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Abstract—Stochastic stability results for the extended Kalman
filter and some other non-linear filters have been available for
some time now. In this context stochastic stability refers to mean
square boundedness of the estimation error. In this article we
use Fourier–Hermite series expansion to derive novel stability
results for general discrete-time non-linear Kalman filters that
can be interpreted as numerical integration rules of Gaussian
integrals arising from moment-matching. We also provide an
upper bound for the Kalman gain matrix that is not explicitly
dependent on the measurement model Jacobian, eliminating thus
the need to assume boundedness of this Jacobian. Furthermore,
we formulate the system non-linearity assumptions so that it is
possible to verify them when the model functions are Lipschitz
continuous. We use these results for a priori assessment of the
stability of a univariate non-linear filter and verify the results
numerically.

I. INTRODUCTION

It has been long known that the celebrated Kalman filter
possesses strong exponential stability properties when the
underlying dynamic system is linear (see [1] and [2]). However,
stability properties of different non-linear extensions of the
Kalman filter have begun to receive some attention only during
the past 15 years. The first results of some generality were
derived by Reif et al. [3] for the discrete-time extended Kalman
filter (EKF) and later somewhat generalised by Kluge et al. [4].
These results provide mean square estimation error bounds with
regrettably restrictive assumptions that are rarely verifiable. A
major drawback is also that in practice stability can be assessed
only after the filter has been run, not beforehand as would
be desirable. The proofs are based on the use of a simple
stochastic Lyapunov type lemma, frequently termed stochastic
stability lemma (see Lemma 3), the very nature of which seems
to be somewhat unsuitable for obtaining strong results [5].

With the help of residual-correcting random diagonal ma-
trices [6], the same approach was shown to be applicable to
the unscented Kalman filter (UKF) with linear measurement
model by Xiong et al. [7] and later extended to systems with
non-linear measurement model as well as a wider class of
certain non-linear Kalman filters [8]–[11]. One problem with
this approach is that instead of quantitative estimation error
bounds such as those obtained for the EKF, only qualitative
results about the effect of noise covariance matrix tuning [12]
can be obtained. UKF stability has also been studied with
interesting contraction theoretic methods by Maree et al. [13].

With minor modifications, the stability results have been
extended for a number of different filters similar to the EKF
or the UKF, see for example [14] and [15]. The continuous-
time case has also been investigated (see [16] and [17]) with
methods analogous to those used in the discrete-time case.
Results have been applied to a few problems [18]–[20] but
such applications are challenging presently.

In this article we use Fourier–Hermite series expansion to
analyse non-linear Kalman filter stability. We use this expansion,
coupled with the interpretation of non-linear Kalman filters
as numerical integration rules for Gaussian integrals [21], to
derive stability results for a wide class of non-linear filters.
Our other contributions include elimination of the unintuitive
assumption of boundedness of the measurement model Jacobian.
We also give a practical example of rigorous a priori stability
verification of a non-linear Kalman filter. We control the
non-linearities of the system slightly differently from how
they have been controlled before. This imposes some new
conditions (while removing others) on the non-linearities but
makes it easier to verify that the systems considered satisfy
these conditions. We find the Fourier–Hermite expansion based
results of this article more powerful, applicable, quantititative
and more intuitive in derivation than the Taylor series and
random matrix approach in [8] and [9].

Throughout this article ‖·‖ denotes the usual Euclidean norm
of vectors or the spectral norm of matrices and ‖·‖2 the L2

norm of random variables. Expectation is denoted by E and
covariance matrix by Cov. For symmetric square matrices
A > B (A ≥ B) means that A − B is positive-definite
(positive-semidefinite). This partial ordering of symmetric
matrices is known as Löwner ordering and it exhibits some,
but not all, of the familiar properties of the ordering of real
numbers (see [22, Chapter 8]). The identity matrix is denoted
by I. The element of a matrix A on ith row and jth column
is denoted by Ai,j or [A]i,j . Similarly, the ith component of
a vector x is xi and that of a vector-valued function f is fi.

The article is structured as follows. In Sections II, III and IV
we provide the necessary preliminaries for stability analysis and
introduce our notation and terminology of non-linear Kalman
filters. Sections V and VI include proofs of stability. A rigorous
univariate example is given in Section VII. Finally, conclusions,
with some discussion, are drawn in Section VIII.



II. FOURIER–HERMITE SERIES EXPANSION

This is a very brief summary of properties of multidimen-
sional Hermite polynomials and Fourier–Hermite series. For a
fuller and more detailed treatment, see for example [23]–[25].

Multidimensional Hermite polynomials, orthogonal with
respect to N (0, I), are defined as

H[i1,...,ik](x) = (−1)k e‖x‖
2/2 ∂k

∂xi1 · · · ∂xik
e−‖x‖

2/2

for x ∈ Rp. For notational simplicity in forming a
Fourier–Hermite series with respect to any Gaussian dis-
tribution N (m,P), we denote scaled versions of Hermite
polynomials by H[i1,...,ik](x;m,P) := H[i1,...,ik][L

−1(x−m)],
with L =

√
P. Then, any function g : Rp → Rq, square-

integrable with respect to N (m,P), can be expressed as a
Fourier–Hermite series

g(x) =

∞∑
k=0

1

k!

p∑
i1,...,ik=1
j1,...,jk=1

E

(
∂kg(x)

∂xj1 · · · ∂xjk

)

×
k∏

m=1

Ljm,im H[i1,...,ik](x;m,P)

= E[g(x)] + E[Jg(x)](x−m) +ωωω2

[
g(x),m,P

]
,

(1)

where x ∼ N (m,P), Jg(x) is the Jacobian matrix of g
at x and ωωω2

[
g(x),m,P

]
is the second order remainder term

of this Fourier–Hermite series expansion. Furthermore, by
orthogonality and Parseval’s identity we have the simple
covariance equation

Cov[g(x)] =

∞∑
k=1

1

k!

p∑
i1,...,ik=1
j1,...,jk=1

E

(
∂kg(x)

∂xj1 · · · ∂xjk

)

×
k∏

m=1

Pjm,imE

(
∂kg(x)

∂xi1 · · · ∂xik

)T

.

III. NON-LINEAR KALMAN FILTERS

In this article we consider discrete-time stochastic dynamic
systems of the form

xk = f(xk−1) + qk−1,

yk = h(xk) + rk,
(2)

where xk ∈ Rn is the state of the system and yk ∈ Rm
the measurement. The function f : Rn → Rn is the dynamic
model function and h : Rn → Rm the measurement model
function, both assumed differentiable. The noise processes are
distributed as qk−1 ∼ N (0,Qk−1) and rk ∼ N (0,Rk) with
the noise covariance matrices Qk−1 and Rk positive-definite.
It is assumed that the noise processes are uncorrelated and
independent of the initial state x0 ∼ p(x0).

The system admits the optimal Bayesian filter, the predictive
distribution and filtering distribution given by the Bayesian
filtering equations [26, Theorem 4.1]. In general those equations
are intractable and approximative schemes must be used. A
natural way to obtain such an approximation is to assume that

the predictive and filtering distribution are Gaussian and employ
moment-matching. This approach yields the exact non-linear
Kalman filter [26, Chapter 6] of Algorithm 1.

Henceforth expectations with respect to N (mk,Pk) and
N (m−k ,P

−
k ) are denoted by Ek and E−k , respectively. Analo-

gous notation is adopted for covariance matrices. The following
notation is employed throughout this article:

Fk := Ek[Jf (x)],

Hk := E−k [Jh(x)],

ΩΩΩf
k := Ek

(
ωωω2

[
f(x),mk,Pk

]
ωωω2

[
f(x),mk,Pk

]T)
,

ΩΩΩh
k := E−k

(
ωωω2

[
h(x),m−k ,P

−
k

]
ωωω2

[
h(x),m−k ,P

−
k

]T)
.

With this notation

Covk[f(x)] = FkPkF
T
k + ΩΩΩf

k,

Cov−k [h(x)] = HkP
−
kH

T
k + ΩΩΩh

k ,
(3)

where it is to be noted that ΩΩΩf
k and ΩΩΩh

k are positive-semidefinite.
In the following filtering algorithm Q̂k−1 and R̂k are some

positive-definite matrices that need not equal the noise covari-
ance matrices Qk−1 and Rk. Appropriately selecting Q̂k−1
and R̂k is referred to as tuning [12]. Magnifying these matrices
often leads to improved stability properties with the drawback
of degraded estimation accuracy [7]. Unfortunately, a thorough
discussion of this tuning is out of the scope of this article.
With the help the Fourier–Hermite series the exact non-linear
Kalman filter algorithm can be written in the following form.

Algorithm 1 (Exact non-linear Kalman filter). The exact non-
linear Kalman filter for the non-linear system (2) approximates
predictive distributions and filtering distributions with Gaussian
distributions N (m−k ,P

−
k ) and N (mk,Pk), respectively. The

parameters of these distributions are computed recursively by
the prediction step

m−k = Ek−1[f(x)],

P−k = Covk−1[f(x)] + Q̂k−1

= Fk−1Pk−1F
T
k−1 + ΩΩΩf

k−1 + Q̂k−1

:= Fk−1Pk−1F
T
k−1 + Q̂′k−1

and the update step

Sk = Cov−k [h(x)] + R̂k

= HkP
−
kH

T
k + ΩΩΩh

k + R̂k

:= HkP
−
kH

T
k + R̂′k,

Kk = Cov−k [x,h(x)]S−1k

= P−kH
T
kS
−1
k ,

mk = m−k + Kk

(
yk − E−k [h(x)]

)
,

Pk = P−k −KkSkK
T
k .

The recursion is started from the initial distribution
N (m0,P0).

The equality Kk = P−kH
T
kS
−1
k for the Kalman gain

matrix follows from the well-known Stein’s identity, see for



example [27]. Although P−k and Pk are not the real predicted
error covariance and error covariance, respectively, they will
be called such in an analogy to the linear filtering problem.

Because Ek[f(x)], Ek[h(x)] and (3) cannot be in most cases
computed analytically, further approximations are necessary.
The class of filters employing different approximations to
these Gaussian integrals is variedly known as the class
of non-linear Kalman filters, Gaussian filters [28] or local
filters [29]. This class includes, for example, the sigma-
point based UKF, Gauss–Hermite Kalman filter based on
classical Gauss–Hermite quadrature and the Fourier–Hermite
Kalman filter [25] that merely truncates ΩΩΩf

k and ΩΩΩh
k .1 In these

algorithms the expectations and covariances are replaced by
their numerical approximations, indicated in this article by a
tilde (e.g. Ẽ−k [h(x)] and C̃ovk−1[f(x)]). Of course, for these
approximate filters the Fourier–Hermite series or Stein’s identity
cannot be used to obtain expression for covariance matrices
and Kalman gain reminiscent of those of the linear Kalman
filter as in Algorithm 1.

IV. STOCHASTIC STABILITY

Stability of a non-linear filter in this article is taken to mean
boundedness of mean square estimation error.

Definition 2. A stochastic process ξξξk ∈ Rn for k ≥ 0 is
said to be bounded in mean square if there is a non-negative
scalar M such that ‖ξξξk‖2 ≤M for all k.

The following lemma is usually called stochastic stability
lemma. Our version is an amalgamation of the versions
in [31, Theorem 2] and [32, Satz IX.9]. In fact, in our
formulation the lemma has nothing to do with stochastics
and the stochastic processes involved could be, with no further
modifications, replaced with sequences of real numbers.

Lemma 3 (Stochastic stability lemma). Let ξξξk ∈ Rn, for
k ≥ 0, be a discrete-time stochastic process. Suppose there is
a scalar-valued stochastic process Vk, positive scalars v1, v2,
µ and ε, and 0 < α ≤ 1 such that

(A1) The inequalities

v1 ‖ξξξk‖22 ≤ E(Vk) ≤ v2 ‖ξξξk‖22

hold for all k ≥ 0.
(A2) The bounds

‖ξξξ0‖22 ≤
v1ε

2

2v2
and µ ≤ αv1ε

2

2
hold.

(A3) The inequality

E(Vk+1) ≤ (1− α)E(Vk) + µ (4)

1Note that a strict interpretation of our definition does not include, for
example, the EKF although it is of the exactly same form because it is based
on approximating the non-linear functions f and h themselves, not the means
and covariances. However, the proof of Theorem 4, our main result, works
also for the EKF. In fact, the EKF can be interpreted as a sigma-point filter
that uses only one point [30].

holds if ‖ξξξk‖2 ≤ ε.2

Then ξξξk is bounded in mean square by ε.

Proof: The proof is by induction. Since ‖ξξξ0‖2 ≤ ε by
Assumptions (A1) and (A2), we have

‖ξξξ1‖22 ≤
E(V1)

v1
≤ (1− α)

E(V0)

v1
+
µ

v1

≤ (1− α)
ε2

2
+
αε2

2
≤ ε2.

Suppose then that ‖ξξξi‖2 ≤ ε for 0 ≤ i ≤ k − 1. Then, by (4)
and properties of geometric sum,

‖ξξξk‖22 ≤ (1− α)k
E(V0)

v1
+
µ

v1

k−1∑
i=0

(1− α)i

≤ (1− α)
ε2

2
+

µ

v1α
≤ ε2,

and therefore the claim holds.
It is often claimed that also almost sure boundedness

(i.e. supk≥0 ‖ξξξk‖ < ∞ almost surely) follows from the
assumptions of this lemma (see e.g. [3] and [4]) on the basis
of [33, Section 4.1, Theorem 1] when (4) is replaced with
an analogous inequality involving conditional expectations.
However, as has already been noted [34, Lemma 8], this claim
is not strictly true.

V. STABILITY OF THE EXACT NON-LINEAR KALMAN
FILTER

In this article the stability of non-linear Kalman filters is
studied using the Fourier–Hermite series expansion of f and h.
Based on the expansion (1),

f(xk)− Ek[f(x)] = Fk(xk −mk) +ωωω2

[
f(xk),mk,Pk

]
,

h(xk)− E−k [h(x)] = Hk(xk −m−k ) +ωωω2

[
h(xk),m−k ,P

−
k

]
.

Using the non-linear Kalman filter equations of Algorithm 1,
the predicted estimation error ξξξ−k := xk −m−k can be then
written recursively as

ξξξ−k+1 = FkAkξξξ
−
k + ρρρk + σσσk, (5)

and the relation between this and ξξξk := xk −mk, the estima-
tion error, is

ξξξk = Akξξξ
−
k −Kkrk −Kkωωω2

[
h(xk),m−k ,P

−
k

]
, (6)

where

Ak = I−KkHk,

ρρρk = ωωω2[f(xk),mk,Pk]− FkKkωωω2

[
h(xk),m−k ,P

−
k

]
,

σσσk = qk − FkKkrk.

For convenience, the notation ϕϕϕk := ωωω2

[
f(xk),mk,Pk

]
and

χχχk := ωωω2

[
h(xk),m−k ,P

−
k

]
is used for the remainder terms of

2This may be a delicate point. We are not making a circular argument of
proving ‖ξξξk‖2 ≤ ε by assuming the same thing. What we assume here is
that we know a priori that the inequality (4) holds only for those k for which
‖ξξξk‖2 ≤ ε. Combining this with the other assumptions then leads to the
conclusion that ‖ξξξk‖2 ≤ ε for all k ≥ 0.



Fourier–Hermite series and ΠΠΠk := (P−k )−1 for the inverse of
the predicted error covariance matrix.

Theorem 4. Consider the non-linear dynamic system (2) and
the exact non-linear Kalman filter of Algorithm 1. Suppose
that the following conditions hold:

(A1) There exist positive scalars f , q̂′, r̂′, p−1 , p−2 and p2 such
that

‖Fk−1‖ ≤ f,
q̂′I ≤ Q̂′k−1, r̂′I ≤ R̂′k,

p−1 I ≤ P−k ≤ p
−
2 I, Pk−1 ≤ p2I

for all k ≥ 1.
(A2) There exist non-negative scalars κϕϕϕ, κ+ϕϕϕ , κχχχ and κ+χχχ such

that

‖ϕϕϕk−1‖2 ≤ κϕϕϕ ‖xk−1 −mk−1‖2 + κ+ϕϕϕ ,

‖χχχk‖2 ≤ κχχχ ‖xk −m−k ‖2 + κ+χχχ

for all k ≥ 1.
Then, given any ε ≥ 0 for which ‖ξξξ−1 ‖2 ≤ ε, there exists δ ≥ 0
such that the conditions Qk,Rk ≤ δ2I guarantee that the
predicted estimation error ξξξ−k is bounded in mean square if
κϕϕϕ, κ+ϕϕϕ , κχχχ and κ+χχχ are sufficiently small.

Remarks:
(1) The assumption Pk ≤ p2I is only for obtaining less

conservative bounds since Pk ≤ P−k anyway. Similarly,
P−k has the trivial lower bound P−k ≥ q̂′I which is non-
optimal unless f is small compared to q̂′.

(2) In practice, the lower bounds for Q̂′k−1 and R̂′k are those
for the tuning matrices Q̂k−1 and R̂k.

(3) This theorem could be easily extended for systems with
non-additive noise and intermittent observations as has
been done for the EKF [4].

(4) With minor changes the proof is applicable to the EKF
as well.

(5) Assumption (A2) is satisfied by Lipschitz functions, for
if g is such a function and L = Lip(g) its Lipschitz
constant, then it can be easily shown that∥∥ωωω2

[
g(x),m,P

]∥∥
2
≤ 2L ‖x−m‖2 + L ‖P‖ .

(6) Assumption (A2) is usually given in a form that contains
an exponent 1 < γ ≤ 2 on the right-hand side (as well
as lacking the constant term) instead of γ = 1 here. Such
an assumption provides stronger stability results but we
have not found a way to actually prove that there exist
non-linear functions for which this assumption holds.

(7) Because the matrices in Assumption (A1) are random,
some Lp boundedness condition combined with Hölder’s
inequality could be used in the proofs to follow.

(8) An upper bound for Ak is needed. A bound independent
of Hk can be obtained by noting that Pk = AkP

−
k and

so ‖Ak‖ ≤ p2/p−1 := A.
The proof utilises a few lemmas. Lemma 5 provides an upper

bound for Kk independent of Hk, a bound we have been unable

to find in the literature (see [35] for a bound involving the
ratio of singular values of Hk). Lemma 6 follows an analogous
lemma in [4] and Lemmas 7 and 8 are based on the ones in [3].

Lemma 5. Under the assumptions of Theorem 4, for all k ≥ 1

‖Kk‖ ≤
p−2√
p−1 r̂

′
:= K. (7)

Proof: It suffices to show that all eigenvalues of KT
kKk

remain uniformly bounded. It can be seen that

KT
kKk =

(
HkP

−
kH

T
k + R̂′k

)−1
HkP

−
k

×P−kH
T
k

(
HkP

−
kH

T
k + R̂′k

)−1
≤ (p−2 )2

(
HkP

−
kH

T
k + R̂′k

)−1
Hk

×HT
k

(
HkP

−
kH

T
k + R̂′k

)−1
≤ (p−2 )2

p−1

(
HkP

−
kH

T
k + R̂′k

)−1 (
HkP

−
kH

T
k + R̂′k

)
×
(
HkP

−
kH

T
k + R̂′k

)−1
≤ (p−2 )2

p−1 r̂
′ I,

which implies the claim. The second inequality follows because
p1I ≤ P−k implies that HkH

T
k ≤ HkP

−
kH

T
k/p
−
1 .

The bound is not probably the strictest possible as for scalars
one has

sup
Hk∈R

∣∣∣∣∣ P−k Hk

H2
kP
−
k + R̂′k

∣∣∣∣∣ =
1

2

√
P−k

R̂′k
, (8)

a bound we have found to be supported by numerical evidence
also in higher dimensions.

Lemma 6. Under the assumptions of Theorem 4 there exists
0 < α′ < 1 such that

AT
kF

T
kΠΠΠk+1FkAk ≤ (1− α′)ΠΠΠk

for all k ≥ 1. The constant α′ is given by α′ = q̂′/(f2p2 + q̂′).

Proof: Let a > 1. By the definition of P−k and the
assumptions of Theorem 4,

P−k+1 = FkPkF
T
k + Q̂′k >

(
1 +

q̂′

af2p2

)
FkPkF

T
k . (9)

The Joseph form [36, p. 108]

Pk = AkP
−
kA

T
k + KkR̂

′
kK

T
k

and (9) yield

P−k+1 >

(
1 +

q̂′

af2p2

)
FkAkP

−
kA

T
kF

T
k .

Then, [4, Lemma 6.1] implies that

AT
kF

T
kΠΠΠk+1FkAk ≤

af2p2
af2p2 + q̂′

ΠΠΠk.

Since this holds for every a > 1, the claim follows.



Lemma 7. Under the assumptions of Theorem 4 there exist
non-negative scalars κρρρi for 1 ≤ i ≤ 6 such that

E
(
ρρρTkΠΠΠk+1

[
2FkAkξξξ

−
k + ρρρk

])
≤ κρρρ1 ‖ξξξ

−
k ‖

2

2
+ κρ

ρρ
2δ ‖ξξξ

−
k ‖2 + κρ

ρρ
3δ

2 + κρ
ρρ
4 ‖ξξξ

−
k ‖2

+ κρ
ρρ
5δ + κρ

ρρ
6

for all k ≥ 1.

Proof: By (6) and the assumptions of Theorem 4,

‖ξξξk‖2 ≤
(
A+Kκχχχ

)
‖ξξξ−k ‖2 +K

√
mδ +Kκ+χχχ , (10)

and hence

‖ρρρk‖2 ≤ ‖ϕϕϕk‖2 + ‖FkKkχχχk‖2
≤ κϕϕϕ ‖ξξξk‖2 +Kfκχχχ ‖ξξξ−k ‖2 + κ+ϕϕϕ +Kfκ+χχχ

≤
(
Aκϕϕϕ +Kκχχχκϕϕϕ +Kfκχχχ

)
‖ξξξ−k ‖2

+Kκϕϕϕ
√
mδ + κ+ϕϕϕ + (κϕϕϕ + f)Kκ+χχχ

:= κ1 ‖ξξξ−k ‖2 + κ2δ + κ+. (11)

Now,

E
(
ρρρTkΠΠΠk+1ρρρk

)
≤ 1

p−1

(
κ21 ‖ξξξ−k ‖

2

2
+ κ22δ

2 + κ2+ + 2κ1κ2δ ‖ξξξ−k ‖2

+ 2κ1κ+ ‖ξξξ−k ‖2 + 2κ2κ+δ
)
,

(12)

and utilisation of the Cauchy–Schwarz inequality yields

2E
(
ρρρTkΠΠΠk+1FkAkξξξ

−
k

)
≤ 2Af

p−1
‖ρρρk‖2 ‖ξξξ

−
k ‖2

≤ 2Af

p−1

(
κ1 ‖ξξξ−k ‖

2

2
+ κ2δ ‖ξξξ−k ‖2 + κ+ ‖ξξξ−k ‖2

)
.

(13)

By combining inequalities (12) and (13) we get the claim.

Lemma 8. Under the assumptions of Theorem 4 there exists
κσσσ ≥ 0 such that for all k ≥ 1

E
(
σσσT
kΠΠΠk+1σσσk

)
≤ κσσσδ2.

Proof: Since the noise terms are uncorrelated, all cross-
terms vanish in

E
(
σσσT
kΠΠΠk+1σσσk

)
= E

(
qT
kΠΠΠk+1qk

)
+ E

(
rTkK

T
kF

T
kΠΠΠk+1FkKkrk

)
.

Therefore, because both sides are just scalars, trace operations
produce the bound

E
(
σσσT
kΠΠΠkσσσk

)
≤ 1

p−1
E
(

trqT
kqk

)
+

1

r̂′

(
fp−2
p−1

)2

E
(

tr rTkrk

)
=

1

p−1
trQk +

1

r̂′

(
fp−2
p−1

)2

trRk

≤ 1

p−1

(
n+

(fp−2 )2m

r̂′

)
δ2.

With these lemmas we are in a position to provide a proof
of Theorem 4.

Proof of Theorem 4: The idea of the proof is to apply
Lemma 3 to the process ξξξ−k . Choose a stochastic Lyapunov
function Vk = (ξξξ−k )TΠΠΠkξξξ

−
k . Assumption (A1) of Lemma 3 is

satisfied with v1 = 1/p−2 and v2 = 1/p−1 .
Now, using the predicted estimation error recursion (5) and

grouping the terms appropriately, one obtains

Vk+1 = (ξξξ−k )TAT
kF

T
kΠΠΠk+1FkAkξξξ

−
k

+ ρρρTkΠΠΠk+1

(
2FkAkξξξ

−
k + ρρρk

)
+ σσσT

kΠΠΠk+1σσσk

+ 2σσσT
kΠΠΠk+1

(
FkAkξξξ

−
k + ρρρk

)
.

(14)

By independence, the last term on the right-hand side vanishes
when expectations are taken. The three remaining terms are
evaluated by Lemmas 6–8. For k ≥ 1, this yields the inequality

E(Vk+1) ≤ (1− α′)E(Vk) + κρ
ρρ
1 ‖ξξξ

−
k ‖

2

2
+ κρ

ρρ
2δ ‖ξξξ

−
k ‖2

+ (κρ
ρρ
3 + κσσσ)δ2 + κρ

ρρ
4 ‖ξξξ

−
k ‖2 + κρ

ρρ
5δ + κρ

ρρ
6.

(15)

If κρρρ1 ≤ α′/p
−
2 β with β > 1, then

E(Vk+1) ≤
(

1− β − 1

β
α′
)
E(Vk) + (κρ

ρρ
2ε̃+ κρ

ρρ
5)δ

+ (κρ
ρρ
3 + κσσσ)δ2 + κρ

ρρ
4ε̃+ κρ

ρρ
6

whenever ‖ξξξ−k ‖2 ≤ ε̃, with ε̃ any positive scalar. Thus Lemma 3
implies that the predicted estimation error is bounded in mean
square by ε̃ if

‖ξξξ−1 ‖
2

2 ≤
p−1 ε̃

2

2p−2
, κρ

ρρ
1 ≤

α′

p−2 β

and

(κρ
ρρ
2ε̃+κρ

ρρ
5)δ+ (κρ

ρρ
3 +κσσσ)δ2 +κρ

ρρ
4ε̃+κρ

ρρ
6 ≤

(β − 1)α′ε̃2

2p−2 β
. (16)

Because κρ
ρρ
4 and κρ

ρρ
6 do not depend on δ and κρ

ρρ
4, κ

ρρρ
6 → 0

as κ+ϕϕϕ , κ
+
χχχ → 0, (16) may hold only if κ+ϕϕϕ , κ+χχχ and δ are

sufficiently small.
Inspection of inequalities (12) and (13) and substitution

of the values of A and K shows that the upper bound
κρ
ρρ
1 ≤ α′/p

−
2 β implies the inequality

p−2
p−1

(
p2κϕϕϕ

p−1
+
p−2 κχχχκϕϕϕ√
p−1 r̂

′
+
p−2 fκχχχ√
p−1 r̂

′

)

×

(
p2κϕϕϕ

p−1
+
p−2 κχχχκϕϕϕ√
p−1 r̂

′
+
p−2 fκχχχ√
p−1 r̂

′
+

2p2f

p−1

)

≤ α′

β
< 1,

(17)

which can only hold if κϕϕϕ and κχχχ are significantly smaller
than one.



VI. STABILITY OF APPROXIMATIVE NON-LINEAR KALMAN
FILTERS

As explained in Section III, an approximative non-linear
Kalman filter uses numerical integration to compute the means
and covariances if they cannot be evaluated analytically. This
section sketches a stability proof for any such filter based on
the one in the preceding section.

Consider any approximative non-linear Kalman filter. The
predicted estimation error recursion (5) for such a filter can
be written as

ξξξ−k+1 = FkAkξξξ
−
k + ρρρk + σσσk + τττk , (18)

where the additional term τττk incorporates the errors due to
numerical integration:

τττk = efk − FkKke
h
k ,

with efk and ehk the integration errors

efk = Ek[f(x)]− Ẽk[f(x)],

ehk = E−k [h(x)]− Ẽ−k [h(x)].

Advantageous forms for covariance matrices can be obtained
in a similar manner, namely

P−k = Covk−1[f(x)] + Cf
k−1 + Q̂k−1

= Fk−1Pk−1F
T
k−1 + ΩΩΩf

k−1 + Q̂k−1 + Cf
k−1,

Sk = Cov−k [h(x)] + Ch
k + R̂k

= HkP
−
kH

T
k + ΩΩΩh

k + R̂k + Ch
k ,

where

Cf
k−1 = C̃ovk−1[f(x)]− Covk−1[f(x)],

Ch
k = C̃ov

−
k [h(x)]− Cov−k [h(x)].

It cannot be guaranteed that Cf
k−1 and Ch

k are
positive-semidefinite. However, positive-definiteness of
ΩΩΩf
k−1 + Q̂k−1 + Cf

k−1 and ΩΩΩh
k + R̂k + Ch

k , necessary for
carrying out the stability proof, can be guaranteed if Q̂k−1
and R̂k are chosen large enough. In practice this means that
Cf
k−1 and Ch

k need to remain bounded.
Similar reasoning cannot be applied to the approximated

cross-covariance C̃ov
−
k [x,h(x)] but this would be in fact

unnecessary and it suffices to assume this matrix uniformly
bounded. However, since C̃ov

−
k [x,h(x)] = P−kH

T
k does not

hold generally for approximative non-linear Kalman filters,
it cannot be concluded that Pk = AkP

−
k in this case.

Consequently, the bound ‖Ak‖ ≤ 1+‖KkHk‖ has to be used.
This requires the unfortunate assumption of bounded Hk.

With this notation, we have the following more general
theorem on stability of non-linear Kalman filters.

Theorem 9. Consider the non-linear dynamic system (2) and
any approximative non-linear Kalman filter as formulated in
Section III. Suppose that the following conditions hold:

(A1) There exist positive scalars f , h, p−1 , p−2 , p2, g, q̂C and
r̂C such that

‖Fk−1‖ ≤ f, ‖Hk‖ ≤ h,
p−1 I ≤ P−k ≤ p

−
2 I , Pk−1 ≤ p2I,∥∥C̃ov

−
k [x,h(x)]

∥∥ ≤ g,
q̂CI ≤ ΩΩΩf

k−1 + Q̂k−1 + Cf
k−1, (19)

r̂CI ≤ ΩΩΩh
k + R̂k + Ch

k ,

for all k ≥ 1.
(A2) There exist non-negative scalars εf and εh such that

‖efk−1‖2 ≤ ε
f and ‖ehk‖2 ≤ ε

h for all k ≥ 1.
(A3) There exist non-negative scalars κϕϕϕ, κ+ϕϕϕ , κχχχ and κ+χχχ such

that

‖ϕϕϕk−1‖2 ≤ κϕϕϕ ‖xk−1 −mk−1‖2 + κ+ϕϕϕ ,

‖χχχk‖2 ≤ κχχχ ‖xk −m−k ‖2 + κ+χχχ

for all k ≥ 1.
Then, given any ε ≥ 0 for which ‖ξξξ−1 ‖2 ≤ ε, there exists δ ≥ 0
such that the conditions Qk,Rk ≤ δ2I guarantee that the
predicted estimation error ξξξ−k is bounded in mean square if
κϕϕϕ, κ+ϕϕϕ , κχχχ, κ+χχχ , εf and εh are sufficiently small.

Proof: The proof goes as that of Theorem 4 and accompa-
nying lemmas. That the proof of Lemma 6 is identical follows
from (19) and the proofs of Lemmas 7 and 8 require only
minor tweaking of the upper bounds.

The proof of Lemma 8 includes a few modifications. First of
all, the constant A is this time 1 + gh/r̂C. Secondly, because

ξξξk = Akξξξ
−
k −Kkrk −Kkωωω2

[
h(xk),m−k ,P

−
k

]
+ Kke

h
k ,

additional terms that include εh will appear in the upper bound
of the lemma.

By (18), Equation (14) for the stochastic Lyapunov function
now includes some additional terms containing τττk and not
vanishing when the expectation is taken, namely

2τττTkΠΠΠk+1

(
FkAkξξξ

−
k + ρρρk

)
+ τττTkΠΠΠk+1τττk.

As in Lemma 7, these can be bounded from above by

2E
(
τττTkΠΠΠk+1

[
FkAkξξξ

−
k + ρρρk

])
≤ 2

p−1

(εf +
fgεh

r̂C

)(
κ1 + f +

fgh

r̂C

) ‖ξξξ−k ‖2
+

2

p−1

(
εf +

fgεh

r̂C

)
κ2δ

and

E
(
τττTkΠΠΠk+1τττk

)
≤ 1

p−1

(εf)2 +
2fgεfεh

r̂C
+

(
fgεh

r̂C

)2


with κ1 and κ2 analogous to those in (11). These terms then
appear on the right-hand side of (15) and, with εf , εh, κϕϕϕ, κ+ϕϕϕ ,
κχχχ and κ+χχχ sufficiently small, Lemma 3 can be applied.



VII. A NUMERICAL SIMULATION

This section provides an example of a stable non-linear
Kalman filter for a one-dimensional system. Stability of the
filter is verified before any measurements have arrived. Appli-
cation of Theorems 4 and 9 is difficult in higher dimensions
because of the difficulties in obtaining upper bounds for P−k
and Pk. As such, the numerical simulation here illustrates
conservativeness of our theoretical results.

Consider the system (2) in univariate setting with functions
f and h of the form

f(x) = afx+ gf (x),

h(x) = ahx+ gh(x),

where af and ah are some constants and gf and gh some
Lipschitz functions such that h1 := infx∈R h

′(x) > 0. We use
the exact non-linear Kalman filter presented in Algorithm 1.
Now, by Chernoff’s inequality

E
[
f ′(x)

]2
P ≤ Cov[f(x)] ≤ E

[
f ′(x)2

]
P,

where x ∼ N (m,P ) (see e.g. [37]). We therefore get

P−k = Covk−1[f(x)] + Q̂k−1

≤ Ek−1
[
f ′(x)2

]
Pk−1 + Q̂k−1

≤ Lip(f)2Pk−1 + Q̂k−1.

Note that a multi-dimensional form of the latter inequality does
not regrettably hold (see [38] for similar matrix inequalities).
Chernoff’s inequality also yields the error covariance bound

Pk =

1−
E−k
[
h′(x)

]2
P−k

Cov−k [h(x)] + R̂k

P−k

≤

(
1−

h21P
−
k

h21P
−
k + R̂k

)
P−k .

Hence upper bounds for P−k and Pk are given by the upper
bounds supk≥0 Var(xk | y1:k) and supk≥0 Var(xk | y1:k−1)
of the linear Kalman filter variances for the system

xk = Lip(f)xk−1 + qk−1,

yk = h1xk + rk.

The steady-state Kalman filter prediction variance P− of this
system can be easily calculated. When the non-linear filter is
initialised such that P−1 ≤ P−, we obtain the upper bounds
p−2 = p2 = P−.

For a numerical simulation we use a modified univariate non-
stationary growth model (see e.g. [39]) with linear measurement
model

xk+1 = xk + C
xk

1 + x2k
+ qk,

yk+1 = Hxk+1 + rk+1,
(20)

where C is a positive constant, H = 2 and qk, rk+1 ∼ N (0, δ2)
with δ to be determined. For this model Lip(gf ) = C so κϕ and
κ+ϕ are obtained by Remark (5) after Theorem 4 (by linearity
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Fig. 1. The effect of increasing the measurement model derivative H on
maximal C and δ for the system (20) with and without univariate optimisation.
The value of H used in the example simulation is marked with grey. For most
values of H < 1 stability of the filter cannot be guaranteed.

κχ = κ+χ = 0). We set p−1 = Q̂k = R̂k+1 = 1. The parameters
β and ε̃ of the proof of Theorem 4 are set as β = ε̃ = 2. By
testing different values of C we find that inequalities (16)
and (17) hold for C ≤ 0.028. This value yields P− ≈ 1.22,
δ ≤ 0.2004 and ‖ξξξ−1 ‖2 ≤ 2p−1 /p

−
2 ≈ 1.64. We can conclude

that the predicted estimation error obeys the bound ‖ξξξ−k ‖2 ≤ 2
if C = 0.028, ‖ξξξ−1 ‖2 ≤ 1.64 and qk, rk+1 ∼ N (0, 0.20042).
Note that we have used the general upper bounds derived in
the course of the proof of Theorem 4. Some of these bounds
can be replaced with ones optimised for the univariate case.
Using (8) instead of (7) and A = 1 yields C ≤ 0.040 and
δ ≤ 0.186. Figure 1 illustrates the effect of increasing H .

However, filtering a large number of simulated realisations
over 200 time-steps with x0 = m0 = 0 and minimal initial
uncertainty results to max1≤k≤200 ‖ξξξ−k ‖2 ≈ 0.22. Theoretical
results derived in this article are thus somewhat conservative.

VIII. CONCLUSIONS AND DISCUSSION

We studied mean square boundedness of estimation error of
non-linear Kalman filters that use Gaussian approximations to
the true filtering distributions and match the first two moments.
The analysis was done with the stochastic stability lemma,
the staple of non-linear Kalman filter stability analysis, and
Fourier–Hermite series expansion, better suited for the Gaussian
integration approach than the customarily employed Taylor
series expansion.

We were able to discard the non-intuitive assumption of
bounded measurement model Jacobian for the exact non-linear
Kalman filter, this result applying also to the EKF. In order to
perform rigorous stability assessment beforehand our emphasis
was on models with dynamic and measurement model functions
Lipschitz continuous. Our results do not require small initial
estimation error; this is instead a tunable parameter. However, as
seen in our univariate numerical example, constraints imposed
on non-linearity of the system are severe and the resulting error
bound rather conservative. Application of the results remains



challenging, this being mostly attributable to the difficulty of
proving boundedness of the filter error covariance matrices.

We find two points in the present methodology that particu-
larly call for improvement. The inequalities used in the proof
of the main results, specifically those in Lemma 7, are very
crude. Especially unintuitive is the bound (10) as it is usually
expected that the error diminishes over the filter update step.
Secondly, in bounding the filter error covariance matrix some
new innovations are required.

Stability of non-linear Kalman filters is intimately dependent
on stability properties of the corresponding optimal Bayesian
filter [26, Theorem 4.1] because mean square boundedness
of ξξξ−k implies that of the optimal filter covariance. In future
research application of ideas and concepts of optimal filtering
stability theory (see e.g. [40]) should be attempted in the
context of non-linear Kalman filters.
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