (HkPkH

T
k + R̂k)

−1Hk[Pk −PkH
T
k (HkPkH

T
k + R̂k)

−1HkPk]
T

= PkH
T
k (HkPkH

T
k + R̂k)

−1Hk(P
−1
k + HT

k R̂
−1
k Hk)

−T

= (P−1
k + HT

k R̂
−1
k Hk)

−1HT
k R̂
−1
k Hk(P

−1
k + HT

k R̂
−1
k Hk)

−T,

which is positive-semidefinite since R̂k has been assumed positive-definite.
Therefore

Pk+1 ≥ Fk(I−KkHk)Pk(I−KkHk)
TFT

k + Q̂k . (5.12)

Now, from the non-singularity of Fk and the matrix inversion lemma it
can be seen that Fk(I−KkHk) is non-singular. Hence (5.12) can be written
as

Pk+1 ≥ (Fk − FkKkHk)[Pk + (Fk − FkKkHk)
−1Q̂k(Fk − FkKkHk)

−T]

× (Fk − FkKkHk)
T.

From the various boundedness assumptions then follows that

Pk+1 ≥ Fk(I−KkHk)

(
Pk +

q̂

(f + fp2h2/r̂)2
I

)
(I−KkHk)

TFT
k .

Taking inverses of the both sides and multiplying from left by Fk(I−KkHk)

and from right by (I−KkHk)
TFT

k yields

(I−KkHk)
TFT

kΠΠΠk+1Fk(I−KkHk) ≤
(

1 +
q̂

p2(f + fp2h2/r̂)2

)−1

and so the claim is obtained by setting

1− α =

(
1 +

q̂

p2(f + fp2h2/r̂)2

)−1

. (5.13)
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Only in the proof of the preceding lemma is the non-singularity of the
Jacobians Fk of the dynamic model function f exploited. The part of the
proof where it is shown that the last term of (5.11) is positive-semidefinite has
been streamlined a bit. Also, the proof given by Reif et al. (1999) seems to
contain certain manipulations of positive-semidefinite matrices that cannot
be justified. Here these manipulations have been replaced by a rigorous
argument.

Lemma 5.6. Under the assumptions of Theorem 5.4 there exist ε′, κnonl > 0

such that
ρρρTkΠΠΠk+1[2Fk(I−KkHk)ξξξk + ρρρk] ≤ κnonl ‖ξξξk‖3 (5.14)

when ‖ξξξk‖ ≤ ε′.

Proof. (Reif et al., 1999, Lemma 3.2) From the assumptions and the defini-
tion of Kk it follows that ‖Kk‖ ≤ p2h/r̂. So, (5.7) yields the bound

‖ρρρk‖ ≤ ‖ϕϕϕ(xk,mk)‖+
fp2h

r̂
‖χχχ(xk,mk)‖

and with the choice ε′ = min(εϕϕϕ, εχχχ) it follows that

‖ρρρk‖ ≤ κϕϕϕ ‖ξξξk‖2 +
fp2h

r̂
κχχχ ‖ξξξk‖2 := κ′ ‖ξξξk‖2

for ‖ξξξk‖ ≤ ε′. Taking the norm of the left-hand side of (5.14), it can be
concluded that for ‖ξξξk‖ ≤ ε′ holds the inequality

ρρρTkΠΠΠk+1[2Fk(I−KkHk)ξξξk + ρρρk]

≤ 2 ‖ρρρTkΠΠΠk+1Fk(I−KkHk)ξξξk‖+ ‖ρρρTkΠΠΠk+1ρρρk‖

≤ 2 ‖ρρρk‖ ‖ΠΠΠk+1Fk(I−KkHk)‖ ‖ξξξk‖+
1

p1
‖ρρρk‖2

≤ 2κ′ ‖ξξξk‖3
(
f +

fp2h
2

p1r̂

)
+

1

p1
(κ′)2ε′ ‖ξξξk‖3

= κnonl ‖ξξξk‖3 ,

where

κnonl = κ′
1

p1


2

(
f +

fp2h
2

p1r̂

)
+ κ′ε′


 . (5.15)
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Lemma 5.7. Under the assumptions of Theorem 5.4 there exists κnoise > 0,
independent of δ, such that

E(σσσTkΠΠΠk+1σσσk) ≤ κnoiseδ

for all k ≥ 0.

Proof. (Reif et al., 1999, Lemma 3.3) Since the noise terms are uncorrelated
all the cross-terms vanish in

E(σσσTkΠΠΠk+1σσσk) = E(qT
kΠΠΠk+1qk) + E(rTkK

T
kF

T
kΠΠΠk+1FkKkrk).

As in the proof of the preceeding lemma, ‖Kk‖ ≤ p2h/r̂ so that

E(σσσTkΠΠΠk+1σσσk) ≤
1

p1
E(qT

kqk) +
f2h2p2

2

p1r̂2
E(rTk rk).

Because both sides of this inequality are scalars, taking trace changes nothing
and using the properties of trace it follows that

E(σσσTkΠΠΠk+1σσσk) ≤
1

p1
E[tr(qT

kqk)] +
f2h2p2

2

p1r̂2
E[tr(rTk rk)]

=
1

p1
E[tr(qkq

T
k )] +

f2h2p2
2

p1r̂2
E[tr(rkr

T
k )]

=
1

p1
E(trQk) +

f2h2p2
2

p1r̂2
E(trRk)

≤ 1

p1
δE(tr In) +

f2h2p2
2

p1r̂2
δE(tr Im)

=

(
n

p1
+
f2h2p2

2m

p1r̂2

)
δ ,

which is the claim with

κnoise :=

(
n

p1
+
f2h2p2

2m

p1r̂2

)
. (5.16)

Proof of Theorem 5.4. (Reif et al., 1999, Theorem 3.1) The idea of the proof
is to construct a suitable stochastic Lyapunov function to meet the conditions
of Lemma 3.8. Choose a stochastic Lyapunov function

Vk(ξξξk) = ξξξTkΠΠΠkξξξk
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and note that ξξξk satisfies the Markov property. From (5.9) follow the bounds

1

p2
‖ξξξk‖2 ≤ Vk(ξξξk) ≤

1

p1
‖ξξξk‖2 (5.17)

so the condition (3.5) of Lemma 3.8 is met. Condition (3.4) is a bit trickier to
meet, requiring as it does the bounds of Lemmas 5.5 to 5.7. Equation (5.6)
yields

Vk+1(ξξξk+1) = [ξξξTk (I−KkHk)
TFT

k +ρρρTk +σσσTk ]ΠΠΠk+1[Fk(I−KkHk)ξξξk+ρρρk+σσσk]

and by appying Lemma 5.5 one obtains

Vk+1(ξξξk+1) ≤ (1− α)Vk(ξξξk) + ρρρTkΠΠΠk+1[2Fk(I−KkHk)ξξξk + ρρρk]

+ 2σσσTkΠΠΠk+1[Fk(I−KkHk)ξξξk + ρρρk] + σσσTkΠΠΠk+1σσσk .
(5.18)

Taking conditional expectation with respect to ξξξk and using Lemmas 5.6
and 5.7 yields

E[Vk+1(ξξξk+1) | ξξξk]− Vk(ξξξk) ≤ −αVk(ξξξk) + κnonl ‖ξξξk‖3 + κnoiseδ (5.19)

for ‖ξξξk‖ ≤ ε′ = min(εϕϕϕ, εχχχ). The term 2σσσTkΠΠΠk+1[Fk(I − KkHk)ξξξk + ρρρk]

in (5.18) vanishes under conditional expectation since the noise terms are
independent of ξξξk and ρρρk as well as the matrices Fk,Kk and Hk. Defining

ε := min

(
ε′,

α

2p2κnonl

)
, (5.20)

one has for ‖ξξξk‖ ≤ ε by (5.17) that

κnonl ‖ξξξk‖ ‖ξξξk‖2 ≤
α

2p2
‖ξξξk‖2 ≤

α

2
Vk(ξξξk) .

Using this in (5.19) one obtains the inequality

E[Vk+1(ξξξk+1) | ξξξk]− Vk(ξξξk) ≤ κnoiseδ −
α

2
Vk(ξξξk) (5.21)

for ‖ξξξk‖ ≤ ε. Now, choosing

δ =
αε̃2

2p2κnoise
(5.22)
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for some ε̃ < ε one has for ε̃ ≤‖ξξξk‖ ≤ ε the supermartingale inequality

E[Vk+1(ξξξk+1) | ξξξk]− Vk(ξξξk) ≤ κnoiseδ −
α

2
Vk(ξξξk)

≤ α

2p2
‖ξξξk‖2 −

α

2
Vk(ξξξk) ≤ 0

so as to keep the estimation error bounded for all k (Gard, 1988, Theo-
rem 5.2). Thus Lemma 3.8 can be applied when ‖ξξξ0‖ ≤ ε.

Of course, nothing can be said about the bounds (5.8) and (5.9) before the
filter is being run. Therefore, it should be understood that the state estimates
produced by the filter can be regarded as reliable ones in the sense of the this
theorem if the numerically calculated values for Fk,Hk and Pk during the
estimation process remain bounded. Of course, one can never be certain that
they will always remain uniformly bounded and thus whether or not the filter
will begin to diverge at some point in the future. So, applicability of this
theorem is very limited as one possesses no means of ensuring the uniform
boundedness of these matrices beforehand. Particularly problematic is the
assumption (5.9) on the bounds for Pk since the boundedness of this matrix
is intrisically connected with stability properties as was seen in the linear
case where the least trivial part was the verification of the existence of such
bounds under uniform detectability assumption in Lemma 4.13.

It is of importance for applying and testing the theorem numerically and
for analyzing the relationships of values of different parameters and bounds
that Equations (5.20) and (5.22) contain explicit formulas for estimating ε
and δ. As will be seen in Section 5.3.5, these estimates tend to be very
conservative, meaning that the estimation error does not seem to diverge
even with considerably larger initial estimation error and noise terms than
permitted by the theorem. This is yet another reason for the small practical
value of the theorem.

Even though the bounds are very conservative, the practical utility of
enlarging Q̂k and R̂k is foreshadowed in that with these matrices enlarged q̂
and r̂ can be chosen larger, which through (5.13), (5.15) and (5.16) implies
larger — though still extremely conservative — ε and δ if εϕϕϕ and εχχχ, influ-
encing ε and δ through (5.20) and (5.22) and dependent on the degree of
non-linearity of f and h, can be chose arbitrarily large. However, as noted
in Ford and Coulter (2001) and Ford (2002), where the EKF stability is
discussed in the context of a military precision guidance problem, the en-
largement of the noise covariance matrices comes with the cost of degraded
filter accuracy. The tuning of the covariance matrices will be discussed with
more length in Section 5.4.5, general theme of which also applies to this
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theorem.
Some improvement has been achieved by Rhudy et al. (2012) who con-

sider the EKF in an aircraft attitude estimation problem and are able to
relax the bounds for ε and δ, albeit the bounds still remain too strict for this
to be a noteworthy improvement. This relaxation of bounds is not limited
to the specific application of theirs.

5.3.3 Role of Non-Linear Stability Rank Condition

Reif et al. (1999) also present a theorem linking the non-linear observabil-
ity rank condition (Nijmeijer, 1982), a certain block matrix rank condition
analogous to that of Theorem 4.8, to the stability of the EKF. They consider
only an autonomous version of (5.2) without process noise, namely

xk = f(xk−1) ,

yk = h(xk) + rk .
(5.23)

However, a generalization of the following theorem to additive system
with process noise is easily made, but with a very restrictive additional as-
sumption.

Definition 5.8. The discrete-time non-linear dynamic system (5.2) (or the
pair [Fk,Hk]) is said to satisfy the non-linear observability rank condition
at xk ∈ Rn if the non-linear observability matrix

U(xk) :=




∂h
∂x (xk)

∂h
∂x (xk+1) ∂f∂x(xk)

...
∂h
∂x (xk+n−1) ∂f∂x(xk+n−2) · · · ∂f∂x(xk)




has rank n.

Theorem 5.9. Consider the non-linear autonomous dynamic system (5.23)
and the extended Kalman filter of Algorithms 5.1 and 5.2. Suppose that there
are r̂, q̂ > 0 such that

q̂I ≤ Q̂k ,

r̂I ≤ R̂k

(5.24)

for all k ≥ 0 and a compact set K ⊂ Rn such that the following conditions
hold:
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(1) The system (5.23) satisfies the non-linear observability rank condition
for every xk ∈ K.

(2) The functions f and h are twice continuously differentiable and the
Jacobian of f is non-zero in every point of K.

(3) The sample paths of xk are almost surely bounded and K contains
the εK-neighbourhoods of such sample paths, where εK is some positive
real number independent of k.

Then there exist ε, δ > 0 such that the conditions ‖ξξξ0‖ ≤ ε and Rk ≤ δI guar-
antee that the estimation error ξξξk is exponentially bounded in mean square
and stochastically bounded.

Observe that (5.24) implies that Q̂k must be positive-definite, although
under consideration is an autonomous system without process noise. There-
fore in applying this theorem it is not even possible to choose Q̂k = Qk.
Only a brief outline of the proof is presented here. For this, the following
lemma of Song and Grizzle (1995) is needed.

Lemma 5.10. Suppose that the non-linear autonomous system (5.23) satis-
fies the non-linear observability rank condition for every xk in a compact
subset K of Rn satisfying Assumption (3) of Theorem 5.9. Then there
exists εobs > 0 such that the pair [Fk,Hk] is uniformly observable, given
that ‖xk −mk‖ ≤ εobs.

Proof. (Song and Grizzle, 1995, Proposition 4.1) Consider a continuous func-
tion J : K → Rn×n defined by setting J(x) = U(x)TU(x), that is, J(xk)

is the observability Gramian associated with the pair [Fk,Hk]. Since K
is compact, J is uniformly continuous, and thus for every δ > 0 there ex-
ists 0 < ε ≤ εK such that ‖J(xk)− J(mk)‖ ≤ δ when ‖xk −mk‖ ≤ ε. Defin-
ing α1 := infx0∈K λmin[J(xk)] and α2 := infx0∈K λmax[J(xk)] and choos-
ing δ = α1/2, it follows that

α1

2
I ≤ J(mk) ≤

(
α2 +

α1

2

)
I

whenever ‖xk −mk‖ ≤ εobs for some sufficiently small 0 < εobs ≤ εK .

With this lemma, an outline of the proof is plausible.

Proof of Theorem 5.9. (Reif et al., 1999, Theorem 4.1) Assumption (3) im-
plies that [Fk,Hk] satisfies the non-linear observability rank condition by
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Lemma 5.10. Therefore it follows from results in Sections 4.4 and 4.5
that (5.9) holds.

Functions f and h being twice differentiable in a compact K, their Taylor
series can be used to estimate upper bounds for ϕϕϕ and χχχ (Nikolsky, 1977,
Section 7.13; Hauser, 2004, Section 168). This yields values

κϕϕϕ = max
1≤i≤n

sup
x∈K
‖Hess[fi(x)]‖ ,

κχχχ = max
1≤i≤m

sup
x∈K
‖Hess[hi(x)]‖

(5.25)

for (5.10). These formulas can always be used to obtain values for κϕϕϕ and
κχχχ in this kind of a setting.

The remaining bounds follow by a certain inductive argument similar
to that in Song and Grizzle (1995) that links together the boundedness
of Fk,Hk and Pk to that of ξξξk, allowing one to apply Theorem 5.4 with

ε = min

(
εobs, ε

′,
α

2p2κnonl

)
.

The proof of Lemma 5.10 is the only part in the proof of Theorem 5.9
where the assumption of autonomous system state equation is needed. The
introduction of noise could easily cause disturbances big enough to cast xk
out of K. The situation can be fixed by requiring the solution x̃k of the
non-autonomous system (5.2) to remain close enough to the solution xk
of the autonomous system. That is, ‖xk − x̃k‖ ≤ εq for some sufficiently
small εq > 0. However, this is a very restrictive assumption. The proof of
Lemma 5.10 can be then modified by using the triangle inequality

‖xk −mk‖ ≤ ‖xk − x̃k‖+ ‖x̃k −mk‖ .

5.3.4 Stability of the Non-Additive EKF

A slight generalization, both in terms of applying to a larger class of dynamic
systems and in relaxing the assumptions, of Theorem 5.4 is achieved by Kluge
et al. (2010) who consider a general non-linear dynamic system (5.1). They
are able to drop Assumption (2) of Theorem 5.4, that is, the non-singularity
of the Jacobians of the system model function. They also allow observations
to be intermittent, following Sinopoli et al. (2004) who have considered the
stability of the time-invariant Kalman filter with intermittent observations.
Here this property is ignored.

Therefore, ignoring the possibility of intermittent observations, one has
the following, currently the most general, theorem on the stability of the
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EKF. In proving this theorem, the two-step formulation of Algorithm 5.3 for
the non-additive EKF is used. However, this introduces some complications
as it is not anymore possible to use conditional expecations due to depen-
dencies inherent to the two-step EKF. Also, instead of the usual Euclidean
norm of, the L2 norm (denoted by ‖·‖2) is used.

The functions f and h in (5.1) are assumed to be continuously differen-
tiable with respect to their first argument in Rn × {0}. For their various
derivatives the following notation is used:

Fk =
∂f

∂x
(mk,0) , Hk =

∂h

∂x
(m−k ,0) ,

Gk =
∂f

∂q
(mk,0) , Dk =

∂h

∂r
(m−k ,0) .

Furthermore, in addition to the estimation error ξξξk, also the predicted esti-
mation error ξξξ−k = xk −m−k is made use of. Using Taylor expansions of f
and h at (mk,0) it is possible to write

f(xk,qk) = f(mk,0) + Fk(xk −mk) + Gkqk +ϕϕϕ(xk,mk,qk) ,

h(xk, rk) = h(m−k ,0) + Hk(xk −m−k ) + Dkrk +χχχ(xk,m
−
k , rk) ,

where ϕϕϕ and χχχ are the remainder functions. Using these expansions and the
non-additive extended Kalman filter of Algorithm 5.3 the estimation errors
can be expressed recursively as

ξξξk = (I−KkHk)ξξξ
−
k −KkDkrk −Kkχχχ(xk,m

−
k , rk) ,

ξξξ−k+1 = Fk(I−KkHk)ξξξ
−
k + ρρρk + σσσk , (5.26)

where

ρρρk = ϕϕϕ(xk,mk,qk)− FkKkχχχ(xk,m
−
k , rk) ,

σσσk = Gkqk − FkKkDkrk .

Theorem 5.11. Consider the non-linear dynamic system (5.1) and the ex-
tended Kalman filter of Algorithm 5.3. Suppose that the following conditions
hold:
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(1) There exist f, g, h, d, q̂1, q̂2, r̂1, r̂2, p1, p2 > 0 such that

‖Fk‖ ≤ f , ‖Gk‖ ≤ g , ‖Hk‖ ≤ h , ‖Dk‖ ≤ d ,
q̂1I ≤ Q̂k ≤ q̂2I , r̂1I ≤ R̂k ≤ r̂2I ,

p1I ≤ Pk ≤ P−k ≤ p2I

for all k ≥ 0.

(2) For all εϕϕϕ, εχχχ > 0 there are κϕϕϕ, κχχχ > 0 such that if ‖xk −mk‖2 < εϕϕϕ
and ‖xk −m−k ‖2 < εχχχ, respectively, then

‖ϕϕϕ(xk,mk,qk)‖2 ≤ κϕϕϕ ‖xk −mk‖22 ,
‖χχχ(xk,m

−
k , rk)‖2 ≤ κχχχ ‖xk −m−k ‖

2

2
.

Then there exist ε, δ > 0 such that the conditions ‖ξξξ−1 ‖2 ≤ ε and Qk,Rk ≤ δI
guarantee that the predicted estimation error ξξξ−k is exponentially bounded in
mean square and stochastically bounded.

Proof. (Unbehauen, 1998, Satz IX.9; Kluge et al., 2010, Theorem 3.2) Denote
ΠΠΠk = (P−k )−1 and define a stochastic Lyapunov function by

Vk(ξξξ
−
k ) = (ξξξ−k )TΠΠΠkξξξ

−
k .

Then if follows from (5.26) that

Vk+1(ξξξ−k+1) = (ξξξ−k )T(I−KkHk)
TFT

kΠΠΠk+1Fk(I−KkHk)ξξξ
−
k

+ ρρρTkΠΠΠk+1[2Fk(I−KkHk)ξξξ
−
k + ρρρk]

+ 2σσσTkΠΠΠk+1[Fk(I−KkHk)ξξξ
−
k + ρρρk] + σσσTkΠΠΠk+1σσσk .

Because
P−k+1 = FkPkF

T
k + Q̂k >

(
1 +

q̂1

2f2p2

)
FkPkF

T
k

and the error covariance matrix Pk can be manipulated into

Pk = (I−KkHk)P
−
k (I−KkHk)

T + KkDkR̂kD
T
kK

T
k ,

it follows that

Pk+1 ≥
(

1 +
q̂1

2f2p2

)
Fk(I−KkHk)P

−
k (I−KkHk)

TFT
k



5 Stability of Non-Linear Kalman Filters 58

on which Lemma A.2 can be utilized to yield

(I−KkHk)F
T
kΠΠΠk+1Fk(I−KkHk) ≤ (1− α)ΠΠΠk ,

where
0 < α =

q̂2

2f2p2 + q̂2
< 1 .

As opposed to the proof of Theorem 5.4, the non-singularity of Fk is not
needed this time.

Thus one has

Vk+1(ξξξ−k+1) ≤ (1− α)Vk(ξξξ
−
k ) + ρρρTkΠΠΠk+1[2Fk(I−KkHk)ξξξ

−
k + ρρρk]

+ 2σσσTkΠΠΠk+1[Fk(I−KkHk)ξξξ
−
k + ρρρk] + σσσTkΠΠΠk+1σσσk ,

which is analogous to (5.18). From this point one can proceed by taking the
expectation and using results similar to Lemmas 5.6 and 5.7 to obtain an in-
equality similar to (5.21). Then the exponential boundedness in mean square
and stochastic boundedness can be concluded as in the proof of Lemma 3.8.
This has been carried out detailedly in Unbehauen (1998, Satz IX.9), regret-
tably in German, though.

5.3.5 Numerical Simulations

This section briefly examines the effect of covariance matrix tuning on the
maximum initial estimation error of the EKF numerically. This approach is
adopted because basic stability simulations have already been carried out in
the literature. The system for which simulations are carried out is the non-
linear system apparently first investigated by Reif et al. (1999). As such, this
system has become somewhat a standard in demonstrating the stability of
the EKF and the UKF. Such numerical simulations have already been carried
out in Rapp and Nyman (2005); Xiong et al. (2006); Dymirkovsky (2012) and
Li and Xia (2012).

Consider the system (5.2) with the system and measurement model func-
tions given by

f(xk) =

(
x1,k + τx2,k

x2,k + τ [−x1,k + (x2
1,k + x2

2,k − 1)x2,k]

)
,

h(xk) = xk ,

(5.27)

where x1,k and x2,k are the components of xk and τ = 10−3. The components
of this system are plotted with 10,000 time-steps in Figure 5.1. Noise enters
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Figure 5.1: On the left are plotted the trajectories of the components of the system with (5.27)
without process noise. On the right, with process and measurement noise, are x2,k and its EKF
estimate with Q̂k−1 = τI and R̂k = τ−1I. The initial estimate is m0 = (2, 2), giving ‖ξξξ0‖ = 2.16.
MSE of the estimation error in x2,k is 0.0041 and after 500th time-step 0.0011. Time-steps on the
x-axis are in thousands.

the system additively with Qk−1 = 0.01I and Rk = I. The initial system
state is taken to be x0 = (0.8, 0.2) and initial error covariance P0 = I.

Reif et al. (1999) were able to calculate bounds for the initial esti-
mation error and the noise covariance matrices as permitted by Theo-
rem 5.4. For Q̂k−1 = τI and R̂k = τ−1I the stability is guaranteed only
when ‖ξξξ0‖ ≤ 5 · 10−3 and Qk−1,Rk ≤ 10−10I. These are very strict bounds,
given that even with the noise covariances of the preceding paragraph and an
initial estimation error of significantly greater magnitude there is no problem
of filter divergence as evidenced by Figure 5.1.

In particular, the interest is here in examining how tuning the noise
covariance matrices Q̂k−1 and R̂k affects the magnitude of possible initial
estimation error and the filter accuracy. First, the effect of enlarging the ma-
trix Q̂k in the EKF algorithm on the upper bound for the initial estimation
error ξξξ0 is tested, taking R̂k = τ−1I. The result for a particular noise realiza-
tion is given in Figure 5.2 (p. 60) with Q̂k−1 ranging from 10−3I to 5I. The
increasing MSE renders the filter rather useless for large initial estimation
error, suggesting decreasing the magnitude of Q̂k−1 after the large initial
estimation error has been eliminated. The matrix R̂k has an opposite effect
for this model, contradicting the theoretical results of the preceding section.
Fixing Q̂k−1 = 0.01I, Figure 5.3 (p. 60) shows that reducing the size of R̂k

leads to larger maximum initial estimation error. It is not clear what causes
this phenomenon. Overally, the effect on the MSE is a bit mixed. The un-
satisfactory behavior of the filter estimate is illustrated in Figure 5.4 (p. 61).
Also illustrated is an improvement obtained when letting Q̂k−1 → Qk−1 as
k increases. This approach is more detailedly described in Section 5.4.5.
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Figure 5.2: Plot of the effect of enlarging Q̂k−1 = aI from 10−3I to 5I to the maximum of
the initial estimate m0 = (b, b) such that the estimation error remains bounded for the system
with (5.27). On the x-axis is a. On the y-axis the blue plot is b and the red is the MSE of the
estimates with m0 = (b, b) and Q̂k−1 = bI. The MSE is calculated from 500th time-step so as to
not let large initial estimation error skew it too much.
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Figure 5.3: Plot of the effect of enlarging R̂k = aI from I to 1000I to the maximum of the initial
estimate m0 = (b, b) such that the estimation error remains bounded for the system with (5.27).
On the x-axis is a. On the y-axis the blue plot is b and the red is the MSE of the estimates with
m0 = (b, b) and R̂k = bI, calculated again from 500th time-step. The rapid growth of b continues
when approaching zero covariance matrix, for R̂k = I one has b = 623. The remarks for Figure 5.2
apply to these plots too.
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Figure 5.4: On the left is the EKF estimate of x2,k of the system with (5.27) when Q̂k−1 = 3I,
R̂k = τ−1I and m0 = (82, 82). On the right is an estimate in the same situation but with
Q̂k−1 = Qk−1 + 10Pk−1e

−(k−1). As can be seen, the first estimate fluctuates rapidly and its
MSE after the 500th time-step is 0.0246, whereas in the second case this MSE is 0.0013. Time-steps
on the x-axis are in thousands.

5.4 Gaussian Filters and the Unscented Kalman Filter

The unscented Kalman filter was introduced by Julier et al. (1995) as an
alternative to the EKF for non-linear filtering problems. The UKF employs
the unscented transform (UT) which is a method for calculating the mean
and covariance of a non-linearly transformed Gaussian distribution. The
UT is based on propagating through the non-linearity a finite number of
deterministically chosen sigma points that capture the original mean and
covariance, resulting thus to an approximation of the mean and covariance
of the transformed distribution. As the UKF is not based on a linearization
by Taylor series, the evaluation of Jacobian matrices, prone to error, need
not be done. The approximated mean generated by the UT agrees with the
true mean up to the third order, whereas the linearization used in the EKF
is accurate only up to the first order (Simon, 2006, Section 14.2.1). This
usually leads to improved accuracy (Julier et al., 2000; Ristic et al., 2003) of
the UKF over the EKF. The UT and linearization both yield approximated
covariances correct up to the third order but the UT can be expected to
introduce less error in terms of higher order (Simon, 2006, Section 14.2.2).

It did not take long for Ito and Xiong (2000) to remark that the UKF
belongs to a wider class of Gaussian filters. These filters are based on
Gaussian density approximations to the prediction and filtering densities
and encompass a large number of different filters (Nørgaard et al., 2000;
Wu et al., 2006).

Xiong et al. (2006, 2007a) were the first to derive stability results for the
UKF. The more useful results of Xiong et al. (2006) concerned a non-linear



5 Stability of Non-Linear Kalman Filters 62

system with linear measurement model and were soon observed to extend
with virtually no modifications for Gaussian filters also (Wu et al., 2007;
Xiong et al., 2007b). In the latter paper a theorem from Xiong (2006) was
presented, giving conditions for the stability of a limited class of Gaussian
filters for non-linear systems with measurement model also non-linear. An
accessible proof of this theorem was finally given in Xiong et al. (2009a).
Li and Xia (2012) extended this in the case of the UKF to the scenario of
intermittent observations and provide a different proof. The assumptions of
these theorems are mainly upper and lower bounds for certain the residual-
correcting random matrices introduced and implicitly contain the require-
ment of sufficiently small initial estimation error. However, as opposed to
the results for the EKF, the proofs indicate no quantitative bounds for the
required initial estimation error or the mean square estimation error.

All results on the stability of the UKF and Gaussian filters are based on
the similar use of Lemma 3.8 as those involving the EKF. However, since
it is not generally possible to obtain a simple recursive expression similar
to (5.6), one is forced to introduce random diagonal matrices to transform
a first-order Taylor series based recursive approximation for the estimation
error into an equation, that is, correcting the residuals in this first-order
approximation. This approach originated in Boutayeb et al. (1997) and
Boutayeb and Aubry (1999) where it was used to prove certain stability re-
sults for the EKF as an observer for deterministic non-linear systems.

The main contribution of this stability analysis has not been an introduc-
tion of easily verifiable conditions for stability or the strength of the stability
results so obtained. Rather, the most important achievement seems to have
been showing that by tuning the noise covariance matrices stability may be
induced even with considerable initial estimation error. This aspect is also
present in the stability results for the EKF, as remarked, although this is not
explicitly made clear by Reif et al. (1999) and Kluge et al. (2010). As the
proofs provide no quantitative bounds and the verification of assumptions
is exceptionally hard, the stability analysis of the UKF and Gaussian filters
remains very qualitative in nature.

Because the most general proofs given by Xiong et al. (2009a) and
Li and Xia (2012) contain some errors, the main stability theorem as well
as its proof presented here are somewhat modified from what has been pub-
lished previously. In addition to these theorems some discussion is given
concerning the effect of covariance matrix tuning.



5 Stability of Non-Linear Kalman Filters 63

5.4.1 Gaussian Filter Equations

The idea of Gaussian filters is to assume that the filtering and predic-
tion distributions p(xk | y1:k) and p(xk | y1:k−1) are Gaussian and use
moment matching to approximate the non-linearly transformed densities
(Särkkä, 2013, Chapter 6). The matrices are Q̂k−1 and R̂k are again some
time-varying symmetric positive-definite matrices as with the EKF.

Algorithm 5.12 (Gaussian filter). Gaussian filter computes Gaussian ap-
proximations to the prediction and filtering distributions of a non-linear
dynamic system (5.2). The prediction distribution (2.2) is approximated
by N (m−k ,P

−
k ) and the filtering distribution (2.1) by N (mk,Pk). The pa-

rameters of these Gaussian distributions are computed by the prediction step

m−k =

∫

Rn

f(xk−1)N (xk−1 |mk−1,Pk−1) dxk−1 , (5.28)

P−k =

∫

Rn

[f(xk−1)−m−k ][f(xk−1)−m−k ]T (5.29)

×N (xk−1 |mk−1,Pk−1) dxk−1 + Q̂k−1

and the update step

µµµk =

∫

Rn

h(xk)N (xk |m−k ,P−k ) dxk , (5.30)

Sk =

∫

Rn

[h(xk)−µµµk][h(xk)−µµµk]TN (xk |m−k ,P−k ) dxk + R̂k ,

Ck =

∫

Rn

[xk −m−k ][h(xk)−µµµk]TN (xk |m−k ,P−k ) dxk ,

Kk = CkS
−1
k ,

mk = m−k + Kk(yk −µµµk) ,
Pk = P−k −KkSkK

T
k .

The above general Gaussian filter algorithm is not a practical solu-
tion to the non-linear filtering problem as it is in many cases impossible
to evaluate the integrals in closed form. Luckily, there are several effi-
cient numerical methods for computing the integrals that include powerful
methods of Gauss–Hermite integration and spherical cubature integration
(Särkkä, 2013, Sections 6.4 and 6.5).
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5.4.2 The Unscented Kalman Filter Equations

Next, the equations constituting the unscented Kalman filter are presented
although their exact form is of little importance to the stability analysis to
be carried out. In the UKF the unscented transform is used to approximate
the five integrals whose computation is a prerequisite in using the Gaussian
filter. In the unscented transform this approximation is done by selecting a
set of deterministically chosen sigma points that are then propagated through
the non-linear transformation. After this, the required approximate means
and covariances are calculated as a weighted sums of the transformed sigma
points.

Algorithm 5.13 (Unscented Kalman filter). The unscented Kalman filter
equations for the non-linear dynamic system (5.2) start with the prediction
step:

(1) Form the sigma points XXX (j)
k−1 for j = 0, 1, . . . , 2n:

XXX (0)
k−1 = mk−1 ,

XXX (i)
k−1 = mk−1 +

√
n+ λ

[√
Pk−1

]
i
,

XXX (i+n)
k−1 = mk−1 −

√
n+ λ

[√
Pk−1

]
i
,

where i = 1, 2, . . . , n and
[√

Pk−1

]
i
is the ith column of the square root

of the matrix Pk−1. The scalar λ is a scaling parameter determining
the spread of sigma points around the mean.

(2) Propagate the sigma points through the dynamic model:

X̂XX (i)
k = f

(
XXX (i)
k−1)

for i = 0, 1, . . . , 2n.

(3) Compute the predicted mean m−k and the predicted covariance P−k :

m−k =

2n∑

i=0

W
(m)
i X̂XX (i)

k ,

P−k =

2n∑

i=0

W
(c)
i

(
X̂XX (i)
k −m−k

)(
X̂XX (i)
k −m−k

)T
+ Q̂k−1 , (5.31)

where W (m)
i and W (c)

i are suitably selected scalar weights.
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After prediction, the update step is performed:

(1) Form the sigma points:

XXX−(0)
k = m−k ,

XXX−(i)
k = m−k +

√
n+ λ

[√
Pk−1

]
i
,

XXX−(i+n)
k = m−k −

√
n+ λ

[√
Pk−1

]
i
,

where i = 1, 2, . . . , n.

(2) Propagate the sigma points through the measurement model:

ŶYY(i)
k = h

(
XXX−(i)
k

)

for i = 0, 1, . . . , 2n.

(3) Compute the predicted mean µµµk, the covariance of the innovation Sk
and the cross-covariance of the state and the measurement Ck:

µµµk =
2n∑

i=0

W
(m)
i ŶYY(i)

k ,

Sk =
2n∑

i=0

W
(c)
i

(
ŶYY(i)
k −µµµk

)(
ŶYY(i)
k −µµµk

)T
+ R̂k , (5.32)

Ck =

2n∑

i=0

W
(c)
i

(
XXX−(i)
k −m−k

)(
ŶYY(i)
k −µµµk

)T
. (5.33)

(4) Compute the filter gain Kk, the filtered state mean estimate mk and
the error covariance Pk:

Kk = CkS
−1
k , (5.34)

mk = m−k + Kk(yk −µµµk) ,
Pk = P−k −KkSkK

T
k . (5.35)

The algorithm, including the exact form of the parameter λ and
weights W (m)

i and W
(c)
i , can be found in Wan and van der Merwe (2001);

Julier and Uhlmann (2004, Chapter 5) and Särkkä (2013). A detailed and
instructive treatment is in Simon (2006, Chapter 14). Computational needs
can be lessened with sacrificed accuracy by reusing the sigma points gener-
ated in the prediction step instead of generating new in the beginning of the
update step.
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5.4.3 Stability of the UKF

Consider the additive non-linear discrete-time system (5.2). As assumed, f
and h are continuously differentiable. The classical approach is to use Taylor
series to form a first-order approximation of the innovation vk := yk − µµµk
and the predicted estimation error ξξξ−k+1 as

ξξξ−k+1 ≈ Fkξξξk + qk ,

vk ≈ Hkξξξ
−
k + rk ,

where Fk is the Jacobian of f evaluated at mk and Hk is the Jacobian
of h evaluated at m−k . There exist residuals of ξξξ−k and vk, the magnitude
of which depends on the validity of the local first-order linearization about
the given point and the non-linearities of the functions. As such, these
approximations cannot be used in any rigorous treatment of the boundedness
of the estimation error. However, following the approach demonstrated in
Boutayeb et al. (1997) and Boutayeb and Aubry (1999), this problem can
be circumvented and a qualitative analysis performed. The residuals can
be taken into account and an equality obtained by introducing unknown
random diagonal matrices ΓΓΓk and Zk such that

ξξξ−k+1 = ΓΓΓkFkξξξk + qk , (5.36)

vk = ZkHkξξξ
−
k + rk . (5.37)

A recursive form for the estimation error can be obtained from these equa-
tions by recognizing that

ξξξk = xk −mk = xk −m−k −Kkvk = ξξξ−k −Kkvk .

Inserting (5.36) into this and using (5.37) then yields the recursive equation

ξξξk = ΓΓΓk−1Fk−1ξξξk−1 + qk−1 −Kkvk

= (I−KkZkHk)ΓΓΓk−1Fk−1ξξξk−1 + (I−KkZkHk)qk−1 −Kkrk ,
(5.38)

pivotal to the stability analysis to come. With this in mind, the error co-
variance matrix can be written as

Pk+1 = (I−KkZkHk)ΓΓΓk−1Fk−1Pk([I−KkZkHk]ΓΓΓk−1Fk−1)T+ΞΞΞk , (5.39)

where

ΞΞΞk = Pk+1 − (I−KkZkHk)ΓΓΓk−1Fk−1Pk([I−KkZkHk]ΓΓΓk−1Fk−1)T.
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With an introduction of a new stochastic matrix ΛΛΛk to absorb the re-
mainder terms, the cross-covariance Ck in (5.33) can be expressed as

Ck = P−k ΛΛΛk(ZkHk)
T.

and the predicted measurement covariance Sk in (5.32) as

Sk = ZkHkΛΛΛkP
−
k ΛΛΛkH

T
kZk + ΣΣΣk , (5.40)

where ΣΣΣk is a matrix analogous to ΞΞΞk. Using these, the filter gain Kk

from (5.34) has the form

Kk = P−k ΛΛΛkH
T
kZk(ZkHkΛΛΛkP

−
k ΛΛΛkH

T
kZk + ΣΣΣk)

−1. (5.41)

To simplify the notation a little, denote Ak := ΓΓΓkFk,Bk := ZkHk

and Gk := ZkHkΛΛΛk. Then some of the equations are transformed into the
following less cumbersome form:

ξξξk = (I−KkBk)Ak−1ξξξk−1 + (I−KkBk)qk−1 −Kkrk ,

Pk+1 = (I−KkBk)Ak−1PkA
T
k−1(I−KkBk)

T + ΞΞΞk ,

Kk = P−kG
T
k (GkP

−
kG

T
k + ΣΣΣk)

−1.

(5.42)

With this machinery introduced, it is possible to prove a result of very
qualitative nature. The following theorem is based on the one provided by Li
and Xia (2012) but with a clarified and partially corrected proof. The formu-
lation here is partially inspired by Xiong et al. (2009a). Li and Xia (2012)
employ recursions for the predicted state estimate and covariance matrix
but as the proof does not seem to completely follow by their formulation,
the updated estimate and covariance are used here. Their paper is in fact
concerned with the version of the UKF allowing for intermittent observa-
tions. This aspect is omitted here as it does not really affect the proof.

In fact, the theorem applies to Gaussian filters also as in the above for-
mulation the UKF equations have not been really used. See the remarks
after Theorem 5.15.
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Theorem 5.14. Consider the non-linear dynamic system (5.2) and the un-
scented Kalman filter of Algorithm 5.13. Suppose that there are positive
scalars a, b, g1, g2, p1, p2, q, r,Σ1,Σ2 and Ξ such that

a2I ≤ AkA
T
k , BkB

T
k ≤ bI , g1 ≤ ‖Gk‖ ≤ g2 , Rk ≤ rI ,

p1I ≤ Pk ≤ p2I , ΞI ≤ ΞΞΞk , Σ1I ≤ ΣΣΣk ≤ Σ2I , Qk ≤ qI

for every k ≥ 0. Then the estimation error ξξξk is exponentially bounded in
mean square and stochastically bounded.

Proof. Lemma 3.8 will be used to prove the claims of boundedness of ξξξk.
Choose a stochastic Lyapunov function

Vk(ξξξk) = ξξξTkP
−1
k ξξξk .

From the assumption of the boundedness of the error covariance matrix it
follows that

1

p2
‖ξξξk‖2 ≤ Vk(ξξξk) ≤

1

p1
‖ξξξk‖2 ,

fulfilling the condition (3.4).
Equation (5.38) and the observation that the cross-terms vanish imply

that

E[Vk(ξξξk) | ξξξk−1] = ξξξTk−1A
T
k−1(I−KkBk)

TP−1
k (I−KkBk)Ak−1ξξξk−1

+ E[qT
k−1(I−KkBk)

TP−1
k (I−KkBk)qk−1

+ rTkK
T
kP
−1
k Kkrk | ξξξk−1] .

(5.43)

Begin by evaluating the first term on the right-hand side of this expression.
Note that the assumptions imply that Ak is non-singular. Then, by the same
matrix inversion lemma argument as in Jazwinski (1970, p. 234) the matrix
(I−KkBk)Ak−1 is non-singular, validating the form

Pk = (I−KkBk)Ak−1[Pk−1 + ((I−KkBk)Ak−1)−1ΞΞΞk−1

× ((I−KkBk)Ak−1)−T]AT
k−1(I−KkBk)

T.
(5.44)

The assumptions and the matrix inversion lemma imply an upper bound

‖Kk‖ = ‖P−kGT
k (GkP

−
kG

T
k + ΣΣΣk)

−1‖
= ‖[(P−k )−1 + GT

kΣΣΣ−1
k Gk]

−1GT
kΣΣΣ−1

k ‖
≤ g2

Σ1Σ2g2
1

:= K
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for the gain matrix, whereupon

[(I−KkBk)Ak−1]−1ΞΞΞk−1[(I−KkBk)Ak−1]−T ≥ Ξ

[a(1 +Kb)]2
I := κI .

Taking the inverse of (5.44), the first term on the right-hand side of (5.43)
becomes

ξξξTk−1A
T
k−1(I−KkBk)

TP−1
k (I−KkBk)Ak−1ξξξk−1

= ξξξTk−1[Pk−1 + ((I−KkBk)Ak−1)−1ΞΞΞk−1((I−KkBk)Ak−1)−T]−1ξξξk−1 .

Hence, by Lemma A.3, the first term has the upper bound

ξξξTk−1A
T
k−1(I−KkBk)

TP−1
k (I−KkBk)Ak−1ξξξk−1

≤
(

1 +
p2

κ

)−1

ξξξTk−1ΠΠΠk−1ξξξk−1

= (1− λ)Vk−1(ξξξk−1) ,

(5.45)

where 0 < (1 + p2/κ)−1 := 1 − λ < 1. Note the similarity of this argument
to that in the proof of Lemma 5.5.

As the matrices inside the conditional expectation in the second term
of (5.43) are just scalars and ξξξk−1 is independent of qk−1 and rk, matrix
traces can be used to yield the upper bound

E[qT
k−1(I−KkBk)

TP−1
k (I−KkBk)qk−1 + rTkK

T
kP
−1
k Kkrk | ξξξk−1]

≤ E

(
(1 +Kb)2

p1
tr(qT

k−1qk−1) +
K2

p1
tr(rTk rk)

)

≤ nq(1 +Kb)2

p1
+
mrK2

p1
:= µ .

(5.46)

From (5.45) and (5.46) it thus follows that

E[Vk+1(ξξξk+1) | ξξξk]− Vk(ξξξk) ≤ µ− λVk(ξξξk) ,

meaning that Lemma 3.8 can by applied in order to conclude that ξξξk is
exponentially bounded in mean square as well as stochastically bounded.

5.4.4 Stability of Gaussian Filters

In Xiong et al. (2007b) the following general result from Xiong (2006) about
the stability of the EKF, the UKF and particle filters for non-linear dy-
namic systems (5.2) is presented without a proof. A proof is later given
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in Xiong et al. (2009a), but seems to contain an error. Nonetheless, it is
presented here for a comparison.

The estimation error and the corresponding covariance matrices for the
aforementioned filters can be written uniformly as

ξξξk+1 = (I−KkBk)Ak−1ξξξk + Ckqk −Kkrk ,

P−k = Ak−1Pk−1A
T
k−1 + ΞΞΞk−1 ,

Pk = (I−KkGk)P
−
k ,

(5.47)

where Kk = P−kG
T
k (GkP

−
kG

T
k + ΣΣΣk)

−1 and ΞΞΞk and ΣΣΣk are random ma-
trices similar to the ones in (5.39) and (5.40), respectively. The matri-
ces Ak−1,Bk,Ck and Gk are random and determined by the system and
the particular filtering algorithm under consideration. Comparison with the
analogous expressions for in Section 5.4.3 is useful. With this formulation
the following theorem has been claimed to hold by Xiong et al. (2009a).

Theorem 5.15. Consider the non-linear dynamic system (5.2) and the
EKF, the UKF and particle filter for which the estimation error and error
covariance matrices can be formulated as (5.47). Suppose that the following
conditions hold:

(1) There are non-zero scalars a1, a2, b, c, g1 and g2 such that

a2
1I ≤ AkA

T
k ≤ a2

2I , BkB
T
k ≤ b2I ,

g2
1I ≤ GkG

T
k ≤ g2

2I , CkC
T
k ≤ c2I ,

(Gk −Bk)(Gk −Bk)
T ≤ (g2 − b)2I

for every k ≥ 0.

(2) There are positive scalars p1, p2, q, r,Ξ1,Ξ2 and Σ such that

p1I ≤ Pk ≤ p2I , Qk ≤ qI , Rk ≤ rI ,
Ξ1I < ΞΞΞk ≤ Ξ2I , ΣI < ΣΣΣk

for every k ≥ 0, where Σ is the maximum of a2
2(g2 − b)2(p2 + p2

2a
2
2Ξ−1

1 )

and b2(a2
2p2 + Ξ2)− g2

2(a2
1p1 + Ξ1).

Then the estimation error ξξξk is exponentially bounded in mean square and
stochastically bounded.

Proof. (Xiong, 2006; Xiong et al., 2009a, Appendix A) The proof is
an application of Lemma 3.8 with a stochastic Lyapunov function
Vk(ξξξk) = ξξξTkP

−1
k ξξξk.



5 Stability of Non-Linear Kalman Filters 71

The proof of preceding theorem seems to contain a small error as Xiong
et al. (2009a) assert that from the positivity of λk for k ≥ 0, it follows
that infk≥0 λk > 0 (in fact, they speak incorrectly of minimum). This num-
ber, infk≥0 λk, they use as λ in Lemma 3.8 but as its positivity cannot be
guaranteed their proof is not valid, at least not in uniform sense.

However, what has been done in Section 5.4.3 does not really depend
on the UKF as the Gaussian filtering algorithm used. Consequently, The-
orem 5.14 applies to any Gaussian filter whose estimation error and error
covariance matrix can be presented in the form (5.42).

5.4.5 Diagonal Matrices and Covariance Matrix Tuning

The discussion here is concentrated on matrices ΓΓΓk and ΞΞΞk. Similar reasoning
can be applied to the other unknown matrices introduced. The magnitudes
of the diagonal matrices ΓΓΓk,Zk and ΛΛΛk are influenced by the method used to
handle the non-linear transformations (for example, in the UKF this method
is the unscented transformation) and the nature of the non-linearities. Resid-
uals remain small if these matrices stay near identity matrices and vice versa.
Even though it might seem that in Theorem 5.14 it is not explicitly required
that the initial estimation error be sufficiently small, the requirement is still
there, for with a large initial estimation error the diagonal matrix ΓΓΓk will
also be large. Recalling that the matrix ΞΞΞk was defined as

ΞΞΞk = Pk+1 − (I−KkZkHk)ΓΓΓk−1Fk−1Pk[(I−KkZkHk)ΓΓΓk−1Fk−1]T.

and a lower bound 0 < ΞI ≤ ΞΞΞk for it assumed, it is seen that with ΓΓΓk
sufficiently large there is no guarantee that ΞΞΞk is always positive-definite,
violating the lower bound. But, if Pk+1 is sufficiently enlarged, it can be
ensured that ΞΞΞk remains positive-definite even with considerable initial es-
timation error. To enlarge Pk+1, one has to enlarge Q̂k as seen from (5.31)
and (5.35). Thus, here the focus is on the effects and design of enlarging
Q̂k = Qk + ∆Qk, where ∆Qk is an additional positive-semidefinite matrix.

The addition of ∆Qk sacrifices some of the accuracy of the filter for its
stability. Xiong et al. (2006) evaluate this sacrifice in the case of a non-linear
system with linear measurement model and the UKF by using Cramér-Rao
lower bound (Tichavský et al., 1998) which in this case is given by the fol-
lowing theorem. The matrix R̂k is taken to be Rk. Note that, as the mea-
surement model is linear, in the two following theorems Hk are deterministic
measurement model matrices, not the Jacobian of the non-linear function h.
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Theorem 5.16. The Cramér–Rao lower bound in the case of the UKF ap-
plied to the non-linear dynamic system (5.2) with linear measurement model
is

Cov(ξξξk) ≥ III−1
k ,

where the Fisher information matrix IIIk can in this particular case expressed
recursively as

IIIk = Q−1
k + HT

kR
−1
k Hk −Q−1

k Fk(IIIk−1 + FT
kQ
−1
k Fk)

−1FT
kQ
−1
k .

The matrix Cov(ξξξk) is also the MSE of the filter.

Proof. (Xiong et al., 2006, Appendix B)

With this, some evaluation of lost accuracy is possible, amounting mostly
to seeing that MSE may deviate from the Cramér–Rao lower bound.

Theorem 5.17. Consider the non-linear dynamic system (5.2) with linear
measurement model and the UKF of Algorithm 5.13. Then the mean squared
error of the filter is

Cov(ξξξk+1) = [Q̂−1
k + HT

kR
−1
k Hk − Q̂−1

k ΓΓΓkFk

× (P−1
k + FT

kΓΓΓkQ̂
−1
k ΓΓΓkFk)

−1FT
kΓΓΓkQ̂

−1
k ]−1 + ∆Pk ,

where
∆Pk = (I−KkHk)[Cov(ξξξ−k )−P−k ](I−KkHk)

T.

Proof. (Xiong et al., 2006, Appendix C)

From these theorems it can be seen that the MSE of UKF is near to
the Cramér–Rao lower bound if high order error is negligible and the noise
covariance matrix is not enlarged, that is ΓΓΓk ≈ I and Q̂k = Qk. If this is not
the case, that is to say that the non-linearities are more than minuscule or the
process noise covariance matrix is tuned, the difference between Cramér–Rao
lower bound and the MSE may be enlarged.

To test the effect enlarging Q̂k−1 to positive-definiteness of ΞΞΞk numeri-
cally, consider the system (5.27) for which some EKF simulations have been
performed previously. From a number of test, it seems difficult to induce
the UKF to diverge for this system. However, this does not mean that
the assumptions of Theorem 5.14 are fulfilled. Enlarging Q̂k−1 decreases
the number of ΞΞΞk that are not positive-definite but such ΞΞΞk still exist even
for Q̂k−1 = 1000I. This is presented in Figure 5.5, from where it is readily
seen that enlarging R̂k hinders the efforts to have all ΞΞΞk positive-definite.
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Figure 5.5: Plot of the effect of enlarging Q̂k−1 = bI from 0 to 1000I to the number of ΞΞΞk that
are not positive-definite. The initial state and estimate are m0 = x0 = (0.8, 0.2) and R̂k = R = I

in the first plot and R̂k = 100I in the second plot.

Naturally, under the possibility of filter divergence with the covariance
matrix too small and lost accuracy with the matrix overly enlarged, there
arises the question of good design. A brief investigation of this matter
is carried out by Xiong et al. (2009a) who study the design of ∆Qk, let-
ting ∆Rk = 0. They propose a heuristic method, namely,

∆Qk = γPke
−k (5.48)

for k ≥ 0, where γ is a positive real number determined case by case (this
method has already been demonstrated in Figure 5.4). The idea behind
this method is to use larger additional matrices in the beginning, when the
filter estimate may not be very close to the true state due to large initial
estimation error, in order guarantee the positive-definiteness of ΞΞΞk but to
get rid of ∆Qk later when the estimates can be trusted to be reasonably
close to the true state so as not to unnecessarily lose accuracy. To help
in determining γ, Xiong et al. (2009a) further give a certain approximate
inequality that is necessary, but not sufficient, for ΞΞΞk > 0. This inequality
leads to selecting γ by

γ = λmax[(H1P0H
T
1 )−1 Cov(v1)] .
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The real innovation covariance matrix Cov(v1) can be approximated by av-
eraging over N independent trials,

Cov(v1) =
1

N

N∑

i=1

(y
(i)
1 −µµµ

(i)
1 )(y

(i)
1 −µµµ

(i)
1 )T,

where the superscript denotes the value obtained in the ith trial.

5.5 Similar Results for Special Cases and Other Filters

There are many special cases of the non-linear system (5.2) and different fil-
ters similar to the EKF and or the UKF whose stability has been addressed
with stochastic stability lemma or the method of residual-correcting random
matrices since the publication of Reif et al. (1999) and Xiong et al. (2006).
Most of these results are very similar to the ones presented previously, al-
though there are some exceptions of using somewhat different methods.

Rapp and Nyman (2004) prove stability results for a system with linear
time-varying state model and non-linear measurement model. They also
consider tuning of the covariance matrix Q̂k. In Rapp and Nyman (2005)
they are able to relax the assumption of boundedness from above of the
norm of the measurement model function Jacobian to only require a finite
ratio between its largest and smallest values. However, in doing this they
have to assume the noise processes bounded. See also Rapp (2004, Chapter
3). Naturally, as their object of study is the EKF, they introduce some new
methods of minor importance.

Özbek et al. (2010) prove the stability result of Reif et al. (1999) assuming
that the system is constrained. In such a setting constraint

Dxk = dk ,

whereD is some known matrix and dk some known vectors, is imposed on the
system state. Their proof reflects that of Reif et al. (1999) very closely. They
only use a slightly different Lyapunov function, this modification resulting
from the constrained nature of the system, namely

Vk(ϑϑϑk) = ϑϑϑTk [Cov(ϑϑϑk)]
−1ϑϑϑk ,

where ϑϑϑk = [I −W−1DT(DW−1DT)−1D]ξξξk. Here, W is some positive-
definite matrix. This work is an extension of their earlier in Köksal Babacan
et al. (2008) where analogous result for a deterministic system without any
noise is proven. The constrained Kalman filter is treated, for example, in
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Simon and Chia (2002) and Simon (2010).
Xiong et al. (2008, 2009b) analyze the stability of the robust extended

Kalman filter (Einicke and White, 1999) for a non-linear system with a linear
measurement model using the diagonal random matrix method. Analogous
results for the adaptive two-stage extended Kalman filter (Kim et al., 2009)
are obtained by Kim et al. (2008). In Wang et al. (2013) stability of the EKF
for systems with measurement packet losses is studied and results similar to
those of Kluge et al. (2010) are obtained. Cao et al. (2014) use same methods
to prove results for the center difference predictive filter.

Xu et al. (2007) prove results analogous to Theorem 5.14 for systems
with correlated noises when the measurement model is linear. These results
cannot be directly extended for systems with both system and measurement
model non-linear (Wang et al., 2012). Dymirkovsky (2012) gives a theo-
rem for UKF stability, similar to Theorem 5.9 for the EKF. Beikzadeh and
Taghirab (2009) prove the stability of the state-dependent Riccati equation
filter (Mracek et al., 1996).

From a practical point of view the stability is considered in Shang and
Liu (2011) where the convergence of the UKF for a certain bleed air system
is demonstrated. In Tønne (2007) stability of the EKF utilized to satellite
attitude determination is analyzed.

Analogous results have also been obtained in the continuous-time setting
of stochastic differential equations, see Reif et al. (2000) for the EKF and Xu
et al. (2008) for the UKF, for which the continuous-time version has been
introduced by Särkkä (2007).
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6 Discussion and Future Research

As has been seen in the preceding section, the current stability results for
non-linear Kalman filters are very poor. The biggest problem with them
is that they can only be used to assess the past filter stability, nothing in
them provides ways to determine if the filter will also be stable in the fu-
ture. Therefore, it would be very beneficial to find conditions for stability
that only depend on the dynamic and measurement model functions and
the magnitude of noise terms. The stochastic Lyapunov technique seems to
be inadequate to provide strong results (Rapp and Nyman, 2004). Conse-
quently, alternative approaches should be investigated. This section records
some possible avenues to prove the stability of the Gaussian filter of Algo-
rithm 5.12.

Up to now, only the estimation error xk−mk has been considered. How-
ever, it might be easier to study the difference in the optimal mean square
estimate E(xk | y1:k) and the Gaussian filter estimate mk, disregarding the
use of stochastic stability lemma altogether. Most of the difficulties still
lie in the fact that the error covariance matrix Pk is a random matrix and
depends on the measurements.

6.1 Fourier–Hermite Series Expansion

For non-negative integers k, define the Hermite polynomials Hk as

Hk(x) = (−1)kex
2/2 dk

dxk
e−x

2/2 .

Then, consider the Hilbert space of functions f, g : R → R, integrable with
respect to the standard normal distribution, with an inner product

〈f, g〉 =

∫

R
f(x)g(x)N (x | 0, 1) dx = E[f(x)g(x)] ,

where x ∼ N (0, 1). Now, the Hermite polynomials are orthogonal with
respect to each other (Kreyszig, 1989, pp. 182-183), that is, 〈Hk, Hl〉 = 0

if k 6= l. For k = l one has 〈Hk, Hk〉 = k!, giving that (k!)−1/2Hk form
an orthonormal basis (Malliavin, 1997, Theorem 2.5). This means that it is
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possible to express any appropriate f as a Fourier–Hermite series

f(x) =

∞∑

k=0

〈f, (k!)−1/2Hk〉(k!)−1/2Hk =
∞∑

k=0

1

k!
E[f(x)Hk(x)]Hk(x)

=

∞∑

k=0

1

k!
E[f (k)(x)]Hk(x) ,

(6.1)

where the last equality follows from repeated integration by parts of

E[f(x)Hk(x)] =
(−1)k√

2π

∫

R
f(x)

dk

dxk
e−x

2/2 dx .

The standard normal distribution N (0, 1) of the above formulas can be
replaced with an arbitrary normal distribution N (µ, σ2), in which case (6.1)
becomes

f(x) =

∞∑

k=0

1

k!
E

[
f(x)Hk

(
x− µ
σ

)]
Hk

(
x− µ
σ

)

=
∞∑

k=0

1

k!
E[f (k)(x)]Hk

(
x− µ
σ

)
σk .

Multivariate extensions of Hermite polynomials and the above identities
arise naturally (Sarmavuori and Särkkä, 2012a,b).

This Fourier–Hermite series expansion of functions may provide a neces-
sary and more tractable tool to bound the integrals that need to be computed
in the Gaussian filter or to obtain a convenient recursive form than the Tay-
lor series expansion. It is easier to take expectation of this expansion than
of Taylor series. Tractability of the Fourier–Hermite series partially results
from Parseval’s identity

E(f(x)2) =
∞∑

k=0

1

k!

(
E[f (k)(x)]σk

)2

that follows from the orthogonality of Fourier–Hermite polynomials.

6.2 Telescoping Sum Approach

The following telescoping sum approach has been used in convergence anal-
ysis of particle filters (Del Moral and Guionnet, 2001; Rebeschini and van
Handel, 2013) and may be of use in proving the stability of Gaussian filters
if needed modifications can be made.
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Denote by πk the optimal filter and by π̂k the Gaussian filter at time-
step k. In other words, πk is the distribution with density p(xk | y1:k)

and π̂k the distribution with density N (mk,Pk) that has been obtained by
Algorithm 5.12. The corresponding prediction distributions are π−k and π̂−k .
The filtering recursion is started from π0, assumed known here (although
in the final reasoning this is of no importance). If necessary, the initial
distribution is indicated by a superscript, ππ0k . Then the objective is to obtain
a bound for d(πk, π̂k) where d is some suitable metric in the space P(Rn)

of probability measures of Rn to be determined. Analyzing this difference
directly is rather difficult as one would probably need a recursive relationship
of some sort. Fortunately, under certain conditions the problem can be
reduced to the analysis of difference produced in a single time-step.

Use the following notation for different operators acting on the
space P(Rn). The filtering operator Fk takes πk−1 to πk, that is,
Fk πk−1 = πk. This operator is composed of two parts, the prediction oper-
ator P and the update operator Uk that perform the prediction and update
steps. The prediction operator maps πk−1 to π−k and the update operator
π−k to πk: Pπk−1 = π−k , Uk π

−
k = πk. Thus Fk πk−1 = Uk Pπk−1. The corre-

sponding operators for the Gaussian filter are denoted by a hat. In addition
to these, denote by PrG the Gaussian projection of probability measures.
This projection maps every probability measure to a Gaussian measure with
the same mean and covariance. An important remark to be made is that
if πk−1 is Gaussian, then P̂kπk−1 = PrG(Pπk−1).

πk−1 π−
k = Pπk−1 πk = Uπ−

k

prediction update

By employing the above operator notation and using the triangle inequal-
ity one can write

d(πk, π̂k) ≤
k∑

s=1

d
(

Fk · · ·Fs+1 Fs F̂s−1 · · · F̂1π0,Fk · · ·Fs+1 F̂sF̂s−1 · · · F̂1π0

)

=
k∑

s=1

d
(

Fk · · ·Fs+1 Fs π̂s−1,Fk · · ·Fs+1 F̂sπ̂s−1

)
,

Now, any single term on the right-hand side of this inequality can be inter-
preted as the distance of two optimal filters after k− s steps, one initialized
from the distribution Fs π̂s−1 and the other from F̂sπ̂s−1. With this inter-
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pretation the inequality can be written as

d(πk, π̂k) ≤
k∑

s=1

d

(
π

Fs π̂s−1

k−s , π
F̂sπ̂s−1

k−s

)
. (6.2)

Therefore, if one was able to show that terms on the right-hand side converge
to zero uniformly and exponentially as k increases then one would have
that d(πk, π̂k) remains bounded. In precise terms, the condition is that
there exist a positive a and 0 < b < 1 such that for any probability measures
µ and ν one has

d(πµk−s, π
ν
k−s) ≤ abk−sd(µ− ν) . (6.3)

In addition to this, a uniform upper bound on d(Fs π̂s−1, F̂sπ̂s−1)

would be needed, that is, a positive c independent of s such that
d(Fs π̂s−1, F̂sπ̂s−1) < c. These conditions would then imply that

d(πk, π̂k) ≤
k∑

s=1

d

(
π

Fs π̂s−1

k−s , π
F̂sπ̂s−1

k−s

)
≤ ac

k−1∑

s=0

bs ≤ ac

1− b .

The distance d(Fs π̂s−1, F̂sπ̂s−1) is the approximation error introduced
by the Gaussian filter in one time-step when the preceding distribution is
Gaussian.

The metric d should of course chosen to be such that its boundedness
implied that of the difference of means. Probably the most well-known such
metric is the Wasserstein metric, defined for µ, ν ∈ P(Rn) by

dW (µ, ν)2 := inf
X∼µ,Y∼ν

E
(
‖X − Y ‖2

)
∈ [0,∞) . (6.4)

Another natural possibility would be to use the pseudometric defined as the
difference of means. For an introduction and comparison of a number of
different probability metrics, see Gibbs and Su (2002).

Showing that d(Fs π̂s−1, F̂sπ̂s−1) is uniformly bounded is probably not
too difficult under appropriate assumptions. However, the uniform exponen-
tial convergence of the terms on the right-hand side of (6.2) is very likely
difficult to prove given that the only such existing uniformity results that
have been obtained (having total variation norm as the metric) require es-
sentially that the state space be compact (van Handel, 2009). Assuming the
state space compact makes the problem of bounding E(xk | y1:k)−mk quite
trivial.
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6.3 Statistical Linearization Framework

The Gaussian filter can be interpreted as the statistically linearized filter
(Morelande and García-Fernández, 2013; García-Fernández et al., 2014) in
which a non-linear transformation g(x) of a n-dimensional Gaussian random
variable x ∼ N (m,P) is approximated by the enabling approximation

g(x) ≈ g̃(x) = Ax + b + e ,

where e ∼ N (0,ΩΩΩ) with A and ΩΩΩ matrices and b a vector given by (compare
with the Gaussian filter equations of Algorithm 5.12)

µµµ =

∫

Rn

g(x)N (x |m,P) dx,

A =

(∫

Rn

[x−m][g(x)−µµµ]N (x |m,P) dx

)T

P−1,

b = µµµ−Am,

ΩΩΩ =

∫

Rn

[g(x)−µµµ][g(x)−µµµ]TN (x |m,P) dx−APAT.

This enables a straightforward presentation of the Gaussian filter as a lin-
ear filter and may open new possibilities for analysis. Moreover, the linear
minimum mean square estimator property of the Gaussian filter could per-
haps be used in a similar linear minimum variance based reasoning that was
employed in Lemmas 4.9 and 4.13 where the error covariance matrix of the
linear Kalman filter was shown uniformly bounded.
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A Appendices

A.1 Useful Matrix Relations

This appendix collects some useful non-trivial matrix identities.

Lemma A.1 (Matrix inversion lemma). Suppose that A,B and C are ma-
trices of appropriate dimensions such that inverses in the following exist.
Then

(A + BC)−1 = A−1 −A−1B(I + CA−1B)−1CA−1.

Proof. (Boyd and Vandenberghe, 2009, Appendix C.4.3)

For the purposes of this thesis the most useful formulations of this identity
are (see Anderson and Moore, 1979, pp. 138–139)

(I+ABTC−1B)−1A = (A−1 +BTC−1B)−1 = A−ABT(BABT+C)−1BA

and

(I + ABTC−1B)−1ABTC−1 = (A−1 + BTC−1B)−1BTC−1

= ABT(BABT + C)−1.

Lemma A.2. Suppose that the matrices A,B and C are of appropriate di-
mensions, that B and C are positive-definite and that C−ABAT is positive-
definite. Then B−1 −ATC−1A is positive-definite.

Proof. (Kluge et al., 2010) Since C −ABAT is positive-definite, it is non-
singular. Then, by a form of matrix inversion lemma,

0 < B + BAT(C−ABAT)−1AB = (B−1 −ATC−1A)−1.

As (B−1 −ATC−1A)−1 is positive-definite, so is B−1 −ATC−1A.

Lemma A.3. Suppose that the matrices A and B are of appropriate dimen-
sions, positive-definite and satisfy aI ≤ A and B ≤ bI for some positive a
and b. Then (A + B)−1 ≤ (1 + b/a)−1A−1.

Proof. As the matrices are positive-definite, their inverses exist and it
is therefore possible to write (A + B)−1 = (I + A−1B)−1A−1 so that
I + A−1B ≤ (1 + b/a)−1I. From this the claim follows.
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A.2 Derivation of the Kalman Filter Equations

In this section a simple derivation of the Kalman filter equations of Theo-
rem 4.1 is presented. The derivation, that follows the one in Särkkä (2013),
merely utilizes some basic properties of joint distribution of Gaussian random
variables.

Lemma A.4. The joint distribution of a Gaussian random variable
x ∼ N (m,P) and its linear transformation y = Ax + r, where A is of ap-
propriate dimensions and r ∼ N (0,R), is

(
x

y

)
∼ N

((
m

Am

)
,

(
P PAT

AP APAT + R

))
.

Proof. The random variable y, being a linear transformation of a Gaussian
random variable, is Gaussian (Helstrom, 1984, pp. 211–212). Then the joint
distribution of x and y is Gaussian, its mean and covariance easily calculat-
able.

Lemma A.5. Let random variables x and y have the joint Gaussian prob-
ability distribution

(
x

y

)
∼ N

((
a

b

)
,

(
A C

CT B

))
.

Then the marginal and conditional distributions of x and y are given by

x ∼ N (a,A) ,

y ∼ N (b,B) ,

x | y ∼ N
(
a + CB−1(y − b),A−CB−1,CT

)
,

y | x ∼ N
(
b + CTA−1(x− a),B−CTA−1C

)
.

Proof. (Helstrom, 1984, pp. 213–216)

These two simple lemmas enable one to see that prediction and filtering
distributions remain Gaussian and derive the filter equations.

Proof of Theorem 4.1. (Särkkä, 2013, Theorem 4.2) According to the pre-
vious lemmas, the joint distribution of xk−1 and xk = Ak−1xk−1 + qk−1



A Appendices 83

given y1:k−1 is

xk−1,xk | y1:k−1 ∼ N



(
mk−1

m−k−1

)
,

(
Pk−1 Pk−1A

T
k−1

Ak−1Pk−1 P−k−1

)
 ,

where m−k−1 = Ak−1mk−1 and P−k−1 = Ak−1Pk−1A
T
k−1 + Qk−1. The

marginal distribution of xk is then

xk | y1:k−1 ∼ N (Ak−1mk−1,Ak−1Pk−1A
T
k−1 + Qk−1).

This is the predictive distribution (2.4). Similarly, the joint distribution
of xk and yk = Hkxk + rk given y1:k−1 is

xk,yk | y1:k−1 ∼ N



(

m−k
Hkm

−
k

)
,

(
P−k P−kHk

HkP
−
k HkP

−
kH

T
k + Rk

)
 .

Therefore, by Lemma A.5, the conditional distribution of xk given the ob-
servations is

xk | y1:k = xk | yk,y1:k−1 ∼ N (mk,Pk) ,

where

mk = m−k + P−kH
T
k (HkP

−
kH

T
k + Rk)

−1(yk −Hkm
−
k ) ,

Pk = P−k −P−kH
T
k (HkP

−
kH

T
k + Rk)

−1HkP
−
k ,

and the update part of the filter equations is obtained by denoting

vk := yk −Hkm
−
k ,

Sk := HkP
−
kH

T
k + Rk ,

Kk := P−kH
T
kS
−1
k .
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