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Abstract
This article reviews and studies the properties of Bayesian quadrature weights, which strongly affect stability and robustness
of the quadrature rule. Specifically, we investigate conditions that are needed to guarantee that the weights are positive or
to bound their magnitudes. First, it is shown that the weights are positive in the univariate case if the design points locally
minimise the posterior integral variance and the covariance kernel is totally positive (e.g. Gaussian and Hardy kernels).
This suggests that gradient-based optimisation of design points may be effective in constructing stable and robust Bayesian
quadrature rules. Secondly, we show that magnitudes of the weights admit an upper bound in terms of the fill distance and
separation radius if the RKHS of the kernel is a Sobolev space (e.g. Matérn kernels), suggesting that quasi-uniform points
should be used. A number of numerical examples demonstrate that significant generalisations and improvements appear to
be possible, manifesting the need for further research.

Keywords Bayesian quadrature · Probabilistic numerics · Gaussian processes · Chebyshev systems · Stability

1 Introduction

This article is concernedwithBayesianquadrature (O’Hagan
1991; Rasmussen and Ghahramani 2002; Briol et al. 2019),
a probabilistic approach to numerical integration and an
example of a probabilistic numerical method (Larkin 1972;
Hennig et al. 2015; Cockayne et al. 2019). Let Ω be a sub-
set of Rd , d ≥ 1, and ν a Borel probability measure on Ω .
Given an integrand f : Ω → R, the task is to approximate
the integral

Iν( f ):=
∫

Ω

f dν,
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the solution of which is assumed not to be available in
closed form. In Bayesian quadrature, a user specifies a
prior distribution over the integrand as a Gaussian process
f GP ∼ GP(0, k) by choosing a positive-definite covari-
ance kernel k : Ω × Ω → R, so as to faithfully represent
their knowledge about the integrand, such as its smooth-
ness. The user then evaluates the true integrand at chosen
design points X = {x1, . . . , xn} ⊂ Ω . By regarding the
pairsD:={(xi , f (xi ))}ni=1 thus obtained as “observed data”,
the posterior distribution Iν( f GP) | D becomes a Gaussian
random variable. This posterior distribution is useful for
uncertainty quantification and decisionmaking in subsequent
tasks; this is one factor that makes Bayesian quadrature a
promising approach inmodern scientific computation, where
quantification of discretisation errors is of great importance
(Briol et al. 2019; Oates et al. 2017).

In Bayesian quadrature, the mean of the posterior over the
integral is used as a quadrature estimate. The mean given is
as a weighted average of function values:

E
[
Iν( f GP) | D] =

n∑
i=1

w
BQ

X ,i f (xi ) ≈
∫

Ω

f dν,

where w
BQ

X ,1, . . . , w
BQ

X ,n ∈ R are the weights computed
with the kernel k, design points X and the measure ν (see
Sect. 2.1 for details). This form is similar to (quasi) Monte
Carlo methods, where x1, . . . , xn are (quasi) random points
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from a suitable proposal distribution and w1, . . . , wn are the
associated importance weights, positive by definition. This
similarity naturally leads to the following question: Are the
weights w

BQ

X ,1, . . . , w
BQ

X ,n of Bayesian quadrature positive?
These weights are derived with no explicit positivity con-
straint, so in general some of them can be negative, which
is observed in Huszár and Duvenaud (2012, Section 3.1.1).
Therefore, the question can be stated as:Under which condi-
tions on the points and the kernel are the weights guaranteed
to be positive?

This question is important both conceptually and prac-
tically. On the conceptual side, positive weights are more
natural, given that the weighted sample (wi , xi )ni=1 can be
interpreted as an approximation of the positive probability
measure ν; in fact, the Bayesian quadrature weights pro-
vide the best approximation of the representer of ν in the
reproducing kernel Hilbert space (RKHS) of the covariance
kernel, provided that x1, . . . , xn are fixed (see Sect. 2.2).
Thus, if the weights are positive, then each weight wi can
be interpreted as representing the “importance” of the asso-
ciated point xi for approximating ν. This interpretation may
be more acceptable to users familiar withMonte Carlo meth-
ods, encouraging them to adopt Bayesian quadrature.

On the practical side, quadrature rules with positive
weights enjoy the advantage of being numerically more sta-
ble against errors in integrand evaluations. In fact, besides
Monte Carlo methods, many other practically successful or
in some sense optimal rules have positive weights. Some
important examples include Gaussian (Gautschi 2004, Sec-
tion 1.4.2) and Clenshaw–Curtis quadrature (Clenshaw and
Curtis 1960) and their tensor product extensions. Other
domains besides subsets of R

d have also received their
share of attention. For instance, positive-weight rules on the
sphere are constructed in Mhaskar et al. (2001) and inter-
esting results connecting fill distance and positivity of the
weights of quadrature rules on compact Riemannian mani-
folds appear in Breger et al. (2018). It is also known that,
in some typical function classes, such as Sobolev spaces,
optimal rates of convergence can be achieved by considering
only positive-weight quadrature rules; see for instanceNovak
(1999, Section1) and references therein.Therefore, if one can
find conditions under which Bayesian quadrature weights are
positive, then these conditions may be used as guidelines in
construction of numerically stableBayesian quadrature rules.

This article reviews existing, and derives new, results on
properties of the Bayesian quadrature weights, focusing in
particular on their positivity andmagnitude. One of our prin-
cipal aims is to stimulate new research on quadrature weights
in the context of probabilistic numerics. While convergence
rates of Bayesian quadrature rules have been studied exten-
sively in recent years (Briol et al. 2019;Kanagawa et al. 2016,
2019), analysis of the weights themselves has not attracted
muchattention.On theother hand, the earliestworkbyLarkin

(1970),Richter-Dyn (1971a) andBarrar andLoeb (1976) [see
Oettershagen (2017) for a recent review] done in the 1970s on
kernel-based quadrature already revealed certain interesting
properties of the Bayesian quadrature weights. These results
seem not well-known in the statistics and machine learning
community. Moreover, there are some useful results from the
literature on scattered data approximation (De Marchi and
Schaback 2010), which can be used to analyse the proper-
ties of Bayesian quadrature weights. The basics of Bayesian
quadrature are reviewed in Sect. 2 while the main contents,
including simulation results, of the article are presented in
Sects. 3 and 4 .

In Sect. 3, we present results concerning positivity of the
Bayesian quadrature weights.We discuss results on the num-
ber of the weights that must be positive, focusing on the
univariate case and totally positive kernels (Definition 2).
Corollary 1, the main result of this section, states that all the
weights are positive if the design points are locally optimal.
A practically relevant consequence of this result is that it may
imply that the weights are positive if the design points are
obtained by gradient descent, which is guaranteed to provide
locally optimal points [see e.g. Lee et al. (2016)].

Section 4 focuses on results on the magnitudes of the
weights. More specifically, we discuss the behaviour of
the sum of absolute weights,

∑n
i=1

∣∣w BQ

X ,i

∣∣, that strongly
affects stability and robustness of Bayesian quadrature. If
this quantity is small, the quadrature rule is robust against
misspecification of the Gaussian process prior (Kanagawa
et al. 2019) and errors in integrand evaluations (Förster 1993)
and kernel means (Sommariva and Vianello 2006a, pp. 298–
300). This quantity is also related to the numerical stability
of the quadrature rule. Using a result on stability of kernel
interpolants by De Marchi and Schaback (2010), we derive
an upper bound on the sum of absolute weights for some
typical cases where the Gaussian process has finite degree of
smoothness and the RKHS induced by the covariance kernel
is norm-equivalent to a Sobolev space.

2 Bayesian quadrature

This section defines a Bayesian quadrature rule as the inte-
gral of the posterior of Gaussian process used to model the
integrand. We also discuss the equivalent characterisation of
this quadrature rule as theworst-case optimal integration rule
in the RKHSH(k) induced by the covariance kernel k of the
Gaussian process.

2.1 Basics of Bayesian quadrature

In standard Bayesian quadrature (O’Hagan 1991; Minka
2000; Briol et al. 2019), the deterministic integrand f : Ω →
R is modelled as a Gaussian process. The integrand is
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assigned a zero-meanGaussianprocess prior f GP ∼ GP(0, k)
with a positive-definite covariance kernel k. This is to say that
for any n ∈ N and any distinct points X = {x1, . . . , xn} ⊂ Ω

we have ( f GP(x1), . . . , f GP(xn)) ∼ N(0, K X ), with

[K X ]i j :=Cov
[
f GP(x j ), f GP(xi )

] = k(x j , xi )

the n × n positive-definite (and hence invertible) kernel
matrix. Conditioning on the dataD = {(xi , f (xi ))}ni=1, con-
sisting of evaluations f X :=( f (xi ))ni=1 ∈ R

n of f at points
X , yields a Gaussian posterior process with the mean

μX , f (x):=E
[
f GP(x) | D]

= kX (x)TK−1
X f X

(1)

and covariance

σ 2
X (x, x′):=Cov

[
f GP(x), f GP(x′) | D]

= k(x, x′) − kX (x)TK−1
X kX (x′),

where the n-vector kX (x) has the elements [kX (x)]i =
k(x, xi ). Note that the posterior covariance only depends
on the points, not on the integrand, and that the poste-
rior mean interpolates the data (i.e. μX , f (xi ) = f (xi ) for
i = 1, . . . , n). Accordingly, the posterior mean often goes
by the name kernel interpolant or, if the kernel is isotropic,
radial basis function interpolant.

Due to the linearity of the integration operator, the poste-
rior of the integral becomes a Gaussian distribution I ( f GP) |
D ∼ N (I BQ

X ( f ),V BQ

X ) with the mean and variance

I BQ

X ( f ):=E
[
Iν( f GP) | D]

=
∫

Ω

E
[
f GP(x) | D]

dν(x)

= kTν,X K
−1
X f X ,

V
BQ

X :=Var[I ( f GP) | D]
=

∫
Ω

∫
Ω

Cov
[
f GP(x), f GP(x′) | D]

dν(x)dν(x′)

= Iν(kν) − kTν,X K
−1
X kν,X , (2)

where kν(x):= ∫
Ω
k(·, x)dν(x) is the kernel mean (Smola

et al. 2007), kν,X ∈ R
n with [kν,X ]i = kν(xi ) and

Iν(kν) =
∫

Ω

kν(x)dν(x) =
∫

Ω

∫
Ω

k(x, x′)dν(x′)dν(x).

The integral mean I BQ

X ( f ) is used to approximate the true
intractable integral Iν( f )while the varianceV

BQ

X is supposed
to quantify epistemic uncertainty, due to partial information
being used (i.e. a finite number of function evaluations) inher-
ent to this approximation.

The integral mean I BQ

X ( f ) indeed takes the form a quadra-
ture rule, a weighted sum of function evaluations:

I BQ

X ( f ) = (w
BQ

X )T f X =
n∑

i=1

w
BQ

X ,i f (xi ),

where w
BQ

X ,1, . . . , w
BQ

X ,n are the Bayesian quadrature weights
given by

w
BQ

X :=(w
BQ

X ,i )
n
i=1:=K−1

X kν,X ∈ R
n . (3)

The purpose of this article is to analyse the properties of these
weights.

A particular property of a Bayesian quadrature rule is that
the n kernel translates kxi :=k(·, xi ) are integrated exactly:

I BQ

X (kxi ) = Iν(kxi ) = kν(xi ) for each i = 1, . . . , n, (4)

which is derived from the fact that the j th equation of the
linear system K Xw BQ

X = kν,X defining the weights is

n∑
i=1

k(x j , xi )w
BQ

X ,i = kν(x j ).

The left-hand side is precisely I BQ

X (kx j ) while on the right-
hand side we have kν(x j ) = Iν(kx j ). Note also that the
integral variance is the integration error of the kernel mean:

V
BQ

X = Iν(kν) − kTν,X K
−1
X kν,X

= Iν(kν) − (w
BQ

X )Tkν,X

= Iν(kν) − I BQ

X (kν).

Occasionally, it is instructive to interpret the weights as
integrals of the Lagrange cardinal functions uX = (uX ,i )

n
i=1

[see e.g. Wendland (2005, Chapter 11)]. These functions are
defined as uX (x) = K−1

X kX (x), from which it follows that

μX , f (x) = uX (x)T f X =
n∑

i=1

f (xi )uX ,i (x). (5)

Consequently, the cardinality property

uX ,i (x j ) = δi j :=
{
1 if i = j,

0 if i 	= j .

is satisfied, as can be verified by considering the interpolant
μX ,gi to any function gi such that gi (x j ) = δi j . Since the
integral mean is merely the integral of μX , f , we have from
(5) that

I BQ

X ( f ) =
n∑

i=1

f (xi )Iν(uX ,i ).
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That is, the i th Bayesian quadrature weight is the integral of
the i th Lagrange cardinal function: w BQ

X ,i = Iν(uX ,i ).

2.2 Reproducing kernel Hilbert spaces

An alternative interpretation of Bayesian quadrature weights
is that they are, for the given points, the worst-case opti-
mal weights in the reproducing kernel Hilbert space H(k)
induced by the covariance kernel k. The material of this sec-
tion is contained in, for example,Briol et al. (2019, Section2),
Oettershagen (2017, Section 3.2) and Karvonen and Särkkä
(2018a, Section 2). For a comprehensive introduction to
RKHSs, see the monograph of Berlinet and Thomas-Agnan
(2011).

The RKHS induced by k is the unique Hilbert space
of functions characterised by (i) the reproducing property
〈kx, f 〉H(k) = f (x) for every f ∈ H(k) and x ∈ Ω and (ii)
the fact that kx ∈ H(k) for every x ∈ Ω . The worst-case
error inH(k) of a quadrature rule with points X and weights
w ∈ R

n is

eH(k)(X ,w)2:= sup
‖ f ‖H(k)≤1

∣∣∣∣
∫

Ω

f dν −
n∑

i=1

wi f (xi )

∣∣∣∣
= Iν(kν) − 2wTkν,X + wTK Xw.

It can be then shown that the Bayesian quadrature weights
w

BQ

X are the unique minimiser of the worst-case error among
all possible weights for these points:

w
BQ

X = argmin
w∈Rn

eH(k)(X ,w)

and

V
BQ

X = eH(k)(X ,w
BQ

X )2. (6)

Furthermore, theworst-case error can bewritten as theRKHS
error in approximating the integration representer kν that sat-
isfies Iν( f ) = 〈kν, f 〉H(k) for all f ∈ H(k):

eH(k)(X ,w
BQ

X ) = ∥∥kν − kQ
∥∥H(k) , kQ :=

n∑
i=1

w
BQ

X ,i kxi .

From this representation and theCauchy–Schwarz inequality
it follows that
∣∣Iν( f ) − I BQ

X ( f )
∣∣ = ∣∣〈kν − kQ, f 〉H(k)

∣∣
≤ ‖ f ‖H(k)

∥∥kν − kQ
∥∥H(k)

= ‖ f ‖H(k) eH(k)(X ,w
BQ

X ).

For analysis of convergence of Bayesian quadrature rules as
n → ∞, it is therefore sufficient to analyse how the worst-
case error (i.e. integral variance) behaves—as long as the

integrand indeed lives in H(k). Convergence will be dis-
cussed in Sect. 4.

3 Positivity

This section reviews existing results on the positivity of the
weights of Bayesian quadrature that can be derived in one
dimensionwhen the covariance kernel is totally positive. This
assumption, given in Definition 2, is stronger than positive-
definiteness but is satisfied by, for example, the Gaussian
kernel. For most of the section, we assume that d = 1 and
Ω = [a, b] for a < b. Furthermore, the measure ν is typi-
cally assumed to admit a density function with respect to the
Lebesgue measure,1 an assumption that implies Iν( f ) > 0
if f (x) > 0 for almost every x ∈ Ω .

Positivity of the weights was actively investigated during
the 1970s (Richter 1970; Richter-Dyn 1971a, b; Barrar et al.
1974; Barrar and Loeb 1976), and these results have been
recently refined and collected by Oettershagen (2017, Sec-
tion 4). To simplify presentation, some of the results in this
section are given in a slightly less general form than possible.
Two of the most important results are

– Theorem 1: At least one half of the weights of any
Bayesian quadrature rule are positive.

– Corollary 1: All the weights are positive when the points
are selected so that the integral posterior variance in (2)
is locally minimised in the sense that each of its n partial
derivatives with respect to the integration points vanishes
(Definition 3).

The latter of these results is particularly interesting since
(i) it implies that points selected using a gradient descent
algorithm may have positive weights and (ii) the resulting
Bayesian quadrature rule is a positive linear functional and
hence potentially well-suited for integration of functions that
are known to be positive—a problem for which a num-
ber of transformation-based methods have been developed
recently (Osborne et al. 2012; Gunter et al. 2014; Chai and
Garnett 2018).

As no multivariate extension of the theory used to prove
the aforementioned results appears to have been developed,
we do not provide any general theoretical results on the
weights in higher dimensions. However, some special cases
based on, for example, tensor products are discussed in
Sects. 3.7 and 3.9 and two numerical examples are used to
provide some evidence for the conjectures that multivariate
versions of Theorem 1 and Corollary 1 hold.

1 This can be usually relaxed to Iν being a positive linear functional:
Iν( f ) > 0 whenever f is almost everywhere positive.
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It will turn out that optimal Bayesian quadrature rules are
analogous to classical Gaussian quadrature rules in the sense
that, in addition to being exact for kernel interpolants [recall
(4)], they also exactly integrate Hermite interpolants (see
Sect. 3.2.2). We thus begin by reviewing the argument used
to establish positivity of the Gaussian quadrature weights.

3.1 Gaussian quadrature

Under the assumption that ν admits a density2 there exist
unique weights w1, . . . , wn and points x1, . . . , xn ∈ [a, b]
such that

n∑
i=1

wi P(xi ) =
∫ b

a
P(x)dν(x) (7)

for every polynomial P of degree at most 2n − 1 (Gautschi
2004, Chapter 1). This quadrature rule is known as a Gaus-
sian quadrature rule (for the measure ν). One can show the
positivity of the weights of a Gaussian rule as follows.

Proposition 1 Assume that ν admits a Lebesgue density.
Then the weights w1, . . . , wn of the Gaussian quadrature
(7) are positive.

Proof For each i = 1, . . . , n there exists a unique polynomial
Li of degree n − 1 such that Li (x j ) = δi j . This property is
shared by the functionGi :=L2

i ≥ 0 that, being of degree 2n−
2, is also integrated exactly by the Gaussian rule. BecauseGi

is almost everywhere positive, it follows from the assumption
that ν admits a density that

0 <

∫ b

a
Gi (x)dν(x) =

n∑
i=1

w j Gi (x j ) = wi .

The positivity of the weights is thus concluded. ��
This proofmay appear to be based on the closedness of the set
of polynomials under exponentiation. Closer analysis reveals
a structure that can be later generalised.

To describe this, recall that one of the basic properties of
polynomials is that a polynomial P of degree n can have at
most n zeroes, when counting multiplicities [for some prop-
erties of polynomials and interpolation with them, see e.g.
Atkinson (1989, Chapter 3)]. This is to say that, if for some
points x1, . . . , xm it holds that

P( ji )(xi ):= d ji

dx ji
P(x)

∣∣∣
x=xi

= 0

for ji = 0, . . . , qi − 1, with qi being the multiplicity of
the zero xi of P , then

∑m
i=1 qi ≤ n. This fact on zeroes of

2 This can be generalised to the cumulative distribution function having
infinitely many points of increase.

polynomials can be used to supply a proof of positivity of
the Gaussian quadrature weights that does not explicitly use
of the fact that square of a function is non-negative. By the
chain rule, the derivative of Gi vanishes at each x j such that
j 	= i . That is, Gi has a double zero at each of these n − 1
points (i.e. Gi (x j ) = 0 and G(1)

i (x j ) = 0), for the total of
2n−2 zeroes. Being a polynomial of degree 2n−2,Gi cannot
have any other zeroes besides these. Since all the zeroes of
Gi are double, it cannot hence have any sign changes. This
is because, in general, a function g that satisfies g(x) =
g(1)(x) = 0 but g(2)(x) 	= 0 at a point x cannot change its
sign at x , since its derivative changes sign at the point. From
Gi (xi ) = 1 > 0 it then follows that Gi is almost everywhere
positive.

3.2 Chebyshev systems and generalised Gaussian
quadrature

The argument presented above works almost as such when
the polynomials are replaced with generalised polynomials
and theGaussian quadrature rulewith a generalisedGaussian
quadrature rule. Much of the following material is covered
by the introductory chapters of the monograph by Karlin and
Studden (1966). In the following Cm([a, b]) stands for the
set of functions that are m times continuously differentiable
on the open interval (a, b).

Definition 1 (Chebyshev system) A collection of functions
{φi }mi=1 ⊂ Cm−1([a, b]) constitutes an (extended) Cheby-
shev system if any non-trivial linear combination of the
functions, called a generalised polynomial, has at mostm−1
zeroes, counting multiplicities.

Remark 1 Someof the resultswe later present, such asPropo-
sition 3, are valid even when a less restrictive definition, that
does not require differentiability of φi , of a Chebyshev sys-
tem is used. Of course, in this case the definition is not given
in terms of multiple zeroes. The above definition is used here
to simplify presentation. The simplest relaxation is to require
that {φi }mi=1 are merely continuous and that no linear combi-
nation can vanish at more than m − 1 points.

By selecting φi (x) = xi−1, we see that polynomials are
an example of a Chebyshev system. Perhaps the simplest
example of a non-trivial Chebyshev system is given by the
following example.

Example 1 Let φi (x) = ex xi−1 for i = 1, . . . ,m. Then
{φi }mi=1 constitute a Chebyshev system. To verify this,
observe that any linear combination φ of φ1, . . . , φm is of
the form φ(x) = ex P(x) for a polynomial P of degree at
most m − 1 and that the j th derivative of this function takes
the form

φ( j)(x) = ex
[
P(x) + c1P

(1)(x) + · · · + c j P
( j)(x)

]
(8)
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for certain integer coefficients c1, . . . , c j . We observe that
φ(x0) = 0 for a point x0 if and only if P(x0) = 0. If also
φ(1)(x0) = 0, then it follows from (8) that P(1)(x0) = 0,
and, generally, that φ(i)(x0) = 0 for i = 0, . . . , j if and only
if P(i)(x0) = 0. That is, the zeroes of φ are precisely those of
P and, consequently, the functionsφi constitute a Chebyshev
system.

3.2.1 Interpolation using a Chebyshev system

A crucial property of generalised polynomials is that unique
interpolants can be constructed using them, as we next show.
For any Chebyshev system {φi }ni=1 and a set of distinct points
X = {x1, . . . , xn} ⊂ [a, b], we know that there cannot exist
α = (α1, . . . , αn) 	= 0 such that

n∑
i=1

αiφi (x j ) = 0 for every j = 1, . . . , n

since α1φ1 + · · · + αnφn can have at most n − 1 zeroes.
Equivalently, the only solution β ∈ R

n to the linear system
V T

Xβ = 0 defined by the n × n matrix [V X ]i j = φi (x j ) is
β = 0. That is, V X is invertible.

For any data {(xi , f (xi ))}ni=1, the above fact guarantees
the existence and uniqueness of an interpolant sX , f such that
(i) sX , f is in span{φ1, . . . , φn} and (ii) sX , f (x j ) = f (x j ) for
each j = 1, . . . , n. These two requirements imply that

sX , f (x j ) =
n∑

i=1

αiφi (x j ) = f (x j )

for and some α ∈ R
n and every j = 1, . . . , n. In matrix

form, these n equations are equivalent to V T
Xα = f X . Hence

α = V−T
X f X and the interpolant is

sX , f (x) = φ(x)Tα = φ(x)TV−T
X f X (9)

for [φ(x)]i = φi (x) an n-vector.

3.2.2 Hermite interpolants

A Hermite interpolant sX ,q, f is based on data containing
also derivative values [Atkinson (1989, Section 3.6) for poly-
nomial and Fasshauer (2007, Chapter 36) for kernel-based
Hermite interpolation]. In this setting, the point set X con-
tains m points and q ∈ N

m
0 is a vector of multiplicities such

that
∑m

i=1 qi = n. The data to be interpolated are

{(xi , f ( ji )(xi )) : i = 1, . . . ,m and ji = 0, . . . , qi − 1}.

That is, the interpolant is to satisfy

s( ji )
X ,q, f (xi ) = f ( ji )(xi )

-1 x1 x2 x3 0 x4 x5 1
0

1

2

Fig. 1 Example of a Hermite interpolant Fi used in proving positivity
of the weights of generalised Gaussian quadrature rule. This figure uses
the Chebyshev system formed by φi (x) = ex xi−1

for each i = 1, . . . ,m and ji = 0, . . . , qi − 1. Note that
the interpolant sX , f is a Hermite interpolant with m = n
and q1 = · · · = qn = 1. If the interpolant is to lie in
span{φ1, . . . , φn}, we must have, for some α1, . . . , αn ,

s( ji )
X ,q, f (xi ) =

n∑
l=1

αlφ
( ji )
l (xi ) = f ( ji )(xi ).

Again, these n equations define a linear system that is invert-
ible because {φi }ni=1 constitute a Chebyshev system. The
Hermite interpolant can be written in the form (9) with V X

replaced with a version involving also derivatives of φi [see
e.g. Oettershagen (2017, Section 2.3.1)].

3.2.3 Generalised Gaussian quadrature

A generalised Gaussian quadrature rule is a quadrature rule
that uses n points to integrate exactly all functions in the span
of {φi }2ni=1 constituting a Chebyshev system:

n∑
i=1

wiφ(xi ) =
∫ b

a
φ(x)dν(x) (10)

for every φ ∈ span{φ1, . . . , φ2n}. The existence and unique-
ness of the points and weights is guaranteed under fairly gen-
eral assumptions (Barrow 1978). We prove positivity of the
weights by constructing a function Fi ∈ span{φ1, . . . , φ2n}
analogous to Gi in Sect. 3.1.

Proposition 2 Assume that ν admits a Lebesgue density.
Then the weights w1, . . . , wn of the generalised Gaussian
quadrature rule (10) are positive.

Proof Let Fi be the Hermite interpolant to the data

f (a) = 0, f (xi ) = 1, f (x j ) = f (1)(x j ) = 0 for j 	= i .

An example is depicted in Fig. 1. As there are 2n data points,
Fi indeed exists since {φi }2ni=1 are aChebyshev system.More-
over, Fi has 2n − 1 zeroes. Because all its zeroes occurring
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on (a, b) are double, Fi cannot have sign changes. Since
Fi (xi ) = 1 > 0, we conclude Fi is almost everywhere posi-
tive. Consequently, wi = Iν(Fi ) > 0. ��

Next we turn our attention to kernels whose translates and
their derivatives constitute Chebyshev systems.

3.3 Totally positive kernels

We are now ready to begin considering kernels and Bayesian
quadrature. A concept related to Chebyshev systems is that
of totally positive kernels whose theory is covered by the
monograph of Karlin (1968). For a sufficiently differentiable
kernel, define the derivatives

k( j)
y (x) := k( j)(x, y):= ∂ j

∂z j
k(x, z)

∣∣∣
z=y

. (11)

If the derivative

∂2 j

∂x j∂ y j
k(x, y)

exists and is continuous for every j ≤ m, the kernel is said
to be m times continuously differentiable, which we denote
by writing k ∈ Cm([a, b]2). In this case, f ∈ Cm([a, b]) if
f ∈ H(k) and the kernel derivatives (11) act as represen-
ters for differentiation (i.e. 〈 f , k( j)(·, x)〉H(k) = f ( j)(x) for
f ∈ H(k) and j ≤ m); see Corollary 4.36 and its proof in
Steinwart and Christmann (2008)

Definition 2 (Totally positive kernel) A kernel k ∈
C∞([a, b]2) is (extended) totally positive of order q ∈ N

if the collection

{
k( ji )
xi : i = 1, . . . ,m and ji = 0, . . . , qi − 1

}

constitutes a Chebyshev system for any m ∈ N, any distinct
x1, . . . , xm ∈ Ω and any multiplicities q1, . . . , qm ≤ q of
these points.

The class of totally positive kernels is smaller than that
of positive-definite kernels. For the simplest case of q = 1
and m = n the total positivity condition is that the kernel
translates kx1 , . . . , kxn constitute a Chebyshev system. This
implies that the n×nmatrix [KY ,X ]:=k(y j , xi ), which is just
the matrix VY considered in Sect. 3.2 for the Chebyshev sys-
temφi = kxi , is invertible for anyY = {y1, . . . , yn} ⊂ [a, b].
Positive-definiteness of k only guarantees that KY ,X is invert-
ible when Y = X .

Basic examples of totally positive kernels are theGaussian
kernel

k(x, x ′) = exp

(
− (x − x ′)2

2	2

)
(12)

with length-scale 	 > 0 and the Hardy kernel
k(x, x ′) = r2/(r2 − xx ′) for r > 0. Both of these kernels
are totally positive of any order. There is also a convenient
result that guarantees total positivity (Burbea 1976, Proposi-
tion 3): k is totally positive if there are positive constants am
and a positive increasing function v ∈ C∞([a, b]) such that

k(x, x ′) =
∞∑

m=0

amv(x)mv(x ′)m

for all x, x ′ ∈ Ω . More examples are collected in Karlin
(1968) and Burbea (1976).

3.4 General result on weights

The following special case of the theory developed in Kar-
lin and Studden (1966, Chapter 2) appears in, for instance,
Richter-Dyn (1971a, Lemma 2). Its proof is a generalisation
of the proof for the casem = 2n that is discussed in Sect. 3.2.

Proposition 3 Suppose that {φi }mi=1 ⊂ Cm−1([a, b]) con-
stitute a Chebyshev system, that ν admits a Lebesgue
density and that Q( f ):= ∑n

i=1 wi f (xi ) for x1, . . . , xm ∈ Ω

is a quadrature rule such that Q(φi ) = Iν(φi ) for each
i = 1, . . . ,m. Then at least �(m + 1)/2� of the weights
w1, . . . , wn are positive.

An immediate consequence of this proposition is that a
Bayesian quadrature rule based on a totally positive kernel
has at least one half of its weights positive.

Theorem 1 Suppose that the kernel k ∈ C∞([a, b]2) is
totally positive of order 1. Then, for any points, at least �(n+
1)/2� of the Bayesian quadrature weights w

BQ

X ,1, . . . , w
BQ

X ,n
are positive.

Proof Since the kernel is totally positive of order 1, the trans-
lates {kxi }ni=1 constitute a Chebyshev system. The exactness
condition (4) holds for each of these functions. The claim
follows by setting m = n in Proposition 3. ��

3.5 Weights for locally optimal points

Recall the definition of the Bayesian quadrature variance:

V
BQ

X = Iν(kν) −
n∑

i=1

w
BQ

X ,i kν(xi ) = Iν(kν) − kTν,X K
−1
X kν,X .

The variance can be considered a function X �→ V
BQ

X defined
on the simplex

Sn :={z ∈ [a, b]n : a < z1 < · · · < zn < b} ⊂ [a, b]n .
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We introduce the following definition of locally optimal
points. For this purpose, define the function

E(Z):=V
BQ

Z for Z = (z1, . . . , zn) ∈ Sn

and its partial derivatives

E j (X):= ∂

∂z j
E(Z)

∣∣∣
Z=X

.

Definition 3 Let m ≤ n. A Bayesian quadrature rule with
points X ⊂ [a, b] is locally m-optimal if X ∈ Sn and there
is an index set I∗

m ⊂ {1, . . . , n} of m indices such that

E j (X) = ∂

∂z j
V

BQ

Z

∣∣∣
Z=X

= 0 for every j ∈ I∗
m . (13)

A locally n-optimal rule is called locally optimal. The point
set of a locally m-optimal Bayesian quadrature rule is also
called locally m-optimal.

When the kernel is totally positive of any order, it has been
shown that any local minimiser of V BQ

X is locally optimal in
the sense of above definition. That is, no point in a point
set that locally minimises the variance can be located on the
boundary of the integration interval nor can any two points in
the set coalesce.3 These results, the origins of which can be
traced to the 1970s (Barrar et al. 1974; Barrar and Loeb 1976;
Bojanov 1979), have been recently collated by Oettershagen
(2017, Corollary 5.13).

A locally m-optimal Bayesian quadrature rule is, in
addition to the kernel translates at X , exact for translate
derivatives at x j with j ∈ I∗

m [it is worth noting that
Bayesian quadrature rules with derivative evaluations have
been recently considered in Prüher and Särkkä (2016) and
Wu et al. (2018)]. When m = n, this is analogous to the
interpretation of classical Gaussian quadrature rules as inte-
gratedHermite interpolants (Richter-Dyn 1971b). This result
first appeared in Larkin (1970). Its proof is typically based
on considering the RKHS representation

V
BQ

X =
∥∥∥∥∥kν −

n∑
i=1

w
BQ

X ,i kxi

∥∥∥∥∥
2

H(k)

of the variance; see Richter-Dyn (1971a, Section 3) or Oet-
tershagen (2017, Section 5.1.3). We present a mainly linear
algebraic proof.

3 Coalescence is possible because V BQ
X is in fact a continuous function

of X defined on the whole ofΩn , not merely on Sn (Oettershagen 2017,
Proposition 5.5). Coalescence of some of the points would result in a
quadrature rule that uses also evaluations of derivatives of the integrand.

Proposition 4 Let m ≤ n. Suppose that the n-point set X ∈
Sn is locally m-optimal. If the kernel k is once continuously
differentiable, then

I BQ

X (kx ) = Iν(kx ) for x ∈ X ,

I BQ

X (k(1)
x j ) = Iν(k

(1)
x j ) or w

BQ

X , j = 0 for j ∈ I∗
m,

(14)

where k(1)
x is the kernel derivative defined in (11).

Proof By definition of local m-optimality, the partial deriva-
tives

E j (X) = ∂

∂z j
E(Z)

∣∣∣
Z=X

must vanish for each j ∈ I∗
m . Let ∂i g(X) ∈ R

n stand for the
i th partial derivative of a vector-valued function g : Rn →
R
n evaluated at X . From the explicit expression (2) for the

variance we compute

E j (X) = − 2(∂ j kTν,X )K−1
X kν,X

+ kTν,X K
−1
X (∂ j K X )K−1

X kν,X

= − 2(∂ j kTν,X )w
BQ

X + (w
BQ

X )T(∂ j K X )w
BQ

X ,

where the inverse matrix derivative formula

d

dx
A(x)−1 = −A(x)−1

[
d

dx
A(x)

]
A(x)−1

and the weight expression w
BQ

X = K−1
X kν,X have been used.

The two partial derivatives appearing in the equation for
E j (X) can be explicitly computed. First, only the j th ele-
ment of kν,X depends on x j . Thus,

[∂ j kν,X ]i = ∂

∂x j

∫ b

a
k(x, xi )dν(x) = Iν(k

(1)
x j )δi j .

Secondly, only the j th row and column of K X have depen-
dency on x j . For l 	= j we have

[∂ j K X ]l j = [∂ j K X ] jl = ∂

∂z
k(xl , z)

∣∣∣
z=x j

= k(1)
x j (xl),

where the first equality is consequence of symmetry of the
kernel. The diagonal element is a total derivative:

[∂ j K X ] j j = d

dx j
k(x j , x j ) = 2

∂

∂z
k(x j , z)

∣∣∣
z=x j

= 2k(1)
x j (x j ).

Therefore, ∂ j K X is a zero matrix except for the j th row and
column that are
[
k(1)
x j (x1) · · · k(1)

x j (x j−1) 2k
(1)
x j (x j ) k

(1)
x j (x j+1) · · · k(1)

x j (xn)
]

and its transpose, respectively. Hence
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E j (X) = −2w BQ

X , j Iν(k
(1)
x j ) +

n∑
i=1

n∑
l=1

w
BQ

X ,iw
BQ

X ,l [∂ j K X ]il

= −2w BQ

X , j Iν(k
(1)
x j ) + 2w BQ

X , j

n∑
i=1

w
BQ

X ,i k
(1)
x j (xi )

= −2w BQ

X , j

[
Iν(k

(1)
x j ) − I BQ

X (k(1)
x j )

]
.

If w
BQ

X , j 	= 0, then E j (X) = 0 so that the form of E j above

implies that I BQ

X (k(1)
x j ) = Iν(k

(1)
x j ). This concludes the proof.

��
Remark 2 Proposition 4 admits an obvious multivariate
extension (Gavrilov 1998, ntjhtvf 2): when d > 1, the md
partial derivative representers

∂

∂z j
k(·, z)

∣∣∣
z=xi

for j = 1, . . . , d and i ∈ I∗
m are integrated exactly by

a locally m-optimal Bayesian quadrature rule, defined by
requiring agradient versionof (13). See alsoGavrilov (2007).
However, there appear to exist no generalisations of Cheby-
shev systems and Proposition 3 to higher dimensions.

Theorem 2 Let k ∈ C∞([a, b]2) be a totally positive kernel
of order 2 and m ≤ n. Suppose that the point set X ∈ Sn

is locally m-optimal with an index set I∗
m ⊂ {1, . . . , n} and

that the weights associated with q ≤ m indices in I∗
m are

non-zero. Then at least �(n + 2m − q + 1)/2� of the weights
are non-negative, and q must satisfy 2m − n ≤ q.

Proof By (14), the Bayesian quadrature rule in the statement
is exact for n kernel translates and q of their derivatives. By
the total positivity of the kernel, the collection of these n+q
functions constitutes a Chebyshev system. By Proposition 3,
at least �(n + q + 1)/2� of the weights are positive. Since
the weights associated with m − q indices in I∗

m are zero, it
follows that at least �(n+ q + 1)/2�+m − q = �(n+ 2m −
q + 1)/2� of the weights are non-negative. The lower-bound
for q follows because �(n + 2m − q + 1)/2� ≤ n implies
that n + 2m − q + 1 ≤ 2n + 1. ��

Themain result of this section follows by settingm = n in
the preceding theorem and observing that this implies q = n,
which means that there can be no zero weights.

Corollary 1 If k ∈ C∞([a, b]2) is totally positive of order 2
and X ∈ Sn is locally optimal, then all the Bayesian quadra-
ture weights w

BQ

X ,1, . . . , w
BQ

X ,n are positive.

Remark 3 Akey consequence of Corollary 1 is the following:
If w

BQ

X ,1, . . . , w
BQ

X ,n contain negative values, then the design
points X are not locally optimal. In other words, in this case
there is still room for improvement by optimising these points

using, for example, gradient descent. In this way, the signs
of the weights can provide information about the quality of
the design point set.

A positive-weight quadrature rule is a positive linear func-
tional (i.e. every positive function is mapped to a positive
real). A locally optimal Bayesian quadrature rule may there-
fore be appropriate for numerical integration of functions that
are a priori known to be positive, such as likelihood func-
tions. Theoretical comparison to warped models (Osborne
et al. 2012; Gunter et al. 2014; Chai and Garnett 2018) that
encode positivity of the integrand by placing the GP prior
on, for example, square root of the integrand would be an
interesting topic of research.

3.6 Greedily selected points

The optimal points discussed in the preceding section cannot
be constructed efficiently. See Oettershagen (2017, Sec-
tion 5.2) for what appears to be the most advanced published
algorithm. In practice, points selected by greedy minimisa-
tion of the integral variance are often used. This approach is
knownas sequential Bayesian quadrature (Cook andClayton
1998; Huszár and Duvenaud 2012). Assuming for a moment
that d is arbitrary and an n-point set Xn ⊂ Ω has been
already generated, sequential Bayesian quadrature proceeds
by selecting a new point xn+1 ∈ Ω by minimising the inte-
gral variance:

xn+1 = argmin
x∈Ω

V
BQ

Xn∪{x}.

In higher dimensions, there is little that we are able to say
about qualitative properties of the resulting quadrature rules.
However, when d = 1 we can invoke Theorem 2 since Xn ∪
{xn+1} is locally 1-optimal.

Proposition 5 Suppose that k ∈ C∞([a, b]2) is totally posi-
tive of order 2. If Xn∪xn+1 ∈ Sn, then at least �(n+3)/2� of
the weights of a n + 1 point sequential Bayesian quadrature
rule are positive.

3.7 Other kernels and point sets

A number of combinations of kernels and point sets, that are
not covered by the theory above, have been shown, either
theoretically or experimentally, to yield positive Bayesian
quadrature weights:

– The GP posterior mean for the Brownian motion ker-
nel k(x, x ′) = min(x, x ′) on [0, 1] is a piecewise linear
interpolant. As this implies that the Lagrange cardinal
functions uX ,i are non-negative, it follows from the iden-
tity w

BQ

X ,i = Iν(uX ,i ) that the weights are positive. See
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Fig. 2 Locally optimal Bayesian quadrature point sets for the Gaussian measure and kernel on R2. The corresponding weights are written in grey.
The sums of weights are 0.91 (n = 6), 0.978 (n = 11), 0.9975 (n = 16) and 1.011 (n = 20)

Diaconis (1988) and Ritter (2000, Lemma 8 in Sec-
tion 3.2, Chapter 2) for more discussion.

– Suitably selected priors give rise to Bayesian quadrature
rules whose posterior mean coincides with a classical
rule, such a Gaussian quadrature (Karvonen and Särkkä
2017;Karvonen et al. 2018b).Analysis of theweights and
their positivity naturally reduces to that of the reproduced
classical rule.

– There is convincing numerical evidence that the weights
are positive if the nodes for the Gaussian kernel and mea-
sure on R are selected by suitable scaling the classical
Gauss–Hermite nodes (Karvonen and Särkkä 2019).

– Uniform weighting (i.e. w
BQ

X ,i = 1/n) can be achieved
when certain quasi-Monte Carlo point sets and shift-
invariant kernels are used (Jagadeeswaran andHickernell
2019).

3.8 Upper bound on the sum of weights

We summarise below a simple yet generic result that has an
important consequence on the stability of Bayesian quadra-
ture in Sect. 4.

Lemma 1 Let Ω ⊂ R
d . If the Bayesian quadrature weights

w
BQ

X ,1, . . . , w
BQ

X ,n are non-negative, then we have

n∑
i=1

w
BQ

X ,i ≤ supx∈Ω Iν(kx)

inf x,x′∈Ω k(x, x′)
.

Proof The claim immediately follows from the property (4)
that

∑n
i=1 w

BQ

X ,i kx j (xi ) = Iν(kx j ) for each j = 1, . . . , n. ��
Combined with Corollary 1, we get a bound on the sum

of absolute weights
∑n

i=1 |w BQ

Xn ,i
|, which is the main topic of

discussion in Sect. 4.

Corollary 2 Let Ω = [a, b] ⊂ R. If k ∈ C∞([a, b]2) is
totally positive of order 2 and design points X ∈ Sn are
locally optimal, then we have

n∑
i=1

|w BQ

X ,i | =
n∑

i=1

w
BQ

X ,i ≤ supx∈[a,b] Iν(kx )
infx,x ′∈[a,b] k(x, x ′)

.

Most importantly, Corollary 2 is applicable to the Gaus-
sian kernel, for which the upper bound is finite. This result
will be discussed in Sect. 4.4 inmore detail. Onemay see sup-
porting evidence in Fig. 2, where the sum of weights seems
to converge to a value around 1.

3.9 Higher dimensions

As far aswe are aware of, there are no extensions of the theory
of Chebyshev systems to higher dimensions. Consequently,
it is not possible to say much about positivity of the weights
when d > 1. Some simple cases can be analysed, however.

Let Ω1 = [a, b], ν1 be a measure on Ω1, Ω = Ωd
1 ⊂ R

d

and ν = νd1 . That is, Ω = Ω1 × · · · × Ω1 and dν(x) =
dν1(x1)×· · ·×dν1(xd), where there are d terms in the prod-
ucts. Suppose that

(i) the point set X is now a Cartesian product of one-
dimensional sets X1 = {x11 , . . . , x1n } ⊂ Ω1: X = Xd

1 ;
(ii) the kernel is of product form: k(x, x′) = ∏d

i=1 k1(xi , x
′
i )

for some kernel k1 on Ω1.

A quadrature rule using Cartesian product points is called a
tensor product rule. For such points, the Bayesian quadrature
weights w

BQ

X are products of the one-dimensional weights
w

BQ

X1
: the weight for the point (xi(1), . . . , xi(d)) ∈ X is∏d

j=1 w
BQ

X1,i( j)
(Oettershagen 2017, Section 2.4). In partic-

ular, if k1 is totally positive and X1 is a locally optimal
set of points, then all the nd weights w

BQ

X are positive.4

Analysis of more flexible sparse grid and symmetry-based
methods (Karvonen and Särkkä 2018a) might yield more
interesting results.

4 Note that a tensor product rule based on an optimal one-dimensional
point set need not be locally optimal for Ω , ν and k.
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We conclude this section with two numerical examples.
Both of them involve the standard Gaussian measure

dν(x) = (2π)−d/2 exp

(
− ‖x‖2

2

)
dx

on Ω = R
d and the Gaussian kernel (12).

Locally optimal points First, we investigated positivity of
weights for locally optimal points. We set 	 = 1 and
d = 2 and used a gradient-based quasi-Newton optimisation
method (MATLAB’s fminunc) to find points that locally
minimise the integral variance for n = 2, . . . , 20. Optimi-
sation was initialised with a set of random points. The point
set output by the optimiser was then randomly perturbated
and optimisation repeated for 20 times, each time initialising
with the point set giving the smallest Bayesian quadrature
variance so far. The weights were always computed directly
from (3). However, to improve numerical stability, the ker-
nel matrix K X was replaced by K X + 10−6 I , where I is
the n × n identity matrix, during point optimisation. Some
point sets generated using the same algorithm have appeared
in Särkkä (2016, Section IV) [for other examples of optimal
points in dimension two, see O’Hagan (1992) and Minka
(2000) and, in particular, Oettershagen (2017, Chapter 6)].
The point sets we obtained appear sensible and all of them are
associated with positive weights; four sets and their weights
are depicted in Fig. 2. For n = 20, the maximal value
of a partial derivative of V BQ

X at the computed points was
9 × 10−10.

Randompoints Secondly, we investigated the validity of The-
orem 1 in higher dimensions. We set 	 = 1.5 and d = 4 and
counted the number of positive weights for n = 2, . . . , 1000
when each n-point set is generated by drawing Monte Carlo
samples from ν. Random samples are often used in Bayesian
quadrature (Rasmussen and Ghahramani 2002; Briol et al.
2019, 2017) and they also function as a suitable test case
where structurality of point sets has little role in constraining
behaviour of some subsets of the weights as happens when
product or symmetric point designs is used. Figure 3 shows
the proportion of positive weights; it appears that at least
half of the weights for randomly drawn points are always
positive. This supports the obvious conjectural extension to
higher dimensions of Theorem 1.

4 Magnitudes of weights and the stability

This section studies the magnitudes of the weights in a
Bayesian quadrature rule and discusses how they are related
to stability and robustness of the quadrature rule. We are in
particular interested in the following quantity, which we call
the Bayesian quadrature stability constant:
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Fig. 3 Proportion of positive weights for the Gaussian kernel and n
points drawn from the standard Gaussian distribution onR4. The results
have been averaged over 50 independent Monte Carlo runs. Among all
runs the minimal proportion encountered was exactly 1/2

Λ
BQ

Xn
:=

n∑
i=1

∣∣∣w BQ

Xn ,i

∣∣∣ . (15)

Tomake dependency on nmore explicit, the quadrature point
set is denoted by Xn instead of X in this section. The termi-
nology is motivated by the close connection of Λ

BQ

Xn
to the

Lebesgue constant ΛXn , a quantity that characterises the sta-
bility of an interpolant. For kernel interpolants, the Lebesgue
constant is

ΛXn := sup
x∈Ω

n∑
i=1

∣∣uXn ,i (x)
∣∣ ,

where uXn ,i are Lagrange cardinal functions from Sect. 2.1.
The connection to (15) arises from the fact that w

BQ

Xn ,i
=

Iν(uXn ,i ) for i = 1, . . . , n.
The importance of the stability constant (15) is illustrated

by the following argument. Let μ∗
f be an optimal approxi-

mant to the integrand function f : Ω → R in the span of
{kxi }ni=1 in the sense that

μ∗
f ∈ argmin

μ f ∈span{kxi }ni=1

∥∥ f − μ f
∥∥∞ ,

where
∥∥ f − μ f

∥∥∞ := supx∈Ω

∣∣ f (x) − μ f (x)
∣∣ is the uni-

form norm. Note that μ∗
f does not in general interpolate f

at Xn nor coincide with the Gaussian process posterior mean
μX , f . Then

∣∣Iν( f ) − I BQ

Xn
( f )

∣∣
≤ ∣∣Iν( f ) − Iν(μ

∗
f )

∣∣ + ∣∣Iν(μ∗
f ) − I BQ

Xn
( f )

∣∣
= ∣∣Iν( f ) − Iν(μ

∗
f )

∣∣ + ∣∣I BQ

Xn
(μ∗

f ) − I BQ

Xn
( f )

∣∣

≤ ∥∥ f − μ∗
f

∥∥∞ +
n∑

i=1

∣∣w BQ

Xn ,i

∣∣∣∣μ∗
f (xi ) − f (xi )

∣∣

≤ (1 + Λ
BQ

Xn
)
∥∥ f − μ∗

f

∥∥∞,
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where we have used the fact that I BQ

Xn
(g) = Iν(g) if g ∈

span{kxi }ni=1. That is, the approximation error by a Bayesian
quadrature rule can be related to that by the best uniform
approximant via the stability constant. The stability con-
stant also controls the error introduced by inaccurate function
evaluations. Suppose that the function evaluations contain
errors (which may be numerical or stochastic), denoted by εi
andmodelled as indendent zero-mean random variables with
variance σ 2. Then the mean-square error (where the expec-
tation is w.r.t. ε1, . . . , εn) of Bayesian quadrature is given by

E

[(
Iν( f ) −

n∑
i=1

w
BQ

Xn ,i
[ f (xi ) + εi ]

)2]

=
(
Iν( f ) −

n∑
i=1

w
BQ

Xn ,i
f (xi )

)2

+ σ 2
n∑

i=1

(w
BQ

Xn ,i
)2

≤
(
Iν( f ) −

n∑
i=1

w
BQ

Xn ,i
f (xi )

)2

+ σ 2
( n∑

i=1

∣∣∣w BQ

Xn ,i

∣∣∣
)2

.

This implies a small stability constant (15) suppresses the
additional error caused by the perturbations εi . A third moti-
vating example will be given in Sect. 4.2, after introducing
necessary notation.

It is clear from Lemma 1 that if the weights are posi-
tive for every n, the stability constant remains uniformly
bounded. However, the results on positivity in the preceding
section are valid only when d = 1 and the kernel is totally
positive. This section uses a different technique to analyse
the stability constant. The results are based on those in
De Marchi and Schaback (2010), which are applicable to
kernels that induce Sobolev-equivalent RKHSs (e.g. Matérn
kernels). Accordingly, we mainly focus on such kernels
in this section. We begin by reviewing basic properties of
Sobolev spaces in Sect. 4.1 and convergence results for
Bayesian quadrature in Sect. 4.2. The main results, Theorem
5 and Corollary 3, on the magnitudes of quadrature weights
and the stability constant appear in Sect. 4.3. We discuss a
relevant stability issue, known as the Runge phenomenon,
for infinitely smooth kernels such as the Gaussian kernel in
Sect. 4.4. Finally, simulation results in Sect. 4.5 demonstrate
that the obtained upper bound is conservative; there is much
room for improving the results.

Notation and basic definitions The Fourier transform f̂ of a
Lebesgue integrable f : Rd → R is defined by

f̂ (ξ):=(2π)−d/2
∫
Rd

f (x)e−√−1 ξTxdx, ξ ∈ R
d .

Two normed vector spacesF1 andF2 are norm-equivalent if
F1 = F2 as a set and there exist constants C1,C2 > 0 such
that

C1 ‖ f ‖F2
≤ ‖ f ‖F1

≤ C2 ‖ f ‖F2
for all f ∈ F1.

4.1 Kernels inducing Sobolev-equivalent RKHSs

Let Φ : Rd → R be a continuous and integrable positive-
definite function with Fourier transform satisfying

c1(1 + ‖ξ‖2)−r ≤ Φ̂(ξ) ≤ c2(1 + ‖ξ‖2)−r (16)

for r > d/2, some positive constants c1 and c2, and for all
ξ ∈ R

d . In this section, we consider shift-invariant kernels on
R
d of the form k(x, x′) = Φ(x− x′). For instance, a Matérn

kernel [Rasmussen and Williams, 2006, Section 4.2.1]

kρ(x, x′) = 21−ρ

Γ (ρ)

(√
2ρ

∥∥x − x′∥∥
	

)ρ

Kρ

(√
2ρ

∥∥x − x′∥∥
	

)

with smoothness parameter ρ := r − d/2 and length-scale
parameter 	 > 0 satisfies (16).5 Here Kρ is the modified
Bessel function of the second kind of order ρ. Another
notable class of kernels satisfying (16) are Wendland ker-
nels (Wendland 2005, Theorem 10.35).

ByWendland (2005, Corollary 10.13), the RKHSH(k) of
any kernel k satisfying (16) is norm-equivalent to the Sobolev
space Hr (Rd) of order r > d/2 on R

d , which is a Hilbert
space consisting of square-integrable and continuous func-
tions f : Rd → R such that

‖ f ‖2Hr (Rd )
:= (2π)−d/2

∫
Rd

(
1 + ‖ξ‖2 )r ∣∣∣ f̂ (ξ)

∣∣∣2 dξ < ∞.

As can be seen from this expression, r quantifies the smooth-
ness of functions in Hr (Rd): as r increases, function in
Hr (Rd) become smoother.

The Sobolev space Hr (Ω) on a general measurable
domain Ω ⊂ R

d can be defined as the restriction of Hr (Rd)

ontoΩ . The kernel k satisfying (16), when seen as a kernel on
Ω , then induces an RKHS that is norm-equivalent to Hr (Ω)

(Wendland 2005, Theorems 10.12, 10.46 and 10.47).6

5 Note that the smoothness parametrisation ρ = r is often used. With
this parametrisation kρ would satisfy (16) with the exponent−(r+d/2)
and its RKHS would be norm-equivalent to Hr+d/2(Rd ).
6 The reader may ask whether Ω needs to have a Lipschitz boundary
for this norm-equivalence, but this assumption is indeed not needed.
The assumption that Ω has a Lipschitz boundary is required when
using Stein’s extension theorem (Stein 1970, p. 181) for Sobolev spaces
defined usingweak derivatives [see the proof ofWendland (2005,Corol-
lary 10.48)]. On the other hand, we consider here a Sobolev space
defined in terms of the Fourier transform, and the norm-equivalence
follows from the extension and restriction theorems for a generic RKHS
(Wendland 2005, Theorems 10.46 and 10.47) and the expression of the
RKHS norm in terms of Fourier transforms (Wendland 2005, Theo-
rem 10.12).
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4.2 Convergence for Sobolev-equivalent kernels

Recall from Sect. 2.2 that integration error by a Bayesian
quadrature rule for functions in H(k) satisfies

∣∣∣Iν( f ) − I BQ

Xn
( f )

∣∣∣ ≤ ‖ f ‖H(k) eH(k)(Xn,w
BQ

X ),

so that in convergence analysis only the behaviour of the
worst-case error needs to be considered. If the RKHS is
norm-equivalent to a Sobolev space, rates of convergence
for Bayesian quadrature can be established. These results
follow fromArcangéli et al. (2007, Corollary 4.1). SeeWend-
land (2005, Corollary 11.33) or Wendland and Rieger (2005,
Proposition 3.6) for earlier and slightlymore restricted results
that require �r� > d/2 and Kanagawa et al. (2019, Propo-
sition 4) for a version specifically for numerical integration.
Some assumptions, satisfied by all domains of interest to us,
are needed; see for instanceKanagawa et al. (2019, Section 3)
for precise definitions.

Assumption 3 The set Ω ⊂ R
d is a bounded open set that

satisfies an interior cone condition and has aLipschitz bound-
ary.

This assumption essentially says that the boundary ofΩ is
sufficiently regular (Lipschitz boundary) and that there is no
“pinch point” on the boundary ofΩ (interior cone condition).
Convergence results are expressed in termsof thefill-distance

hXn ,Ω := sup
x∈Ω

min
i=1,...,n

‖x − xi‖

that quantifies the size of the largest “hole” in an n-point
set Xn . We use � to denote an inequality that is valid up to
a constant independent of n, number of points, and f , the
integrand. That is, for generic sequences of functionals gn
and hn , gn( f ) � hn( f )means that there is a constant C > 0
such that gn( f ) ≤ Chn( f ) for all n ∈ N and any f in a
specified class of functions.

Theorem 4 Suppose that (i)Ω satisfies Assumption 3 (ii) that
themeasure ν has a bounded (Lebesgue) density function and
that (iii) the kernel k satisfies (16) for a constant r such that
r > d/2. Then

∣∣∣Iν( f ) − I BQ

Xn
( f )

∣∣∣ � ‖ f ‖Hr (Ω) h
r
Xn ,Ω

for any f ∈ Hr (Ω) when the fill-distance is sufficiently
small.

The following simple result is an immediate consequence
of this theorem.

Proposition 6 Suppose that the assumptions of Theorem 4
are satisfied. Then

∣∣1 − ∑n
i=1 w

BQ

Xn ,i

∣∣ � hrXn ,Ω
when the fill-

distance is sufficiently small.

Proof Under the assumptions, constant functions are in
Hr (Ω). Setting f ≡ 1 in (17) verifies the claim. ��

Note that the same argument can be used whenever a gen-
eral rate of convergence for functions in an RKHS is known
and constant functions are contained in the RKHS. However,
this is not always the case; for example, the RKHS of the
Gaussian kernel (12) does not contain polynomials (Minh
2010, Theorem 2).

Rates explicitly dependent on the number of points are
achieved for point sets that are quasi-uniform, which is to
say that

c̃1qXn ≤ hXn ,Ω ≤ c̃2qXn

for some constants c̃1, c̃2 > 0 independent of n. Here

qX :=1

2
min
i 	= j

∥∥xi − x j
∥∥

is the separation distance. In dimension d quasi-uniform sets
satisfy hXn ,Ω = O(n−1/d) as n → ∞ (e.g. regular product
grids). In Theorem 4 we thus obtain the rate

∣∣∣Iν( f ) − I BQ

Xn
( f )

∣∣∣ � n−r/d (17)

for f ∈ Hr (Ω) when the point sets are quasi-uniform and n
is sufficiently large.

Of course, it is the stability constantΛ BQ

Xn
= ∑n

i=1

∣∣w BQ

Xn ,i

∣∣
that we analyse next whose behaviour is typically more con-
sequential. However, the above propositionmay be occasion-
ally interesting if one desires to interpret Bayesian quadrature
as a weighted Dirac approximation ν BQ:= ∑n

i=1 w
BQ

Xn ,i
δxi ≈

ν of a probability measure (i.e. ν BQ(Ω) ≈ 1). Note that there
is also a simple way to ensure summing up to one of the
weights by inclusion of a non-zero prior mean function for
the Gaussian process prior; see O’Hagan (1991) and Karvo-
nen et al. (2018b, Section 2.3).

Finally, we provide a third example that highlights the
importance of analysing the stability constant. Kanagawa et
al. (2019, Section 4.1) [see also Kanagawa et al. (2016)]
studied convergence rates of kernel-based quadrature rules
in Sobolev spaces when the integrand is potentially rougher
(i.e. f ∈ Hs(Ω) for some s ≤ r ) than assumed. If s < r ,
the integrand f may not belong to the Sobolev space Hr (Ω)

that is assumed by the user when constructing the quadrature
rule; therefore, this is a misspecifed setting. Under certain
conditions, they showed (Kanagawa et al. 2019, Corollary 7)
that if Λ

BQ

Xn
� nc for a constant c ≥ 0, then

∣∣∣Iν( f ) − I BQ

Xn
( f )

∣∣∣ � n−s/d+c(r−s)/r , (18)

when Xn are quasi-uniform.
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The condition Λ
BQ

Xn
� nc means that the stability constant

Λ
BQ

Xn
should not grow quickly as n increases. The bound (18)

shows that the error in themisspecified setting becomes small
if c is small. This implies that if the stability constant Λ

BQ

Xn
does not increase quickly, then the quadrature rule becomes
robust against the misspecification of a prior. This provides
a third motivation for understanding the behaviour of Λ

BQ

Xn
.

4.3 Upper bounds for absolute weights

We now analyse magnitudes of individual weights and the
stability constant (15). We first derive an upper bound on the
magnitude of each weight w

BQ

Xn ,i
. The proof of this result is

based on an upper bound on the L2(Ω) norm of Lagrange
functions derived in De Marchi and Schaback (2010).

Theorem 5 Suppose that (i) Ω satisfies Assumption 3, that
(ii) the measure ν has a bounded (Lebesgue) density function
and that (iii) the kernel k satisfies (16) for a constant r such
that r > d/2. Then

∣∣∣w BQ

Xn ,i

∣∣∣ �
(
hXn ,Ω

qXn

)r−d/2

hd/2
Xn ,Ω

(19)

for all i = 1, . . . , n, provided that hXn ,Ω is sufficiently small.
When Xn are quasi-uniform, this becomes∣∣∣w BQ

Xn ,i

∣∣∣ � n−1/2 (20)

for n large enough.

Proof It is proved in De Marchi and Schaback (2010, Theo-
rem 1) that each of the Lagrange functions uXn ,i admits the
bound
( ∫

Ω

uXn ,i (x)2dx
)1/2

�
(
hXn ,Ω

qXn

)r−d/2

hd/2
Xn ,Ω

, (21)

provided that hXn ,Ω is sufficiently small. Let ‖ν‖∞ < ∞
stand for the supremum of the density function of ν. Then it
follows from w

BQ

Xn ,i
= Iν(uXn ,i ) that

|w BQ

Xn ,i
| ≤

∫
|uXn ,i (x)|dν(x)

≤
(∫

Ω

uXn ,i (x)2dν(x)

)1/2

≤ ‖ν‖∞
(∫

Ω

uXn ,i (x)2dx
)1/2

.

Inequality (19) now follows from (21). When Xn are quasi-
uniform, the ratio hXn ,Ω/qXn remains bounded and hXn ,Ω

behaves like n−1/d . ��
An important consequence of Theorem 5 is that the mag-

nitudes of quadrature weights decrease uniformly to zero as
n increases if the design points are quasi-uniform and ν has a

5 10 15 20 25 30
10−1

104

109

Number of points (n)

Λ
B
Q

X
n

� = 0.1
� = 0.3
� = 0.5

Fig. 4 Bayesian quadrature stability constants for the Gaussian ker-
nel (12) with different length-scales, the uniform measure on [0, 1] and
n points uniformly placed on this interval (end points not included).
The levelling off appears to be caused by loss of numerical precision

density. In other words, none of the design points will have a
constant weight that does not decay. This is similar to impor-
tance sampling, where the weights decay uniformly at rate
1/n. As a direct corollary of Theorem 5 we obtain bounds
on the stability constant Λ BQ

Xn
.

Corollary 3 Under the assumptions of Theorem 5 and pro-
vided that hXn ,Ω is sufficiently small we have

Λ
BQ

Xn
� n

(
hXn ,Ω

qXn

)r−d/2

hd/2
Xn ,Ω

. (22)

When Xn are quasi-uniform and n sufficiently large this
becomes

Λ
BQ

Xn
�

√
n. (23)

While the bounds of Corollary 3 are somewhat conser-
vative (as will be demonstrated in Sect. 4.5), they are still
useful in understanding the factors affecting stability and
robustness of Bayesian quadrature. That is, inequality (22)
shows that the stability constant can be made small if the
ratio hXn ,Ω/qXn is kept small; this is possible if the point set
is sufficiently uniform.

Another important observation concerns the exponent
r − d/2 of the ratio hXn ,Ω/qXn : if the smoothness r of the
kernel is large, then the stability constant may also become
large if the points are not quasi-uniform. This is true because
hXn ,Ω/qXn ≥ 1 for any configuration of Xn , as can be seen
easily from the definitions of qXn and hXn ,Ω . This observa-
tion implies that the use of a smoother kernel may lead to
higher numerical instability. Accordingly, we next discuss
stability of infinitely smooth kernels and the Runge phe-
nomenon that manifests itself in this setting.

4.4 On infinitely smooth kernels

While the theoretical results of this section only concern ker-
nels of finite smoothness, we make a few remarks on the
stability ofBayesian quadraturewhenusing infinitely smooth
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Fig. 5 The Bayesian quadrature stability constant for a Matérn kernel,
the uniformmeasure on [0, 1] and n points drawn from the uniform dis-
tribution. Left: Λ BQ

Xn
averaged over 100 independent Monte Carlo runs.

Right: the run where most extreme behaviour, in terms ofΛ BQ
Xn

attaining

maximal value, was observed. Plotted are both Λ
BQ
Xn

and a scaled ver-

sion of (hXn ,Ω/qXn )
3/2h1/2Xn ,Ω

(its truemaximumwas roughly 2.2×107)
that is expected to control the stability constant. Note that the theoretical
upper bound (22) contains an additional multiplication by n

kernels, such as the Gaussian kernel. When using such a ker-
nel, Bayesian quadrature rules suffer from the famous Runge
phenomenon: if equispaced points are used, then Lebesgue
constants and the stability constants grow rapidly; see Oet-
tershagen (2017, Section 4.3), Platte and Driscoll (2005) and
Platte et al. (2011). This effect is demonstrated in Fig. 4, and
can be seen also in Sommariva andVianello (2006b, Table 1).

A key point is that Runge phenomenon typically occurs
when the design points are quasi-uniform (e.g. equispaced).
This means that quasi-uniformity of the points does not
ensure stability of Bayesian quadrature when the kernel is
infinitely smooth. Care has to be taken if a numerically sta-
ble Bayesian quadrature rule is to be constructed with such a
kernel. One possibility is to use locally optimal design points
from Sect. 3.5. Corollary 2 then guarantees uniform bound-
edness of the stability constant, at least when d = 1.

4.5 A numerical example

Numerical examples of the behaviour of kernel Lebesgue
constants can be found in De Marchi and Schaback (2008),
where it was observed that the theoretical bounds similar
to (23) are conservative: the Lebesgue constant appears to
remain uniformly bounded. Bayesian quadrature weights are
no different. We experimented with the Matérn kernel

k3/2(x, x
′) =

(
1 +

√
3

∣∣x − x ′∣∣
	

)
exp

(
−

√
3

∣∣x − x ′∣∣
	

)

with length-scale 	 = 0.5 and the uniform measure on the
interval [0, 1]. When uniformly spaced points were used, all
weights remainedpositive and their sumquickly converged to
one when n was increased. In contrast, Corollary 3 provides
the, up to a constant, upper bound

√
n that is in this case

clearly very conservative. When points were drawn from the
uniform distribution on [0, 1], more interesting behaviour
was observed (Fig. 5). As expected, the magnitude of Λ

BQ

Xn
was closely related to the ratio hXn ,Ω/qXn . Nevertheless,
increase in n did not generally correspond to increase inΛ

BQ

Xn
.

Note that the results of Sect. 3 do not explain why the
weights became positive in this experiment, because Matérn
kernels do not appear to be totally positive even if the differ-
entiability requirements were to be relaxed and only single
zeroes counted (recall Remark 1). We have numerically
observed that selecting n > ρ + 1/2 and point sets such
that max X < min Y makes the matrix KY ,X discussed in
Sect. 3.3 singular for the Matérn kernel kρ . This implies that
there is a non-trivial linear combination of the n Matérn
translates at X that vanishes at more than n − 1 points.
When ρ = 1/2 and 	 = 1 (so that kρ(x, x ′) = e−|x−y|),
an analytical counterexample can be constructed by setting
X = {x1, x2} andY = {x1+h, x2+h}with h > x2−x1. Then

KY ,X = e−h
[

1 e−(x2−x1)

e−(x1−x2) 1

]
,

which is not invertible because multiplying the first row by
e−(x1−x2) yields the second row. Therefore, the positivity of
quadrature weights for Matérns and other kernels with finite
smoothness requires a further research.
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