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ABSTRACT

State-space representations of Gaussian process regression
use Kalman filtering and smoothing theory to downscale the
computational complexity of the regression in the number of
data points from cubic to linear. As their exact implementation
requires the covariance function to possess rational spectral
density, rational approximations to the spectral density must be
often used. In this article we introduce new spectral transfor-
mation based methods for this purpose: a spectral composition
method and a spectral preconditioning method. We study con-
vergence of the approximations theoretically and run numerical
experiments to attest their accuracy for different densities, in
particular the fractional Matérn.

Index Terms— Gaussian process regression, state-space
approximation, fractional Matérn, composite approximation,
spectral preconditioning

1. INTRODUCTION

In machine learning, the problem of estimating the value f(t)
of an unknown function f from a finite number of possibly
noisy function value observations is ubiquitous. Gaussian
process (GP) regression [1] approaches the problem by postu-
lating a non-parametric Gaussian process prior over the func-
tion f . What this means is that, for every t, f(t) is taken as a
zero-mean (arbitrary mean is easily accommodated if neces-
sary) Gaussian random variable such that each finite collection
f(t1), . . . , f(tn) of random variables is jointly Gaussian. A
zero-mean Gaussian process is completely specified by its
covariance function k(t, t′) = E

[
f(t)f(t′)

]
, and the whole

model, with noisy function evaluations y = (y1, . . . , yN )T

(the data) at t1, . . . , tN , can be written as

f ∼ GP
(
0, k(t, t′)

)
,

yi = f(ti) + εi,
(1)
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where εi are independent zero-mean Gaussian random vari-
ables with variances σ2

i . The posterior p(f(t) | y) is then
Gaussian with explicitly computable mean µ(t) and vari-
ance V (t):

µ(t) = kT(t)(K + Σ)−1y,

V (t) = k(t, t)− kT(t)(K + Σ)−1k(t),
(2)

where ki(t) = k(t, ti), [K]ij = k(ti, tj), and Σ is a diagonal
matrix containing the noise variances σ2

i .
Now, as can be seen from (2), a naive implementation

of GP regression with N data points requires inverting an
N ×N matrix K + Σ and therefore suffers from cubic time-
complexity O(N3), which is usually computationally pro-
hibitive for other than small sets of data. To counter this
problem, state-space representations of Gaussian processes
were introduced in [2–4]. In state-space methodology one
constructs a continuous-time linear state-space model of the
form

dx(t)

dt
= Ax(t) + Lw(t),

yi = Hx(ti) + εi,
(3)

with A, L and H suitable matrices, w(t) a white noise process,
and εi as in (1). The building blocks of this model are chosen
such that the model becomes equivalent to the Gaussian pro-
cess regression problem at hand—typically the function f(t)
is augmented as a component of the state x(t). Because the
posterior state distribution for (3) can be computed with lin-
ear time-complexity O(N) using classical Kalman filtering
and smoothing theory [5], the problem is transformed into
computationally feasible form.

Of course, the problem is then, given a Gaussian process re-
gression problem (1), to actually transform it to the state-space
form. As demonstrated in [4], this is possible exactly if and
only if the covariance function k has a spectral density S(ω)
that is a rational function of ω2 with order of the numerator
smaller than that of the denominator. Consider, for instance,
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the Matérn class of covariance functions

kM(t, t′) = σ2 21−ν

Γ(ν)

(√
2ν|t− t′|
`

)ν
Kν

(√
2ν|t− t′|
`

)
,

where σ, ν, and ` are certain positive parameters and Kν is the
modified Bessel function of the second kind. If ν = 1/2 + n
for some n ∈ N, this covariance function has a spectral density
of the desired form [1, Chapter 4]:

SM(ω) = σ2 2
√
π Γ(ν + 1/2)

Γ(ν)
λ2ν(λ2 + ω2)−(ν+1/2),

with λ =
√

2ν/`. However, for all other values of ν the
spectral density is not a rational function. Unfortunately, per-
haps the most frequently used covariance function, the squared
exponential (SE)

kSE(t, t′) = σ2 exp

(
− (t− t′)2

2`2

)
,

has a spectral density not of the desired rational form.
Different rational approximations can be used to these

non-rational spectral densities [2, 4, 6]. Särkkä and Piché [7]
provided theoretical framework for using such approximations
and, in the case of the SE, numerically experimented with their
accuracy and convergence.

There are three criteria for a successful approximation: (i)
the approximation must be valid spectral density, amounting
to positivity; (ii) it must be rational function of ω2; and (iii) it
should converge to the true density as well as corresponding
true posterior mean and variance functions (2). In contrast
to the results in [7], straightforward use of Taylor and Padé
approximants does not usually produce approximants with
these properties for covariance functions other than the SE.
Some new methods are therefore needed.

In this article we provide several novel rational approxi-
mations to spectral densities using composite Taylor and Padé
approximations and spectral preconditioning. These approxi-
mations are based on spectral transformations. We experimen-
tally investigate their performance for covariance functions
other than the SE. Particular attention is given to Matérn co-
variance functions with non-rational spectral densities.

2. MAIN RESULTS

This section presents different methods of creating rational ap-
proximations to spectral densities using spectral compositions
and preconditioning. Numerical experiments and practical
comparison of the algorithms will be carried out later in Sec-
tion 3.

2.1. Composition of spectral functions

Suppose we have a spectral density S that can be expressed as
a composition of a function f and a continuous “basis” spectral

density B:
S(ω) = B(f(ω)). (4)

Given that B and f admit convergent approximations Bn
and fm, we can use composition of these approximations to
produce a sequence Sn,m of rational approximations to S as

Sn,m(ω) = Bn(fm(ω)). (5)

By Wiener–Khinchin theorem [1, Chapter 4], this leads to a
sequence of approximations kn,m to the corresponding covari-
ance function k. In the following we show that, under some
non-restrictive assumptions, the approach of using approxima-
tions (5) is theoretically sound.

Let us therefore consider sequences of positive functions
Bn → B and fm → f such that the composite functions
Bn(fm(ω)) are bounded by an integrable function and conver-
gence of Bn to B is uniform. These standing assumptions are
encapsulated in the following.

Assumption 2.1. The sequence fm converges to f point-wise
and the sequence of positive functions Bn converges to con-
tinuous B uniformly. This is to say that for every ε > 0 there
is N > 0 such that |Bn(ω)−B(ω)| < ε for all n > N and
ω ∈ R.

Assumption 2.2. There exists a function S̄ such that∫
R S̄(ω)dω <∞ and Bn(fm(ω)) ≤ S̄(ω) for all n, m and ω.

We now consider the composite function Bn(fm(ω))
and prove that it converges to B(f(ω)) = S(ω) when
n,m → ∞. Note that we are working with the double limit
limn,m→∞Bn(fm(ω)), defined, if existing, as the number a
for which there is for every ε > 0 an integer N such that
|Bn(fm(ω))− a| < ε for all n,m > N . This is distinct from
the iterated limits (see [8, Section 1.5])

lim
n→∞

lim
m→∞

Bn(fm(ω)) and lim
m→∞

lim
n→∞

Bn(fm(ω)).

Theorem 2.3. The sequence of composite approximations
Bn(fm(ω)) converges to B(f(ω)) point-wise as m,n→∞.

Proof. By the triangle inequality,

|Bn(fm(ω))−B(f(ω))|
≤ |Bn(fm(ω))−B(fm(ω))|+ |B(fm(ω))−B(f(ω))|,

and the point-wise convergence follows from Assumption 2.1.
Specifically, the first term on the right-hand side vanishes
by the uniform convergence assumption of Bn to B and the
second by continuity of B and the point-wise convergence
of fm to f .

Combined with Theorems 2.1 and 2.2 of [7], Assump-
tion 2.2 and Theorem 2.3 then yield the following result on
the convergence of corresponding covariance function kn,m as
well as posterior mean and variance (2).



Theorem 2.4. The sequence of covariance function approxi-
mations kn,m is uniformly bounded and converges uniformly
to k, the covariance function corresponding to the spectral
density S. Furthermore, if the noise covariance Σ is positive-
definite, then the posterior mean and variance functions µn,m
and Vn,m, corresponding to kn,m, converge uniformly to µ
and V , those of k.

2.2. Composite approximation methods

We use two different basis spectral densities that yield positive
densities in the powers of ω2:

BSE(ω) = exp(−ω2),

BM(1/2)(ω) =
1

1 + ω2
,

(6)

the second one being basically the Matérn density with
ν = 1/2. The problem is then to construct a sequence of
approximations to f and ensure that this chosen sequence ac-
tually converges point-wise. Both our basis densities have
one-sided inverses B−1+ , so the function f can be recovered as

f(ω) = B−1+ (S(ω)).

This means that

fSE(ω) = B−1SE+(S(ω)) =
√
− lnS(ω),

fM(1/2)(ω) = B−1M(1/2)+(S(ω)) =
√

1/S(ω)− 1,
(7)

can then be used to form the truncated Taylor series approxi-
mants f[M ] at the origin:

f[M ](ω) =

M∑
n=0

f (n)(0)ωn

n!
. (8)

Convergence of these Taylor series in the set of analyticity
of S is guaranteed by the following theorem.

Theorem 2.5. Consider the spectral decomposition (4)
of S with basis densities (6). If S is analytic in a set
Ω = { |ω| ≤ γ } and 0 < S(ω) ≤ 1 for all ω ∈ Ω, then
the Taylor series of functions (7) at the origin converge in Ω.

Proof. Because S is analytic and positive in the set Ω, so are
lnS(ω) and 1/S(ω). Furthermore, as S(ω) ≤ 1 in Ω, we
have that − lnS(ω) ≥ 0 and 1/S(ω) ≥ 1 in Ω, implying that
fSE and fM(1/2) are analytic in this set. Therefore their Taylor
series converge in Ω.

The requirement that S(ω) ≤ 1 is not a restriction be-
cause the approximation to f can be formed on the basis of
normalized density S(ω)/maxω∈R S(ω) ≤ 1 and after this
multiplied multiplied by maxω∈R S(ω).

1 4
0

3

ω

fSE(ω)

−2 0 2
0

1

ω

SM(ω)

Fig. 1: Example of composite approximations to normalized
Matérn spectral density ( ) SM(ω) = 1/(1 + ω2)α with
α = 7/3 and ` =

√
2ν. Here BSE is used and fSE is ap-

proximated with Taylor series of order 17 ( ) and Padé
approximant [12/5] ( ). Convergence radius of Taylor
series is marked on the figure for fSE.

Unfortunately, the convergence radius of a Taylor series
of S is often quite small. For example, a Taylor series for
Matérn density with ` =

√
2ν,

SM(ω) ∝ (1 + ω2)−(ν+1/2), (9)

converges only in { |ω| ≤ 1 }.
Often a more fruitful approach is to match the L+M first

derivatives of the composition in (4) at the origin and form the
Padé approximant [9]

f[L/M ](x) =
b0 + b1x+ · · ·+ bLx

L

1 + a1x+ · · ·+ aMxM

out of the derivatives similarly to what was done for the SE
covariance function in [7]. This approximant usually has a
larger radius of convergence than the Taylor one. Fig. 1 il-
lustrates the difference in the convergence radii of Taylor and
Padé approximants for (9) with ν = 7/3− 1/2.

As BM(1/2) is already in the rational form, it does not re-
quire any approximations. The other basis density BSE can
be approximated by the methods in [7] that convergence uni-
formly, satisfying hence the assumptions in Section 2.1.

2.3. Direct approximation of covariance functions

Sometimes, due to the construction of the model, the spectral
density S is not directly available. This makes it difficult to
form the Taylor series or Padé expansions which need the
derivatives of the spectral density at origin. Fortunately, by
computing moments of the covariance function, the derivatives
can be evaluated through Fourier transform:

dnS(ω)

dωn

∣∣∣∣
ω=0

= (−i)n
∫
R
τn k(τ) dτ,

where we have assumed that the covariance function is station-
ary: k(t, t′) , k(t− t′) (with a slight abuse of notation).



In practice, we can evaluate the moments via numerical
integration and then form the Taylor and Padé approximants
using those numerical values. This allows us to form rational
approximations of the spectral density without the need to
explicitly evaluate the spectral density or its derivatives.

2.4. Spectral preconditioning

The accuracy of the Taylor series expansion of the Matérn
spectral density is limited by the exponent α = ν + 1/2 in

SM(ω) ∝ (λ2 + ω2)−α,

because it defines how many terms we can include to the
expansion while still retaining a valid spectral density [10]. To
cope with this problem we introduce spectral preconditioning,
where we write the spectral density S as

S(ω) = Sp,n(ω)S(ω)/Sp,n(ω) (10)

with Sp,n some function, and approximate this by func-
tions Spre

n in some way.
For fractional Matérn spectral density this procedure works

particularly well when Sp,n is selected as

Sp,n(ω) = (λ2 + ω2)n

and Spre
n is constructed as

Spre
n (ω) = Sp,n(ω)/Pn(ω) = (λ2 + ω2)n/Pn(ω), (11)

where

Sp,n(ω)S(ω) = (λ2 + ω2)α+n ≈ Pn(ω) =

dαe+n∑
k=0

ak,n ω
2k.

Here

ak,n =
1

k!
λ2(α+n)−2k

k−1∏
m=0

(α+ n−m) (12)

are Taylor series coefficients of (λ2 +ω2)α+n and Pn is there-
fore Taylor series truncated just before the first negative co-
efficient. In practice, although not indicated by the following
theorem, this approximation seems to be a significant improve-
ment over the conventional Taylor series approximation in
terms of the radius of convergence.

Theorem 2.6. The preconditioned approximation Spre
n (ω)

in (11) converges to S(ω) exponentially for every |ω| ≤ |λ|.

Proof. Write (λ2 + ω2)α+n = Pn(ω) + Rn(ω). The quo-
tient (10) can then be written as

(λ2 + ω2)n

Pn(ω)
=

1

(λ2 + ω2)α
(

1− Rn(ω2)
(λ2+ω2)α+n

) . (13)

We need to show that limn→∞Rn(ω)/(λ2 + ω2)α+n = 0.
Denote nα = dαe+ n and (α)k = α(α− 1)× · · · × (α− k).
Now, by Taylor’s theorem, Rn(ω) has the Lagrange form

Rn(ω) =
(α+ n)nα
(nα + 1)!

(λ2 + c2)α+n−nα−1ω2(nα+1)

=
(α+ n)nα
(nα + 1)!

(λ2 + c2)α+n

(
ω2

λ2 + c2

)nα+1

for some 0 < c < |ω| ≤ |λ|. Hence

Rn(ω)/(λ2 + ω2)α+n

=
(α+ n)nα
(nα + 1)!

(
λ2 + c2

λ2 + ω2

)α+n(
ω2

λ2 + c2

)nα+1

.

The second and third term vanish exponentially as n→∞ so
it needs to be shown that the first term remains bounded. Now,∣∣∣∣ (α+ n)nα

(nα + 1)!

∣∣∣∣ =
(α+ n)(α+ n− 1)× · · · × |α− dαe|

(dαe+ n)!

≤ (dαe+ n)!

(dαe+ n)!

= 1.

2.5. Other possible methods

Experiments of this article are limited to composite approxima-
tions with the basis densities (6) and spectral preconditioning,
but there is a great number of different approximation methods
to be tried. For example, instead of inner transforms (4), outer
tranforms of the form S(ω) = h(B(ω)) or combined trans-
forms S(ω) = h(B(f(ω))) could be used, with convergence
properties like those established in Section 2.1.

One could also use an orthogonal polynomial se-
ries [11, Chapter 3] to do the approximation. Based on our
limited experiments, not presented in this article, with approxi-
mating Matérn density with Laguerre polynomials, this works
well for some values of ν while failing for others.

3. EXPERIMENTAL RESULTS

In this section we test the accuracy of approximations intro-
duced in the preceding section for covariance functions lacking
rational spectral densities. The covariance functions investi-
gated are fractional Matérn and a product of SE and fractional
Matérn. The experiments are analogous to those in [7]: we use
the same data (see Fig. 2 of that article) and measure maximum
absolute error of the true and approximated posterior mean
and covariance functions.

The experiments were carried out by using Kalman filter-
ing on the state-space form and the approximation order, as
a function of which the maximum errors are plotted, is the
denominator order in ω2.



3.1. Fractional Matérn covariance

We test the approximations to Matérn covariance function with
parameters σ = ` = 1 and ν = 7/3 − 1/2. The relevant
spectral density is therefore SM(ω) ∝

(√
11/3 + ω2

)−7/3
.

We increase the approximation order n in ω2 and cover the
following approximations (see Fig. 2):

Composite approximation with basis density BM(1/2) us-
ing Padé approximants [2 + n/1 + n] to fM(1/2). Due
to heavy computational cost of computing high-order
derivatives, the approximation is only up to order 20.

Spectral preconditioning of Eq. (11).

Composite approximation with basis density BSE that
is approximated with Padé approximants [2n/4n]
from [7, Theorem 4.1] and fSE that is approximated
with Padé [2/1] approximant.

Composite approximation with basis density SSE that is
approximated with truncated Taylor series of order n and
fSE that is approximated with Padé [3/2] approximant.

For comparison, we also display the two simple approxi-
mations of rounding the Matérn exponent below and above:
−bν + 1/2c ( ) and −dν + 1/2e ( ).

The selection of Padé approximants for f is a delicate
matter. Most importantly, these cannot have denominator
order M exceeding that of numerator L as this would result
to fL/M (ω) vanishing when ω →∞, a consequence of which
would be that B(fL/M (ω)) → 1 as ω → ∞. Too large a
difference in L and M easily results to too fast convergence
of B(fL/M (ω)). We have therefore used the smallest possible
difference of M and L (note that the Padé approximant orders
are given in terms of order of ω2).

Because Taylor series approximations to f have limited
convergence radius as illustrated in Fig. 1, they have been
omitted from these experiments as incapable of yielding exact
enough approximations.

3.2. Product covariance

Our another test case is the product covariance function

k(t, t′) = kSE(t, t′)kM(t, t′) (14)

of SE and fractional Matérn with σ = ` = 1 (for the both
covariance functions) and ν = 7/3− 1/2. This lacks closed-
form spectral density so the needed derivatives have to be
calculated with the moment approach of Section 2.3. The
following composite approximations were used (see Fig. 3):

Basis density BM(1/2) and Taylor expansions of increas-
ing order of fM(1/2).

Basis density BM(1/2) and Padé approximants
[n+ 1/n− 1] of fM(1/2).
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Fig. 2: Absolute maximum error in posterior mean and vari-
ance approximations to fractional Matérn covariance.

3.3. Comparison of accuracy

Evidently composite methods based on the basis density BSE
do not work well. They involve approximations to two dif-
ferent functions and neither of these approximations can be
made very accurate without the overall order of the composite
approximation becoming large, slowing down the implemen-
tation and causing numerical errors. Padé approximations,
combined with the basis density BM(1/2), work well, although
their estimates do not completely consistently improve when
approximation order is increased. The preconditioned approxi-
mation for fractional Matérn works well and is consistent but
requires somewhat higher approximation order than BM(1/2)

with Padé. However, forming it is simple as the Taylor series
coefficients (12) are easily calculated. No approximant has an
exponential convergence rate (for preconditioned approximant
exponential convergence is only guaranteed inside the radius
of convergence of the Taylor series).

The Taylor series based approximation to the product co-
variance does not work nearly as well as the Padé one and has



less consistent behaviour. It may be that this Taylor expan-
sion does not converge everywhere. In this case, high-order
approximants are probably hindered by reliable computation
of high-order moments being difficult and more demanding.

3.4. On time-complexity

Naive GP regression is of time-complexity O(N3) whereas
converting the problem to state-space form reduces this to
O(N). Taking into account also M , the approximation order
in ω2, corresponding to state-space dimension, the complete
time-complexity of our methods is O(M3N). Comparison of
computational time needed by state-space methodology and
naive GP regression has been carried out in, for example, [2].
Comparisons for the methods presented will be appear in a
future article where they will also be compared to other state-
of-the-art fast GP algorithms such as [12, 13].

4. CONCLUSION AND DISCUSSION

We developed novel rational approximations to spectral densi-
ties based on composite Taylor and Padé approximations and
spectral preconditioning and experimentally investigated their
performance in approximating Matérn covariance functions
with non-rational spectral densities. The methods seem to lead
to promising covariance function approximations.

Further research is possible by using approximations
briefly outlined in Section 2.5, particularly towards the use
of orthogonal polynomial series expansions. Methodology of
this article can also be applied to other basis densities besides
the two considered and different preconditioners. The proof
of Theorem 2.3 indicates that basis densities with small Lip-
schitz constants should have faster convergence rates. Also,
statement of Theorem 2.6 could probably be improved.
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smoothing solutions to temporal Gaussian process re-
gression models,” in IEEE International Workshop on
Machine Learning for Signal Processing, 2010.
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