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Abstract
Bayesian cubature provides a flexible framework for numerical integration, in which a priori knowledge on the integrand can
be encoded and exploited. This additional flexibility, compared to many classical cubature methods, comes at a computational
cost which is cubic in the number of evaluations of the integrand. It has been recently observed that fully symmetric point sets
can be exploited in order to reduce—in some cases substantially—the computational cost of the standard Bayesian cubature
method. This work identifies several additional symmetry exploits within the Bayesian cubature framework. In particular, we
go beyond earlier work in considering non-symmetric measures and, in addition to the standard Bayesian cubature method,
present exploits for the Bayes–Sard cubature method and the multi-output Bayesian cubature method.

Keywords Probabilistic numerics · Numerical integration · Gaussian processes · Fully symmetric sets

1 Introduction

This paper considers the numerical approximation of an inte-
gral

I ( f †) :=
∫

M
f †(x)dν(x),

where (M,B, ν) is a Borel probability space with M any
Borel measurable non-empty subset ofRm and f † : M → R

is a B-measurable scalar-valued integrand (vector-valued
integrands will be considered in Sect. 4). Additional assump-
tions will be made when necessary. Our interest is in the
situation where the exact values of f † cannot be deduced
until the function itself is evaluated, and that the evaluations
are associated with a substantial computational cost or a very
large number of them is required. Such situations are typical
in, for example, uncertainty quantification for chemical sys-
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tems (Najmet al. 2009), fluidmechanical simulation (Xiu and
Karniadakis 2003) and certain financial applications (Holtz
2011).

In the presence of a limited computational budget, it
is natural to exploit any contextual information that may
be available on the integrand. Classical cubatures, such
as spline-based or Gaussian cubatures, are able to exploit
abstract mathematical information, such as the number of
continuous derivatives of the integrand (Davis and Rabi-
nowitz 2007). However, in situations where more detailed
or specific contextual information is available to the analyst,
the use of generic classical cubatures can be sub-optimal.

The language of probabilities provides one mechanism in
which contextual information about the integrand can be cap-
tured. Let (Ω,F ,P) be a probability space. Then an analyst
can elicit their prior information about the integrand f † in
the form of a stochastic process model

ω �→ f (· ;ω), ω ∈ Ω, (1)

wherein the function x �→ f (x;ω) isB-measurable for each
fixed ω ∈ Ω . Through the stochastic process, the analyst
can encode both abstract mathematical information, such as
the number of continuous derivatives of the integrand, and
specific contextual information, such as the possibility of a
trend or a periodic component. The process of elicitation is
not discussed in this work (see Diaconis 1988 and Hennig
et al. 2015); for our purposes the stochastic process in (1) is
considered to be provided.
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In Bayesian cubature methods, due to Larkin (1972)
and re-discovered by Diaconis (1988), O’Hagan (1991) and
Minka (2000), the analyst first selects a point set X =
{xi }N

i=1 ⊂ M , N ∈ N, on which the true integrand f † is
evaluated. Let this data be denoted D = {(xi , f †(xi ))}N

i=1.
Then the analyst conditions their stochastic process accord-
ing to these data D, to obtain a second stochastic process

ω �→ fN (· ;ω).

The analyst reports the implied distribution over the value of
the integral of interest; that is the law of the random variable

ω �→
∫

M
fN (x;ω)dν(x).

This distribution can be computed in closed form under
certain assumptions on the structure of the prior model. A
sufficient condition is that the stochastic process is Gaus-
sian,which (arguably) does not severely restrict the analyst in
terms of what contextual information can be included (Ras-
mussen and Williams 2006). In addition, the probabilistic
output of the method enables uncertainty quantification for
the unknown true value of the integral (Larkin 1972; Cock-
ayne et al. 2017;Briol et al. 2019). These appealingproperties
have led to Bayesian cubature methods being used in diverse
areas such as from computer graphics (Marques et al. 2013),
nonlinear filtering (Prüher et al. 2017) and applied Bayesian
statistics (Osborne et al. 2012a).

The theoretical aspects of Bayesian cubature methods
have now been widely studied. In particular, convergence
of the posterior mean point estimator

∫
Ω

∫
M

fN (x;ω)dν(x)dP(ω) →
∫

M
f †(x)dν(x) (2)

as N → ∞ has been studied in both the well-
specified (Bezhaev 1991; Sommariva and Vianello 2006;
Briol et al. 2015; Ehler et al. 2019; Briol et al. 2019)
and mis-specified (Kanagawa et al. 2016, 2019) regimes.
Some relationships between the posterior mean estimator
and classical cubature methods have been documented in
Diaconis (1988), Särkkä et al. (2016) and Karvonen and
Särkkä (2017). In Larkin (1974), O’Hagan (1991) and Kar-
vonen et al. (2018) the Bayes–Sard framework was studied,
where it was proposed to incorporate an explicit parametric
component (O’Hagan 1978) into the prior model in order
that contextual information, such as trends, can be properly
encoded. The choice of point set X for Bayesian cubature has
been studied in Briol et al. (2015), Bach (2017), Briol et al.
(2017), Oettershagen (2017), Chen et al. (2018) and Pron-
zato and Zhigljavsky (2018). In addition, several extensions
have been considered to address specific technical challenges
posed by non-negative integrands (Chai and Garnett 2018),

model evidence integrals in a Bayesian context (Osborne
et al. 2012a;Gunter et al. 2014), ratios (Osborne et al. 2012b),
non-Gaussian prior models (Kennedy 1998; Prüher et al.
2017), measures that can be only be sampled (Oates et al.
2017), and vector-valued integrands (Xi et al. 2018).

Despite these recent successes, a significant drawback of
Bayesian cubature methods is that the cost of computing the
distributional output is typically cubic in N , the size of the
point set. For integralswhose domain M is high-dimensional,
the number N of points required can be exponential in
m = dim(M). Thus the cubic cost associated with Bayesian
cubature methods can render them impractical. In recent
work, Karvonen and Särkkä (2018) noted that symmetric
structure in the point set can be exploited to reduce the total
computational cost. Indeed, in some cases the exponential
dependence on m can be reduced to (approximately) lin-
ear. This is a similar effect to that achieved in the circulant
embedding approach (Dietrich and Newsam 1997), or by the
use ofH-matrices (Hackbusch 1999) and related approxima-
tions (Schäfer et al. 2017), though the approaches differ at
a fundamental level. The aim of this paper is to present sev-
eral related symmetry exploits that are specifically designed
to reduce computational cost of Bayesian cubature methods.

Our principal contributions are following: First, the
techniques developed in Karvonen and Särkkä (2018) are
extended to the Bayes–Sard cubature method. This results
in a computational method that is, essentially, of the com-
plexity O(J 3 + J N ), where J is the number of symmetric
sets that constitute the full point set, instead of being cubic
in N . In typical scenarios, there are at most a few hundred
symmetric sets even though the total number of points can
go up to millions. Second, we present an extension to the
multi-output (i.e. vector-valued) Bayesian cubature method
that is used to simultaneously integrate D ∈ N related inte-
grals. In this case, the computational complexity is reduced
from O(D3N 3) to O(D3 J 3 + D J N ). Third, a symmetric
change ofmeasure technique is proposed to avoid the (strong)
assumption of symmetry on the measure ν that was required
in Karvonen and Särkkä (2018). Fourth, the performance
of our techniques is empirically explored. Throughout, our
focus is not on the performance of these integration meth-
ods, which has been explored in earlier work, already cited.
Rather, our focus is on how computation for these methods
can be accelerated.

The remainder of the article is structured as follows:
Sect. 2 covers the essential background for Bayesian cuba-
ture methods and introduces fully symmetric sets that are
used in the symmetry exploits throughout the article. Sec-
tions 3 and 4 develop fully symmetric Bayes–Sard cubature
and fully symmetric multi-output Bayesian cubature. Sec-
tion 5 explains how the assumption that ν is symmetric can
be relaxed. In Sect. 6, a detailed selection of empirical results
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is presented. Finally, some concluding remarks and discus-
sion are contained in Sect. 7.

2 Background

This section reviews the standard Bayesian cubature method,
due to Larkin (1972), and explains how fully symmetric sets
can be used to alleviate its computational cost, as proposed
by Karvonen and Särkkä (2018).

2.1 Standard Bayesian cubature

In this section, we present explicit formulae for the Bayesian
cubature method in the case where the prior model (1) is
a Gaussian random field. To simplify the notation, Sects. 2
and3 assume that the integrandhas scalar output (i.e. D = 1);
this is then extended to vector-valued output in Sect. 4.

To reduce the notational overhead, in what follows the
ω ∈ Ω argument is left implicit. Thus we consider f (x)

to be a scalar-valued random variable for each x ∈ M . In
particular, in this paper we focus on stochastic processes
that are Gaussian, meaning that there exists a mean function
m : M → R and a symmetric positive-definite covari-
ance function (or kernel) k : M × M → R such that
[ f (x1), . . . , f (xN )]T ∈ R

N has the multivariate Gaussian
distribution

N

⎛
⎜⎝
⎡
⎢⎣

m(x1)
...

m(xN )

⎤
⎥⎦ ,

⎡
⎢⎣

k(x1, x1) · · · k(x1, xN )
...

. . .
...

k(xN , x1) · · · k(xN , xN )

⎤
⎥⎦
⎞
⎟⎠

for any N ∈ N and all point sets {xi }N
i=1 ⊂ M . We assume

that
∫

M k(x, x) dν(x) < ∞.
The conditional distribution fN of this field, based on the

data D = {(xi , f †(xi )}N
i=1 of function evaluations at the

points X = {xi }N
i=1, is also Gaussian, with mean and covari-

ance functions

m N (x) = m(x) + kX (x)TK−1
X ( f †X − mX ), (3)

kN (x, x′) = k(x, x′) − kX (x)TK−1
X kX (x′), (4)

where the vector f †X ∈ R
N contains evaluations of the

integrand, [ f †X ]i = f †(xi ), the vector mX ∈ R
N con-

tains evaluations of the prior mean, [mX ]i = m(xi ), the
vector kX (x) ∈ R

N contains evaluations of the kernel,
[kX (x)]i = k(x, xi ), and K X = K X ,X ∈ R

N×N is the
kernel matrix, [K X ]i j = k(xi , x j ). From the fact that linear
functionals of Gaussian processes are Gaussian, we obtain
that
∫

M
fN (x) dν(x) ∼ N

(
μN ( f †), σ 2

N

)
, (5)

with

μN ( f †) = I (m) + kTν,X K−1
X ( f †X − mX ), (6)

σ 2
N = kν,ν − kTν,X K−1

X kν,X . (7)

Here kν(x) := ∫
M k(x, x′) dν(x′) is called the kernel

mean function (Smola et al. 2007) and kν,X ∈ R
N is

the column vector with [kν,X ]i = kν(xi ), while kν,ν :=∫
M kν(x) dν(x) ≥ 0 is the variance of the integral itself under

the prior model. The assumption
∫

M k(x, x) dν(x) < ∞
guarantees that the kernel mean is finite. This method is
known as the standard Bayesian cubature, with the implicit
understanding that the model for the integrand should be
carefully selected to ensure (5) is well-calibrated (Briol
et al. 2019), meaning that the uncertainty assessment can
be trusted. The need for careful calibration is in line with
standard approaches to the Gaussian process regression task
(Rasmussen and Williams 2006).

Tounderstandwhen theBayesian cubature output ismean-
ingful, it is useful towrite the posteriormean and variance (6)
and (7) in terms of the weight vector

wX := K−1
X kν,X . (8)

That is, we have μN ( f †) = I (m) + wT
X ( f †X − mX ) and

σ 2
N = kν,ν − wT

X kν,X . Let H(k) be the Hilbert space repro-
duced by the kernel k (see Berlinet and Thomas-Agnan
(2011) for background). It can then be verified that wX

solves a quadratic minimisation problem of approximating
kν with a function from the finite-dimensional space spanned
by {k(·, x)}x∈X ⊂ H(k), namely:

wX = argmin
w∈RN

∥∥∥∥∥kν(·) −
N∑

i=1

wi k(·, xi )

∥∥∥∥∥
H(k)

.

Theminimum value of this norm is σN ; see e.g. Oettershagen
(2017, Ch. 3) and Bach et al. (2012). Equivalently, the weight
vector can be obtained as the minimiser of the worst-case
error

sup
‖ f †‖H(k)≤1

∣∣∣∣∣
∫

M
f †(x) dν(x) −

N∑
i=1

wi f †(xi )

∣∣∣∣∣

among all cubature rules with points X , with σN corre-
sponding to the minimal worst-case error (Briol et al. 2019;
Oettershagen 2017). Thus, in terms of uncertainty quantifi-
cation, the posterior standard deviation σN can indeed be
meaningfully related to the integration problembeing solved.

The principal motivation for this work is the observation
that both (6) and (7) involve the solution of an N -dimensional
linear system defined by the matrix K X . In general this is a
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dense matrix and, as such, in the absence of additional struc-
ture in the linear system (Karvonen and Särkkä 2018) or
further approximations [(e.g. Lázaro-Gredilla et al. (2010),
Hensman et al. (2018), Schäfer et al. (2017)], the compu-
tational complexity associated with the standard Bayesian
cubature method is O(N 3). Moreover, it is often the case
that K X is ill-conditioned (Schaback 1995; Stein 2012).
The exploitation of symmetric structure to circumvent the
solution of a large and ill-conditioned linear system would
render Bayesian cubaturemore practical, in the sense of com-
putational efficiency and numerical robustness; this is the
contribution of the present article.

2.2 Symmetry properties

Nextwe introduce fully symmetric sets and related symmetry
concepts, before explaining in Sect. 2.3 how these can be
exploited for computational simplification in the standard
Bayesian cubature method. Note that, in what follows, no
symmetry properties are needed for the integrand f † itself.

2.2.1 Fully symmetric point sets

Given a vector λ ∈ R
m , the fully symmetric set [λ] ⊂ R

m

generated by this vector is defined as the point set consisting
of all vectors that can be obtained from λ via coordinate
permutations and sign changes. That is,

λt = [λ1, . . . , λd ]
:=

⋃
q∈Πm

⋃
s∈Sm

{
(s1λq1, . . . , sdλqd

} ⊂ R
m,

where Πm and Sm stand for the collections of all permuta-
tions of the first m positive integers and of all vectors of the
form s = (s1, . . . , sm) with each si either 1 or −1. Here λ

is called a generator vector and its individual elements are
called generators. Alternatively, we can write the fully sym-
metric set in terms of permutation and sign change matrices:

[λ] =
⋃

P∈PermSC
m

Pλ,

where PermSC
m is the collection of m × m matrices having

exactly one non-zero element on each row and column, this
element being either 1 or −1. Some fully symmetric sets are
displayed in Fig. 1. The cardinality of a fully symmetric set
[λ], generated by a generator vector λ containing r0 zero gen-
erators and l distinct non-zero generators with multiplicities
r1, . . . , rl , is

#[λ] = 2m−r0d!
r0! · · · rl ! . (9)

−1 0 1

−1

0

1

−1
0

1 −1
0

1

−1

0

1

Fig. 1 Fully symmetric sets generated by the vectors [0.5, 0.5], [1, 0],
and [0.6, 0.8] in R2 (left) and [1, 1, 0] and [0.2, 0.6, 0.8] in R3 (right)

Table 1 Sizes of fully symmetric sets generated by the generator vector
λ = (λ1, . . . , λl , 0, . . . , 0) having l ≤ m distinct non-zero elements
λ1, . . . , λl [see (9)]

Dimension (m)

2 3 4 5 6 7

l = 1 4 6 8 10 12 14

l = 2 8 24 48 80 120 168

l = 3 – 48 192 480 960 1680

l = 4 – – 384 1920 5760 13,440

l = 5 – – – 3840 23,040 80,640

l = 6 – – – – 46,080 322,560

l = 7 – – – – – 645,120

See Table 1 for a number of examples in low dimensions.
For λ ∈ R

m having non-negative elements, we occasion-
ally need the concept of a non-negative fully symmetric set

[λ]+ :=
⋃

P∈Permm

Pλ ⊂ R
m+,

where Permm ⊂ PermSC
m is the collection of m × m permu-

tation matrices.

2.2.2 Fully symmetric domains, kernels, andmeasures

At this point, we introduce several related definitions; these
enable us later to state precisely which symmetry assump-
tions are being exploited.

Domains It will be assumed in the sequel that M ⊂ R
m

is a fully symmetric domain, meaning that every fully
symmetric set generated by a vector from M is con-
tained in M : [λ] ⊂ M whenever λ ∈ M . Equivalently,
M = PM = {Px : , x ∈ M} for any P ∈ PermSC

m . Most
popular domains, such as the whole ofRm , hypercubes of the
form [−a, a]m (from which, e.g. the unit hypercube can be
obtainedby simple translation and scaling), balls and spheres,
are fully symmetric.
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Kernels A kernel k : M × M → R defined on a fully sym-
metric domain M is said to be a fully symmetric kernel if
k(Px, Px′) = k(x, x′) for any P ∈ PermSC

m . Basic exam-
ples of fully symmetric kernels include isotropic kernels and
products and sums of isotropic one-dimensional kernels.

Measures A measure ν on a fully symmetric domain M
is a fully symmetric measure if it is invariant under fully
symmetric pushforwards: P∗(ν) = ν for any P ∈ PermSC

m .
If ν admits a Lebesgue density pν , this condition is equivalent
to pν(x) = pν(Px) for any P ∈ PermSC

m . Note that this is a
narrow class of measures and a relaxation of this assumption
is discussed in Sect. 5.

2.2.3 Fully symmetric cubature rules

The linear functional μ( f †) = ∑N
i=1 wi f †(xi ) is said to

be fully symmetric cubature rule if its point set can be writ-
ten as a union of a number J ∈ N of fully symmetric sets
[λ1], . . . , [λJ ] and all points in each [λ j ] are assigned an
equal weight. That is, a fully symmetric cubature rule is of
the form

μ( f †) =
J∑

j=1

wFS
j

∑
x∈[λ j ]

f †(x)

for some weights wFS ∈ R
J and generator vectors

λ1, . . . ,λJ ∈ M . Because this structure typically greatly
simplifies design of the weights, many classical polynomial-
based cubature rules are fully symmetric (McNamee and
Stenger 1967; Genz 1986; Genz and Keister 1996; Lu and
Darmofal 2004), including certain sparse grids (Novak and
Ritter 1999; Novak et al. 1999)

2.3 Fully symmetric Bayesian cubature

The central aim of this article is to derive generalisations for
the Bayes–Sard and multi-output Bayesian cubatures of the
following result from Karvonen and Särkkä (2018), orig-
inally developed only for the standard Bayesian cubature
method.

Theorem 1 Consider the standard Bayesian cubature
method based on a domain M, measure ν, and kernel k
that are each fully symmetric and fix the mean function to
be m ≡ 0. Suppose that the point set is a union of J fully
symmetric sets: X = ⋃J

j=1[λ j ] for some distinct generator

vectors Λ = {λ1, . . . ,λJ } ⊂ M. Then the output of the stan-
dard Bayesian cubature method can be expressed in the fully
symmetric form

μN ( f †) =
J∑

j=1

wΛ, j

∑
x∈[λ j ]

f †(x),

σ 2
N = kν,ν −

J∑
j=1

wΛ, j kν(λ
j )#[λ j ].

The weights wΛ ∈ R
J are the solution to the linear system

SwΛ = kν,Λ of J equations, where

[S]i j =
∑
x∈[λ j ]

k(λi , x) and [kν,Λ] j = kν(λ
j ).

Theorem 1 demonstrates the principal idea; that one can
exploit symmetry to reduce the number of kernel evalua-
tions needed in the standard Bayesian cubature method from
N 2 to N J and decrease the number of equations in the lin-
ear system that needs to be solved from N to J . Since J is
typically considerably smaller than N = ∑J

j=1 #[λ j ], using
fully symmetric sets results in a substantial reduction in com-
putational cost. Numerical examples inKarvonen and Särkkä
(2018) showed that sets containing up to tens of millions of
points become feasible in the standard Bayesian cubature
method when symmetry exploits are used. The aim of this
paper is to generalise these techniques to the important cases
of Bayes–Sard cubature (Sect. 3) and multi-output Bayesian
cubature (Sect. 4).

Remark 1 If #[λ1] = · · · = #[λJ ], the condition number of
the matrix S in Theorem 1 cannot exceed that of K X (similar
results are available for the matrices in Theorems 2 and 3).
This scenario occurs in, for instance, the numerical example
of Sect. 6.3. To verify the claim, observe that by Lemma 4
Sv = αv implies that the block vector

v′ =
⎡
⎢⎣

v11#[λ1]
...

vJ1#[λJ ]

⎤
⎥⎦

satisfies K Xv′ = αv′. Consequently, the spectrum
of S is a subset of that of K X . Furthermore, when
#[λ1] = · · · = #[λJ ], the matrix S is symmetric; therefore
its condition number is the ratio of the largest and smallest
eigenvalues. It follows that the condition number of S must
be smaller or equal to that of K X .

3 Fully symmetric Bayes–Sard cubature

In this section, we first review the Bayes–Sard cubature
method from Karvonen et al. (2018) and then derive a gen-
eralisation of Theorem 1 for this method.
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3.1 Bayes–Sard cubature

In the standard Bayesian cubaturemethod, themean function
m must be a priori specified. This requirement is relaxed in
Bayes–Sard cubature (Karvonen et al. 2018), where a hierar-
chical approach is taken instead. Specifically, in Bayes–Sard
cubature the priormean function is given the parametric form

mθ (x) = θ1φ1(x) + · · · + θQφQ(x)

= θTφ(x),

where φ(x) ∈ R
Q has entries [φ(x)]i = φi (x) and the

parameter vector θ = (θ1, . . . , θQ) ∈ R
Q represents coef-

ficients in a pre-defined basis consisting of functions φi :
M → R, i = 1, . . . , Q, that are assumed ν-integrable
and that span a finite-dimensional linear function space
π := span(φ1, . . . , φQ). That is, mθ ∈ π for any θ ∈ R

Q .
Then, for a positive-definite Σ ∈ R

Q×Q , a Gaussian hyper-
prior distribution

θ ∼ N (0,Σ)

is specified. The conditional distribution fN of this field,
based as before on data D, is again Gaussian. In particu-
lar, when Σ−1 → 0 (meaning that the prior on θ becomes
improper, or weakly informative1) and assuming that Q ≤
N , the posterior mean and variance take the forms

m N (x) = αTkX (x) + βTφ(x), (10)

kN (x, x′) = k(x, x′) − kX (x)TK−1
X kX (x′)

+ [ΦT
X K−1

X kX (x) − φ(x)]T[ΦT
X K−1

X ΦX ]−1

× [ΦT
X K−1

X kX (x′) − φ(x′)], (11)

where ΦX ∈ R
N×Q with entries [ΦX ]i, j = φ j (xi ) is called

the Vandermonde matrix and the vectors α and β are defined
via the linear system

[
K X ΦX

ΦT
X 0

] [
α

β

]
=
[
f †X
0

]
. (12)

For there to exist a unique solution to (12), the Vandermonde
matrix has to be of full rank. This technical condition, equiva-
lent to the zero functionbeing the only element ofπ vanishing
on X , is known asπ -unisolvency of the point set X . Through-
out the article, we assume this is the case; see Wendland
(2005, Section 2.2) or Karvonen et al. (2018, Supplement B)
for more information and examples of unisolvent point sets.

1 See Larkin (1974) and O’Hagan (1991) for slightly different earlier
formulations where an improper prior is placed “directly” on θ .

The output of the Bayes–Sard cubature method is the pos-
terior marginal distribution of the integral, namely

∫
M

fN (x) dν(x) ∼ N
(
μN ( f †), σ 2

N

)
. (13)

Themean andvariance, obtained by integrating (10) and (11),
are

μN ( f †) = (wk
X )T f †X ,

σ 2
N = kν,ν − kTν,X K−1

X kν,X

+(wπ
X )T

(
ΦT

X K−1
X kν,X − φν

)
,

where φν ∈ R
Q has the entries [φν]i = ∫

M φi (x)dν(x) and
the weight vectors wk

X ∈ R
N and wπ

X ∈ R
Q are the solution

to the linear system

[
K X ΦX

ΦT
X 0

] [
wk

X
wπ

X

]
=
[
kν,X

φν

]
. (14)

The Bayes–Sard weights wk
X , like the standard Bayesian

cubature weights, have a worst-case interpretation:

wk
X = argmin

w∈RN
sup

‖ f †‖H(k)≤1

∣∣∣∣∣
∫

M
f † dν −

N∑
i=1

wi f †(xi )

∣∣∣∣∣

subject to the linear constraints
∑N

i=1 wiφ j (xi ) = I (φ j ) for
j = 1, . . . , Q (DeVore et al. 2018).
The Bayes–Sard method has some important theoretical

and practical advantages over the standardBayesian cubature
method, which motivate us to study it in detail:

– The posterior mean μN ( f †) is exactly equal to the inte-
gral I ( f †) if f † ∈ π . In particular, if π contains a
non-zero constant function then

∑N
i=1 wk

X ,i = 1 so that
the cubature rule is normalised (however, non-negativity
of the weights is not guaranteed2). This can improve
the stability of the method in high-dimensional settings
Karvonen et al. (2018). In general, if π is the set of poly-
nomials up to a certain order q, then the posterior mean is
recognised as a cubature rule of algebraic degreeq (Cools
1997, Definition 3.1).

– Given any cubature rule μ( f †) = ∑N
i=1 wi f †(xi ) for

specified wi ∈ R and xi ∈ M , and given any covariance
function k, one can find an N -dimensional function space
π such thatμN = μ. Furthermore, the posterior standard
deviation σN coincides with the worst-case error of the

2 It is possible to employ a positivity constraint (Ehler et al. 2019),
but in that case there is no convenient closed-form expression for the
weights and the Bayesian interpretation is sacrificed.
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cubature ruleμ in the Hilbert space induced by k (Karvo-
nen et al. 2018, Section 2.4). This demonstrates that any
cubature rule can be interpreted as the posterior mean
under an infinitude of prior models, providing a bridge
between classical and Bayesian cubature methods.

The dimension of the linear system in (14) is N + Q.
Thus the computational cost associated with the Bayes–Sard
method is strictly greater than that of standardBayesian cuba-
ture; at leastO(N 3) in general. It is therefore of considerable
practical interest to ask whether symmetry exploits can also
be developed for the Bayes–Sard method.

3.2 A symmetry exploit for Bayes–Sard cubature

In this section, we present a novel result that enables fully
symmetric sets to be exploited in the Bayes–Sard cubature
method. In what follows we only consider a function space π

spanned by evenmonomials exhibiting symmetries.3 In prac-
tice, we do not believe this to be a significant restriction since
polynomials typically serve as a good and functional default
and, in fact, one retains considerable freedom in selecting the
polynomials, not being restricted to, for example, spaces of
all polynomials of at most a given degree.

Let πα ⊂ N
m
0 denote a finite collection of multi-indices

that in turn define the function space π :

π = span{xα : α ∈ πα}.

Here xα denotes the monomial xα1
1 × · · · × xαm

m . Define the
index set

E
m
0 := {α ∈ N

m
0 : αi is even for every i = 1, . . . , m}.

Our development will require that πα is a union of Jα ∈ N

non-negative fully symmetric sets in E
m
0 . That is, α ∈ πα

implies Pα ∈ πα for any permutation matrix P ∈ Permm

and there exist distinct α1, . . . ,α Jα ∈ E
m
0 such that

πα =
Jα⋃

j=1

[α j ]+.

To prove a Bayes–Sard analogue of Theorem 1, we need four
simple lemmas:

Lemma 1 Suppose that M and ν are each fully symmetric. If
α ∈ E

m
0 then I (xα) = I (xPα) for any P ∈ Permm.

Proof First, observe that (P−1x)α = xPα . By the change
of variables formula of pushforwards and the assumption

3 Odd monomials come for “free”; see Remark 2.

P−1∗ (ν) = ν,

I (xα) =
∫

M
xα dν(x)

=
∫

M
xα dP−1∗ (ν)(x)

=
∫

M
(P−1x)α dν(x)

=
∫

M
xPα dν(x)

= I (xPα)

for any α ∈ N
m
0 . ��

Lemma 2 Suppose that M, ν, and k are each fully symmetric
and let λ ∈ M. Then kν(x) = kν(λ) for every x ∈ [λ].
Proof The proof is essentially identical to that of Lemma 1.

��
Lemma 3 Let λ ∈ R

m and α ∈ E
m
0 . Then

∑
β∈[α]+

xβ =
∑

β∈[α]+
λβ for any x ∈ [λ], (15)

∑
x∈[λ]

xβ =
∑
x∈[λ]

xα for any β ∈ [α]+. (16)

Proof For any α ∈ E
m
0 , x ∈ [λ], and P ∈ PermSC

m ,

∑
β∈[α]+

xβ =
∑

β∈[α]+
(P−1Px)β =

∑
β∈[α]+

(Px)P
+β ,

where P+ ∈ Permm has the elements [P+]i j = |[P]i j |
and the second equality follows from the fact that every ele-
ment of β is even. Because [P+α]+ = [α]+, it follows that∑

β∈[α]+ xβ = ∑
β∈[α]+(Px)β . That is,

∑
β∈[α]+

xβ =
∑

β∈[α]+
λβ

since λ = Px for some P ∈ PermSC
m . Consider then the

“transpose” sum
∑

x∈[λ] xβ forβ ∈ [α]+. Similar arguments
as above establish that

∑
x∈[λ]

xβ =
∑
x∈[λ]

(Px)Pβ =
∑
x∈[λ]

xPβ

for any P ∈ Permm . Consequently,

∑
x∈[λ]

xβ =
∑
x∈[λ]

xα

for every β ∈ [α]+. ��
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Lemma 4 Let λ,λ′ ∈ R
m and suppose that the kernel k is

fully symmetric. Then

∑
x′∈[λ′]

k(x, x′) =
∑

x′∈[λ′]
k(λ, x′) for any x ∈ [λ].

Proof For any x ∈ [λ] there is Px ∈ PermSC
m such that

x = Pxλ. Therefore

∑
x′∈[λ′]

k(x, x′) =
∑

x′∈[λ′]
k(Pxλ, x′)

=
∑

x′∈[λ′]
k(P−1

x Pxλ, P−1
x x′)

=
∑

x′∈[λ′]
k(λ, P−1

x x′)

=
∑

x′∈[P−1
x λ′]

k(λ, x′),

and the claim follows from the fact that [Pλ′] = [λ′] for any
P ∈ PermSC

m . ��
We are now ready to prove the main result of this section.

Theorem 2 establishes sufficient conditions for the Bayes–
Sard cubature rule to be fully symmetric and, in that case,
provides an explicit simplification of its output (13).

Theorem 2 Consider the Bayes–Sard cubature method
based on a domain M, measure ν, and kernel k that are
each fully symmetric. Suppose that

π = span{xα : α ∈ πα} and πα =
Jα⋃

j=1

[α j ]+

for a collection A = {α1, . . . ,α Jα } ⊂ E
m
0 of distinct

even multi-indices and that X is a union of J distinct fully
symmetric sets: X = ⋃J

j=1[λ j ] for a collection Λ =
{λ1, . . . ,λJ } ⊂ M of distinct generator vectors. Then the
output of the Bayes–Sard cubature method can be expressed
in the fully symmetric form

μN ( f †) =
J∑

j=1

wk
Λ, j

∑
x∈[λ j ]

f †(x),

σ 2
N = kν,ν −

J∑
j=1

wσ
Λ, j kν(λ

j )nΛ
j

+
Jα∑

j=1

wπ
A, j n

A
j

⎡
⎣ J∑

i=1

wσ
Λ,i

∑
x∈[λi ]

xα j − I (xα j
)

⎤
⎦ ,

where nΛ
j = #[λ j ], nAj = #[α j ]+, and wσ

Λ ∈ R
J are the

weights wΛ in Theorem 1. The weights wk
Λ ∈ R

J and wπ
A ∈

R
Jα form the solution to the linear system

[
S A
B 0

] [
wk

Λ

wπ
A

]
=
[
kν,Λ

φν,A

]
(17)

of J + Jα equations, where [kν,Λ] j = kν(λ
j ), [φν,A] j =

I (xα j
), [S]i j = ∑

x∈[λ j ] k(λi , x), [A]i j = ∑
β∈[α j ]+(λi )β ,

and [B]i j = ∑
x∈[λ j ] xαi

.

Proof The linear system (17) is equivalent to

J∑
j=1

wk
Λ, j Si j +

Jα∑
j=1

wπ
A, j Ai j = kν(λ

i ) for i ∈ {1, . . . , J }

and

J∑
j=1

wk
Λ, j Bi j = I (xαi

) for i ∈ {1, . . . , Jα}.

These two groups of equations are equivalent, respectively,
to the N equations (Lemmas 2 and 4 and (15))

J∑
j=1

wk
Λ, j

∑
x′∈[λ j ]

k(x, x′) +
Jα∑

j=1

wπ
A, j

∑
β∈[α j ]+

xα = kν(x)

for i ∈ {1, . . . , J }, x ∈ [λi ], and to the Q equations
(Lemma 1 and (16))

J∑
j=1

wk
Λ, j

∑
x′∈[λ j ]

(x′)α = I (xα)

for α ∈ πα . From these two equations, we recognise that

wk
X =

⎡
⎢⎢⎣

wk
Λ,11nΛ

1
...

wk
Λ,J1nΛ

J

⎤
⎥⎥⎦ and wπ

X =

⎡
⎢⎢⎣

wk
A,11nA1

...

wk
A,Jα

1nAJα

⎤
⎥⎥⎦

solve the full Bayes–Sard weight system

[
K X ΦX

ΦT
X 0

] [
wk

X
wπ

X

]
=
[
kν,X

φν

]
.

The expression for the Bayes–Sard variance σ 2
N can be

obtained by first recognising that the unique elements of
K−1

X kν,X are precisely the weights wΛ in Theorem 1, here
denoted wσ

Λ. Then we compute
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kTν,X K−1
X kν,X =

J∑
j=1

wσ
Λ, j kν(λ

j )nΛ
j

and

(wπ
X )T

(
ΦT

X K−1
X kν,X − φν

)

= (wπ
X )T

⎡
⎢⎢⎢⎣

(∑J
j=1 wσ

Λ j

∑
x∈[λ] j xα1 − I

(
xα1

))
1nA1

...(∑J
j=1 wσ

Λ j

∑
x∈[λ] j xα Jα − I

(
xα Jα

))
1nAJα

⎤
⎥⎥⎥⎦

that, when expanded, yields the result. ��
Remark 2 The polynomial space π could be appended with
fully symmetric collections of odd polynomials (i.e. by using
additional basis functions xβ , β ∈ [α]+ for α /∈ E

m
0 ). How-

ever, by doing this one gains nothing since the weights in
wπ
A corresponding to these basis functions turn out to be

zero. This is quite easy to see from the easily proven facts
that

∑
x∈[λ] xβ = 0 and I (xβ) = 0 whenever β /∈ E

m
0 .

Just like Theorem 1 for the standard Bayesian cubature,
Theorem 2 reduces the number of kernel and basis function
evaluations from roughly N 2+ Q2 to N J + N Jα and the size
of the linear system that needs to be solved from N +Q to J +
Jα . Typically, this translates to a significant computational
speed-up; see Sect. 6.2 for a numerical example involving
point sets of up to N = 179,400. Such results could not
realistically be obtained by direct solution of the original
linear system (14).

4 Fully symmetric multi-output Bayesian
cubature

In this section, we review themulti-output Bayesian cubature
method recently proposed by Xi et al. (2018) and show how
to exploit fully symmetric sets in reducing computational
complexity of this method.

4.1 Multi-output Bayesian cubature

One often needs to integrate a number of related inte-
grands, f †1 , . . . , f †D : M → R. It is of course trivial to treat
these as a set of D independent integrals and apply either
the standard Bayesian or Bayes–Sard cubature method to
approximate each integral. However, in many cases the rela-
tionship between the integrands can be explicitly modelled
and leveraged.

Such a setting canbe handled bymodelling a single vector-
valued function f † := ( f †1 , . . . , f †D) : M → R

D as a vector-
valued Gaussian field; full details can be found in Álvarez
et al. (2012). In this case, the data D consist of evaluations

f †d,Xd
= [

f †d (xd1), . . . , f †d (xd N )
]T ∈ R

N

at points Xd = {xd1, . . . , xd N } ⊂ M for eachd = 1, . . . , D.
In this section, we denote X = {Xd}D

d=1. The assumption
that each integrand is evaluated at N points is made only
for notational simplicity; all results can be easily modified
to accommodate different numbers of points for each inte-
grand. Evaluations of each integrand are concatenated into
the vector

f †X = [
f †1 (x11), . . . , f †1 (x1N ), . . . ,

f †D(xD1), . . . , f †D(xDN )
]T ∈ R

DN .

In multi-output Bayesian cubature, the integrand is mod-
elled as a vector-valuedGaussian field f ∈ R

D characterised
by vector-valued mean function m : M → R

D and matrix-
valued covariance function k : M × M → R

D×D . For nota-
tional simplicity, the prior mean function is fixed at m ≡ 0.
The conditional distribution f N of this field, based on the
data D = (X , f †X ), is also Gaussian with mean and covari-
ance functions

mN (x) = kX (x)TK−1
X f †X ,

kN (x, x′) = k(x, x′) − kX (x)TK−1
X kX (x).

Here, in contrast to 3 and 4, all objects are of extended dimen-
sions:

kX (x) =
⎡
⎢⎣
kX1(x)

...

kX D (x)

⎤
⎥⎦ ∈ R

DN×D,

K X =
⎡
⎢⎣
K 11

X1,X1
· · · K 1D

X1,X D
...

. . .
...

K D1
X D,X1

· · · K DD
X D ,X D

⎤
⎥⎦ ∈ R

DN×DN ,

where kXd (x) and K dq
Xd ,Xq

are the N ×D and N ×N matrices

kXd (x) =
⎡
⎢⎣

[k(xd1, x)]11 · · · [k(xd1, x)]1D
...

. . .
...

[k(xd N , x)]11 · · · [k(xd N , x)]DD

⎤
⎥⎦ ,

K dq
Xd ,Xq

=
⎡
⎢⎣

[k(xd1, xq1)]dq · · · [k(xd1, xq N )]dq
...

. . .
...

[k(xd N , xq1)]dq · · · [k(xd N , xq N )]dq

⎤
⎥⎦ .

The output of the multi-output (or vector-valued) Bayesian
cubature method is a D-dimensional Gaussian random vec-
tor:
∫

M
f N (x)dν(x) ∼ N

(
μN ( f †),Σ N

)
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with

μN ( f †) = kTν,X K−1
X f †X , (18)

Σ N = kν,ν − kTν,X K−1
X kν,X , (19)

where kν,X = ∫
M kX (x) dν(x) ∈ R

DN×D and
kν,ν = ∫

M k(x, x′) dν(x) dν(x′) ∈ R
D×D . Equivalently, the

posterior mean and variance can be written in terms of the
weights

W X = K−1
X kν,X = [WT

1 · · ·WT
D]T ∈ R

DN×D, (20)

where Wd ∈ R
N×D . For example, mean of the dth integral

then takes the form

μN ( f †d ) = [μN ( f †)]d =
D∑

q=1

N∑
i=1

[Wq ]id f †q (xqi ). (21)

If the dth integrand ismodelled as independent of all the other
integrands, the posterior mean (21) reduces to the standard
Bayesian cubature posterior mean (6).

4.2 Separable kernels

The structure of matrices appearing in the multi-output
Bayesian cubature equations can be simplified when the
multi-output kernel is separable. This means that there is
a positive-definite B ∈ R

D×D such that

k(x, x′) = Bc(x, x′) (22)

for some positive-definite kernel c : M×M → R. Thematri-
ces K X and kν,X now assume the simplified forms

kν,X =
⎡
⎢⎣

B11cν,X1 · · · B1Dcν,X D
...

. . .
...

BD1cν,X1 · · · BDDcν,X D

⎤
⎥⎦ ,

K X =
⎡
⎢⎣

B11CX1,X1 · · · B1DCX1,X D
...

. . .
...

BD1CX D ,X1 · · · BDDCX D ,X D

⎤
⎥⎦ ,

where [cν,Xd ]i = cν(xdi ) and [CXd ,Xq ]i j = c(xdi , xq j ).
However, even with the simplified structure afforded by the
use of separable kernels, the implementation of multi-output
Bayesian cubature remains computationally challenging,
calling for some (DN )2 kernel evaluations and solution to
a linear system of dimension DN . This is problematic if a
large number of integrands is to be handled simultaneously.
The next section demonstrates how fully symmetric points
sets can be exploited to reduce this cost.

Remark 3 Note that using the same point set X ′ for each inte-
grand yields immediate computational simplification, since
in this case the above matrices can be written as Kronecker
products:

kν,X = B ⊗ cν,X ′ and K X = B ⊗ CX ′,X ′ .

However, this case is of little practical interest because, by
the properties of the Kronecker product,

W X = ID ⊗ wX ′ ,

where wX ′ ∈ R
N are the standard Bayesian cubature

weights (8) for the covariance function c and points X ′ (Xi
et al. 2018, Supplements B and C.1). That is, the integral
estimates μN ( f †) reduce to those given by the standard
Bayesian cubature method applied independently to each
integral.

4.3 A symmetry exploit for multi-output Bayesian
cubature

Our main result in this section is a second generalisation of
Theorem 1, in this case for the multi-output Bayesian cuba-
ture method.

Theorem 3 Consider the multi-output Bayesian cubature
method based on a separable matrix-valued kernel k. Let
the domain M, measure ν, and uni-output kernel c each
be fully symmetric and fix the mean function to be m ≡ 0.
Suppose that each Xd is a union of J fully symmetric sets:
Xd = ⋃J

j=1[λd j ] for some Λd = {λd1, . . . ,λd J } ⊂ M such

that nΛ
j = #[λd j ] does not depend on d and, consequently,

#Xd = N for each d = 1, . . . , D. Then the output of the
multi-output Bayesian cubature method can be expressed in
the fully symmetric form

[μN ( f †)]d =
D∑

q=1

J∑
j=1

[WΛ,q ] jd

∑
x∈[λq j ]

f †q (x), (23)

Σ N = Bcν,ν −
D∑

d=1

J∑
j=1

Pd j B
diag
j , (24)

where Bdiag
j is the diagonal D × D matrix formed out of the

j th row of B and

Pd j=
⎡
⎢⎣

[WΛ,d ] j1cν(λ
1 j )nΛ

j · · · [WΛ,d ] j1cν(λ
Dj )nΛ

j
...

. . .
...

[WΛ,d ] j Dcν(λ
1 j )nΛ

j · · · [WΛ,d ] j Dcν(λ
Dj )nΛ

j

⎤
⎥⎦ .

The weight matrix

WΛ = [WT
Λ,1 · · ·WT

Λ,D]T ∈ R
D J×D, WΛ,d ∈ R

J×D,
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is the solution to the linear system SWΛ = kν,Λ, where

S =
⎡
⎢⎣

B11S11 · · · B1DS1D
...

. . .
...

BD1SD1 · · · BDDSDD

⎤
⎥⎦ ∈ R

D J×D J ,

[Sdq ]i j =
∑

x∈[λq j ]
c(λdi , x),

kν,λ =
⎡
⎢⎣

B11cν,Λ1 · · · B1Dcν,ΛD
...

. . .
...

BD1cν,Λ1 · · · BDDcν,ΛD

⎤
⎥⎦ ∈ R

D J×D,

[cν,Λd ] j = cν(λ
d j ).

Proof The matrix equation SWΛ = kν,Λ corresponds to the
D2 J equations

D∑
q=1

Bdq

J∑
i=1

[Sdq ] j i [WΛ,q ]id ′ = Bdd ′cν(λ
d ′ j )

for (d, d ′, j) ∈ {1, . . . , d}2 × {1, . . . , J }. In turn, through
Lemmas 2 and 4, these are equivalent to

D∑
q=1

Bdq

J∑
i=1

[WΛ,q ]id ′
∑

x∈[λqi ]
c(xd j ′, x) = Bdd ′cν(xd ′ j ′)

for (d, d ′) ∈ {1, . . . , D}2 and j ′ = 1, . . . , nΛ
j , j = 1, . . . , J .

There are a total of D2∑J
j=1 nΛ

j = D2N of these equations.
The weights

Wd =

⎡
⎢⎢⎢⎣

[WΛ,d ]111nΛ
1

· · · [WΛ,d ]1D1nΛ
1

...
. . .

...

[WΛ,d ]J11nΛ
J

· · · [WΛ,d ]J D1nΛ
J

⎤
⎥⎥⎥⎦

in (20) are then seen to solve the fullmatrix equation K XW =
kν,X . The expressions for the posterior mean and variance
follow from straightforward manipulation of (18) and (19).

��
The computational complexity of forming the fully sym-

metric weight matrix WΛ is dominated by the D J N kernel
evaluations needed to form S and the inversion of this
D J × D J matrix. Due to J often being orders of magni-
tude smaller than N , these tasks remain feasible even for
a very large total number of points DN . For example, in
Sect. 6.3 the result of Theorem 3 is applied to facilitate the
simultaneous computation of up to D = 50 integrals aris-
ing in a global illumination problem, each integrand being
evaluated at up to N = 288 points. Such results can barely
be obtained by direct solution of the original linear system
in (20).

5 Symmetric change of measure

The results presented in this article, and those originally
described in Karvonen and Särkkä (2018), rely on the
assumption that the measure ν is fully symmetric (see
Sect. 2.2.2). This is a strong restriction;mostmeasures are not
fully symmetric. However, this assumption can be avoided in
a relatively straightforward manner, which is now described.

Suppose that M is a fully symmetric domain and that ν is
an arbitrary measure, admitting a density pν , against which
the function f † : M → R is to be integrated. Further suppose
that there is a fully symmetric measure ν∗ on M such that
ν is absolutely continuous with respect to ν∗, and therefore
admits a density pν∗ such that theRadon–Nikodymderivative
dν/dν∗ = pν(x)/pν∗(x) is well-defined. Then the integral
of interest can be re-written as an integral with respect to the
fully symmetric measure ν∗:
∫

M
f †(x) dν(x) =

∫
M

f †∗ (x) dν∗(x),

f †∗ (x) : = f †(x)
pν(x)

pν∗(x)
.

Note that the existence of the second integral follows from the
Radon–Nikodym property and the monotone convergence
theorem. Thus, the assumption of a fully symmetric measure
ν in the statement of Theorems 1, 2, and 3 is not overly
restrictive. This symmetric change of measure technique is
demonstrated on a numerical example in Sect. 6.4.

Remark 4 Note that the situation here is unlike standard
importance sampling (Robert and Casella 2013, Section 3.3),
in that the importance distribution ν∗ is required to be fully
symmetric. As such, it seems not obvious how to mathe-
matically characterise an “optimal” choice of ν∗. Indeed,
any notion of optimality ought also depend on the cubature
method that will be used. Nevertheless, obvious construc-
tions (e.g. the choice of ν∗ as an isotropic centred Gaussian
for ν sub-Gaussian and M = R

m) can work rather well.

6 Results

In this section, we assess the performance of the fully
symmetric Bayes–Sard and fully symmetric multi-output
Bayesian cubature methods based on computational simpli-
fications provided in Theorems 2 and 3. MATLAB code for
all examples is provided at https://github.com/tskarvone/bc-
symmetry-exploits.
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6.1 Selection of fully symmetric sets

The choice of generator vectors Λ = {λ1, . . . ,λJ } for a
fully symmetric point set is practically important and has not
yet been discussed. In principle one may wish to select Λ in
order to minimise a criterion, such as the posterior standard
deviation σN . However, it appears that such optimal Λ are
mathematically intractable in general. Moreover, numerical
optimisation methods cannot be naively applied to approx-
imate the optimal Λ, since in high dimensions a sparsity
structure in the generator vectors λ j is required to prevent
creation ofmassive point sets [λ j ]. Thus, althoughwe cannot
provide definitive guidelines on how to select the generators
in the setting of this article, there are some useful heuris-
tics that have guided us in the examples to follow and those
presented in Karvonen and Särkkä (2018, Section 5):

– In low dimensions, say m ≤ 4, it is feasible to use (quasi)
Monte Carlo samples as generators, as each fully sym-
metric set will contain at most 384 points (see Table 1).
However, a large number of fully symmetric sets may be
needed to ensure sufficient coverage of the space. This
approach can work, as in Sect. 6.3, but is occasionally
prone to failure (Karvonen andSärkkä 2018, Section 5.3).

– In higher dimensions (or when a more robust design
is desired), we recommend selecting a tried-and-tested
fully symmetric point set, such as a sparse grid (Holtz
2011, Chapter 4). This can then be further modified
if required, since fully symmetric sets can be added
or removed at will. In very high dimensions, this can
amount to using effectively low-dimensional genera-
tor vectors of the forms (x1, 0, . . . , 0), (x2, 0, . . . , 0),
(x1, x2, 0, . . . , 0) and so on, for points xi that come from
some classical one-dimensional integration rule, such as
Gauss–Hermite or Clenshaw–Curtis.

These principles guided our choice of fully symmetric point
sets in the sequel.

6.2 Zero coupon bonds

This example involves a model for zero coupon bonds that
has been used to assess accuracy and robustness of the
Bayes–Sard cubature and fully symmetric Bayesian cuba-
ture methods in Karvonen and Särkkä (2018) and Karvonen
et al. (2018).

6.2.1 Integration problem

The integral of interest, arising from Euler–Maruyama dis-
cretisation of the Vasicek model, is

P(0, T ) := E

[
exp

(
−Δt

T −1∑
i=0

rti

)]

= exp(−Δtrt0)E

[
exp

(
−Δt

T −1∑
i=1

rti

)]
,

(25)

where rti are particular Gaussian random variables and Δt
and rt0 are parameters of the integrand. The dimension
m = T − 1 of the integrand can be freely selected and the
integral admits a convenient closed-form solution; see Holtz
(Holtz 2011, Section 6.1) or Karvonen and Särkkä (2018,
Section 5.5) for a more complete description of this bench-
mark integral.

6.2.2 Setting

The accuracy of the standard Bayesian cubature and Bayes–
Sard cubature methods was compared, for computing the
integral (25) in a setting identical to that of Karvonen and
Särkkä (2018, Section 5.5). In particular, the same parameter
values and point set (a sparse grid based on a certain Gauss–
Hermite sequence with the origin removed), were used. The
kernel was the Gaussian kernel with length-scale � > 0:

k(x, x′) = exp

(
−‖x − x′‖2

2�2

)
. (26)

Accuracy of the two cubature methods was assessed for the
heuristic length-scale choices � = m and � = √

m. The linear
space π in the Bayes–Sard method, defined by the collection
πα of multi-indices, was taken to be πα = {α : |α| ≤ r} for
either r = 1 (linear) or r = 2 (quadratic) polynomials. The
dimension T ranged between 20 and 300. Since the num-
ber of points in a sparse grid depends on the dimension,
the maximal N used was 179,400. Theorems 1 and 2 facili-
tated the computation, respectively, of the standard Bayesian
cubature and Bayes–Sard cubature method. Note that, in the
results that are presented next, even though N increases, no
convergence (or necessarily monotonicity of the error) is to
be expected because the integration problem becomes more
difficult as T is increased.

6.2.3 Results

The results are depicted in Fig. 2. We observe that Bayes–
Sard method is much less sensitive to the length-scale choice
compared to the standard Bayesian cubature method. For
instance, the selection � = √

m has Bayes–Sard outperform
the standard Bayesian cubature by roughly three orders of
magnitude. It is also clear that, in this particular problem, the
addition ofmore polynomial basis functions can significantly
improve the integral estimates.
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Fig. 2 Numerical computation of the integral (25) using fully symmetric Bayesian cubature (BC) and Bayes–Sard cubature (BSC) for different
choices of the length-scale � and polynomial degree r of the parametric function space π used in BSC

It was not possible to obtain results at this scale in the ear-
lier work of Karvonen et al. (2018), where the largest value of
N considered was 5,000. In contrast, our result in Theorem 2
enabled point sets of size up to N = 179,400 to be used. The
computational time required to produce the results for the
Bayes–Sard cubature in the most demanding case, T = 300
and m = 2, was on the order of 2.5min on a standard laptop
computer. However, this can be mostly attributed to a sub-
optimal algorithm for generating the sparse grid. Indeed, after
the points had been obtained it took roughly one second to
compute the Bayes–Sard weights.

6.3 Global illumination integrals

Next we considered the multi-output Bayesian cubature
method, together with the symmetry exploit developed in
Sect. 4.1, to compute a collection of closely related integrals
arising in a global illumination context. This is a popular
application of Bayesian cubaturemethods; see Brouillat et al.
(2009), Marques et al. (2013, 2015), Briol et al. (2019) and
Xi et al. (2018) for existing work. In particular, multi-output
Bayesian cubature was applied to the problem that we con-
sider below in Xi et al. (2018), where D = 5 integrals were
simultaneously computed. Through computational simpli-
fications obtained by using fully symmetric sets, in what
follows we simultaneously compute up to D = 50 integrals,
a tenfold improvement.

6.3.1 Integration problem

Global illumination is concernedwith the rendering of glossy
objects in a virtual environment (Dutre et al. 2006). The
integration problem studied here is to compute the outgo-
ing radiance L0(ωo) in the direction ωo, for different values
of the observation angleωo. In practical terms, this represents

the amount of light travelling from the object to an observer at
an observation angle ωo. The need for simultaneous compu-
tation for differentωo can arise when the observation angle is
rapidly changing, for example as the player moves in a video
game context. The outgoing radiance is given by the integral

L0(ω0) = Le(ω0) +
∫
S2

Li (ωi )ρ(ωi ,ωo)[ωT
i n]+ dν(ωi )

with respect to the uniform (i.e. Riemannian) measure ν on
the unit sphere

S
2 = {

x ∈ R
3 : ‖x‖ = 1

} ⊂ R
3.

Here Le(ωo) is the amount of light emitted by the object
itself, essentially a constant, while Li (ωi ) is the amount of
light being reflected from the object, originating from angle
ωi ∈ S

2. That reflection is impossible from a reflexive angle
is captured by the term [ωT

i n]+ := max{0,ωT
i n} with n

the unit normal to the object. That light is reflected less
efficiently at larger incidence angles is captured by a bidi-
rectional reflectance distribution function

ρ(ωi ,ωo) = 1

2π
exp

(
ωT

i ωo − 1
)
.

Evaluation of Li (ωi ) involves a call to an environment map
[in this case, a picture of a lake in California; see Briol et al.
(2019)], which is associated with a computational commu-
nication cost. The illumination integral must be computed
for each of the red, green, and blue (RGB) colour channels;
we treat the integration problems corresponding to different
colour channels as statistically independent.

123



Statistics and Computing

1 10 20 30 40 50

10−2

10−1

100

Number of integrands (D)

Red

1 10 20 30 40 50

10−2

10−1

Number of integrands (D)

Green

1 10 20 30 40 50

10−2

10−1

Number of integrands (D)

Blue

MOBC (mean; J = 3)

MOBC (mean; J = 6)

MOBC (max; J = 3)

MOBC (max; J = 6)

BC (N = 144)

BC (N = 288)

Fig. 3 The mean [green; Eq. (28)] and maximal [red; Eq. (29)] rela-
tive integration errors obtained when simultaneously approximating D
global illumination integrals (27) using Bayesian cubature (BC) with
random points and fully symmetric multi-output Bayesian cubature

(MOBC). Here J = 3 and J = 6 random generator vectors were used
to produce a fully symmetric point set of size N = 144 (for J = 3) and
N = 288 (for J = 6). The displayed results have been averaged over
100 independent realisations of the point sets. (Color figure online)

6.3.2 Setting

The performance of the standard Bayesian cubature and
multi-output Bayesian cubature methods was assessed on a
collection of D related integrals, where D was varied up to
a maximum of Dmax = 50. The integrands were indexed
by observation angles ωd

o with a fixed azimuth and elevation
ranging uniformly on the interval [π

4 − π
24 ,

π
4 + π

24 ]:

ωd
o :=

(
0,

π

4
− π

24

[
1 − 2

(
d − 1

Dmax − 1

)])
.

To formulate the problem in the multi-output framework, we
define the associated integrands

f †d = Li (ωi )ρ(ωi ,ω
d
o)[ωT

i n]+

ford = 1, . . . , Dmax.The aim is then to compute the integrals

I ( f †d ) :=
∫
S2

f †d (ωi ) dν(ωi ). (27)

In our experiments, a separable vector-valued covariance
function was used, defined as in (22) with

c(x, x′) = 8

3
− ‖x − x′‖, [B]dq = exp

(
(ωd

o)Tω
q
o − 1

)
.

This prior structure is identical to that used in Briol et al.
(2019) and Xi et al. (2018) and corresponds to assuming that
the integrand belongs to a Sobolev space of smoothness 3

2 .
The kernel c has tractable kernel means: cν(x) = 4

3 for every
x ∈ S

2 and cν,ν = 4
3 .

In order to exploit Theorems 1 and 3, we need to restrict to
fully symmetric point sets on S2. To obtain such sets, we fol-
lowed the method proposed in Karvonen and Särkkä (2018,
Section 5.3). That is, we draw, for each d = 1, . . . , D, either
J = 3 or J = 6 independent generator vectors from the uni-
form distribution ν on S

2 and use these to generate distinct
fully symmetric point sets X1, . . . , X Dmax ⊂ S

2. Equation (9)
implies that N = 3×48 = 144 or N = 6×48 = 288.4 This
approach to generation of a point set was selected for its sim-
plicity, our main focus being on the multi-output framework
and a large number of integrals D. Alternative point sets on
S
2 are numerous, such as rotated adaptations of numerically

computed approximations to the optimal quasi Monte Carlo
designs developed in Brauchart et al. (2014).

6.3.3 Results

The results are depicted in Fig. 3 in terms of the rela-
tive integration error for each RGB colour channel. For
D = 1, . . . , Dmax, define the vector-valued functions

f †,D = ( f †1 , . . . , f †D) : S2 → R
D.

The figure shows the improvement in integration accuracy
when D increases andmore integrands are considered simul-
taneously. Displayed are the mean

1

D

D∑
d=1

∣∣∣I ( f †d ) − [μN ( f †,D)]d

∣∣∣
I ( f †d )

(28)

4 The elements of each random generator vector are almost surely non-
zero and distinct.
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Fig. 4 Average computational time (over 100 independent runs), inte-
grand evaluations included, for computation of the fully symmetric
multi-output Bayesian cubature estimates for one colour channel. The
algorithm was implemented in MATLAB and run on a desktop com-
puter with an Intel Xeon 3.40GHz processor and 15GB of RAM

and maximal

max
d=1,...,D

∣∣∣I ( f †d ) − [μN ( f †,D)]d

∣∣∣
I ( f †d )

(29)

relative errors for D = 1, . . . , Dmax. For comparison, the
figure also contains results for the standard Bayesian cuba-
ture method, applied separately to each of the uni-output
integrands f †d . Each of the reference integrals I ( f †d ) was
computed using brute force Monte Carlo, with 10 million
points used.

In accordance with Xi et al. (2018), we observed that
the multi-output Bayesian cubature method is superior to
the standard one already when D = 5. The performance
gain of the multi-output method keeps increasing when more
integrands are added but is ultimately bounded. This is rea-
sonable since integrands for wildly different ωd

o can convey
little information about each other. For the smallest values
of D the multi-output method is less accurate than the stan-
dard Bayesian cubature method. This can be explained by
potential non-uniform covering of the unit sphere when the
total number D J of fully symmetric sets is low (e.g. when
some of the generator vectors happen to cluster, the fully
symmetric sets they generated do not greatly differ, so that
less information is obtained on the integrand). For instance,
the standard deviation over the 100 runs in the relative error
of fully symmetric Bayesian cubature for the first integral
(i.e. the case D = 1 in Fig. 3) was 0.34 (J = 3) or 0.17
(J = 6) while that of the standard Bayesian cubature with
random points was only 0.19 (N = 144) or 0.11 (N = 288).
See also Karvonen and Särkkä (2018, Figure 5.1).

Computational times remained reasonable throughout this
experiment; see Fig. 4. For example, without symmetry
exploits, the case D = 50 and J = 6would require (DN )2 =
207,360,000 kernel evaluations and inversion of a 14,400-
dimensional matrix while Theorem 3 reduces these numbers,

respectively, to DN J = 86,400 and D J = 300. FromFig. 4,
it is seen that this computation took only 0.8 s. This suggests
that with more carefully selected fully symmetric point sets
it may be possible to realise the desire expressed in Xi et
al. (2018, Section 4) of simultaneous computation of up to
thousands of related integrals.

6.4 Symmetric change of measure illustration

The purpose of this final experiment is to briefly illustrate the
symmetric change ofmeasure technique, proposed in Sect. 5.
To limit scope, we consider applying this technique in con-
junctionwith the fully symmetric standardBayesian cubature
method (i.e. Theorem 1).

6.4.1 Integration problem

Let μ f ∈ R
6 and Σ f ∈ R

6×6 be a vector and a positive-
definite matrix. Consider integration over R6 of the function

f †(x) = exp

(
−1

2
(x − μ f )

TΣ−1
f (x − μ f )

)
(30)

with respect to a Gaussian mixture distribution, ν, to be spec-
ified. Integrals of this form can be easily computed in closed
form. For this illustration, we took

μ f =

⎡
⎢⎢⎢⎢⎢⎣

1
5

1
5 + 3

50
...

1
2 − 3

50
1
2

⎤
⎥⎥⎥⎥⎥⎦

, Σ f =
[( 4

5

)2
I3 03×3

03×3
( 11
10

)2
I3

]
.

6.4.2 Setting

For these experiments ν was taken to be a uniformmixture of
eight Gaussian distributions N (μi ,Σ i ), i = 1, . . . , 8, with
their mean vectors drawn independently from the standard
normal distributions and detrended so that

∑8
i=1 μi = 0.

The covariance matrices of each Gaussian component were
independent and normalised draws from the Wishart distri-
bution W6(I6, d+2(q−1)), q ∈ N. The resulting ν is almost
surely not fully symmetric and thereforeTheorem1cannot be
applied. Different values of q correspond to different degrees
of symmetricity of ν: for small values of q covariance matri-
ces Σ i are likely to be nearly singular, while as q → ∞
they become diagonal. Accordingly, we experimented with
q ∈ {1, . . . , 8}. For each q, the proposal distribution ν∗
was a zero-mean Gaussian with diagonal covariance σ 2 I6
for σ 2 set to the mean of the diagonal elements of the Σ i .
For Bayesian cubature, we used the Gaussian kernel (26)
with a length-scale � = 0.8 and the Gauss–Hermite sparse
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Fig. 5 Relative error in numerical integration of the function (30) using
the fully symmetric Bayesian cubature method based on a symmetric
change of measure. Here q is used to index symmetricity of ν and thus
more challenging ν correspond to small q

grid (Karvonen and Särkkä 2018, Section 4.2) with the mid-
point removed. Note that the resulting point sets are not
nested for different N .

6.4.3 Results

The results are depicted in Fig. 5 for one fairly representa-
tive run. Note how larger values of q correspond to improved
integration accuracy. It appears that for reasonably symmet-
ric constituent distributions the proposedmethodworkswell;
when the covariance matrices are nearly singular we have
observed that this simple procedure can seriously fail. This
is analogous to scenarious where standard importance sam-
pling can be expected to fare well (Robert and Casella 2013).
Thus, based on this example at least, the symmetric change
of measure technique appears to be a promising strategy to
generalise the results in Theorems 1, 2 and 3. The largest
point sets considered contained J = 168 fully symmetric
sets, which correspond to a point set of size N = 227,304.

7 Discussion

There is increasing interest in the use of Bayesian meth-
ods for numerical integration (Briol et al. 2019). Bayesian
cubature methods are attractive due to analytic and theoreti-
cal tractability of the underlying Gaussian model. However,
these method are also associated with a computational cost
that is cubic in the number of points, N , and moreover
the linear systems that must be inverted are typically ill-
conditioned.

The symmetry exploits developed in this work circumvent
the need for large linear systems to be solved in Bayesian
cubature methods. In particular, we presented novel results
for Bayes–Sard cubature (Karvonen et al. 2018) and multi-
output Bayesian cubature (Xi et al. 2018) that make it
possible to apply these methods even for extremely large
datasets or when there are many function to be integrated.

In conjunction with the inherent robustness of the Bayes–
Sard cubature method (Karvonen et al. 2018), this results in
a highly reliable probabilistic integration method that can be
applied even to integrals that are relatively high-dimensional.

Three extensions of this work are highlighted: First,
the combination of multi-output and Bayes–Sard methods
appears to be a natural extension and we expect that symme-
try properties can similarly be exploited for this method. This
could lead to promising procedures for integration of collec-
tions of closely related high-dimensional functions appearing
in, for example, financial applications (Holtz 2011). Sim-
ilarly, our exploits should extend to the Student’s t based
Bayesian cubatures proposed in Prüher et al. (2017). Sec-
ond, the investigation of optimality criteria for the symmetric
change of measure technique in Sect. 5 remains to be
explored. Third, although we focussed solely on compu-
tational aspects, the important statistical question of how
to ensure Bayesian cubature methods produce output that
is well-calibrated remains to some extent unresolved.5 As
discussed in Karvonen and Särkkä (2018), it appears that
symmetry exploits do not easily lend themselves to selec-
tion of kernel parameters, for instance via cross-validation
or maximisation of marginal likelihood.6 A potential, though
somewhat heuristic, way to proceed might be to exploit the
concentration ofmeasure phenomenon (Ledoux 2001) or low
effective dimensionality of the integrand (Wang and Sloan
2005) in order to identify a suitable data subset on which
kernel parameters can be calibrated more easily or a priori.
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