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ABSTRACT

In an extension to some previous work on the topic, we show
how all classical polynomial-based quadrature rules can be in-
terpreted as Bayesian quadrature rules if the covariance kernel
is selected suitably. As the resulting Bayesian quadrature rules
have zero posterior integral variance, the results of this article
are mostly of theoretical interest in clarifying the relationship
between the two different approaches to numerical integration.

Index Terms— Bayesian quadrature, kernel quadrature,
classical quadrature, Gaussian process regression

1. INTRODUCTION

Bayesian quadrature (BQ) [1, 2], non-probabilistic origins of
which go at least back to the work of Larkin in the 1970s [3, 4],
is an exciting alternative to classical quadrature rules for nu-
merical computation of intractable integrals. In contrast to the
the classical approach of constructing an integration rule so
that low-degree polynomials are integrated exactly, Bayesian
quadrature is based on treating the integrand as a Gaussian
process (GP; prompting the alternative term Gaussian process
quadrature) of which a number of “observations” are available.
The observations induce a Gaussian posterior distribution, the
mean of which is a quadrature rule, on the integral. What
makes Bayesian quadrature particularly interesting is that, fol-
lowing the paradigm of probabilistic numerics [5, 6, 7], the
posterior integral variance can be used in modelling uncer-
tainty inherent to the quadrature approximation.

There are interesting connections between the classical
and probabilistic approaches to numerical integration (and
approximation in general). In their famous work, Kimeldorf
and Wahba [8] established a connection between stochastic
processes and interpolation by certain types of splines. Dia-
conis [9] reviews how many basic quadrature rules, the trape-
zoidal rule among them, can be obtained using (integrated)
Brownian motion priors. Lately, there has been renewed inter-
est in interpreting many classical numerical methods both for
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numerical integration [10] and for solving differential equa-
tions [11, 12] in probabilistic framework.

Särkkä et al. [10] showed that many quadrature and cuba-
ture rules1 frequently used in Kalman filtering for non-linear
systems can be interpreted as Bayesian integration rules if
the covariance kernel of the underlying GP prior is of certain
polynomial form. In this article we prove that all classical (in a
sense that is made clear in Section 2.1) quadrature rules admit
such an interpretation and make precise what is required of
the degree of this polynomial kernel, defined in Equation (5).
In particular, Gaussian quadrature rules are unique optimal
Bayesian quadrature rules for appropriate choice of degree
of the polynomial kernel. Our main result is Theorem 4 in
Section 3 and some simple numerical examples are presented
in Section 5. We also sketch some generalisations for cuba-
ture rules in Section 4 and point out an interesting connection
to Mysovskikh’s theorem [13] that features prominently in
construction of polynomially optimal cubature rules.

It is to be noted that the results of this article are of no help
to practitioners wishing to replicate classical methods using
stochastic processes in order to model uncertainty arising from
the numerical approximation. The reason is that for those
of the kernels introduced in this article that result in the BQ
coinciding with a classical rule the integral posterior variance
is zero. The same defect is present already in [10].

2. CLASSICAL AND BAYESIAN QUADRATURE

Let Ω be a subset of the real line, µ a probability measure on
Ω, and f : Ω→ R a measurable function. A quadrature rule Q
is an approximation to the integral µ(f) :=

∫
Ω
f dµ of the

form

Q(f) :=

n∑
i=1

wif(xi) ≈
∫

Ω

f dµ, (1)

where x1, . . . , xn ∈ Ω are the nodes (points, sigma-points)
and w1, . . . , wn ∈ R the weights. Effectively, the measure µ
and quadrature rule Q are functionals that map µ-measurable
functions to reals. This is reflected in our notation.

1In this article, quadrature always refers to numerical integration rules for
univariate functions and cubature for multivariate functions.
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2.1. Classical quadrature

The classical approach to numerical integration is to select the
nodes and weights so that the quadrature approximation (1)
is exact whenever the integrand is a low-degree polyno-
mial [14, 15]. Such a quadrature rule is called a classical
quadrature rule (this is formulated precisely in Definition 2).

Definition 1. A quadrature rule Q is of degree m if it is exact
for all polynomials of degree at most m and inexact for at least
one polynomial of degree m+ 1.

The n polynomial exactness conditions Q(xi) = µ(xi),
i = 0, . . . , n− 1, correspond to the linear system of equations

x0
1 · · · x0

n
...

. . .
...

xn−1
1 · · · xn−1

n



w1

...
wn

 =


µ(x0)

...
µ(xn−1)

 (2)

for the weights. If the nodes are distinct, the Vandermonde
matrix on the left-hand side is non-singular. Hence, for any
distinct nodes there exists a unique classical quadrature rule of
degree at least n− 1.

Definition 2. An n-point quadrature rule is called a classical
quadrature rule if its degree is at least n−1. That is, its weights
are the unique solution to the linear system of equations (2).

One can do much better in terms of polynomial exactness.
Gaussian quadrature rules use n points to integrate polyno-
mials up to degree 2n − 1 exactly and are optimal in this
respect. See [16, Section 1.4] for the theory and precise condi-
tions on µ (that we assume hold throughout this article) behind
the following theorem. There exists a unique (up to constant
coefficients) sequence ψ0, ψ1, . . . of orthogonal polynomials
that satisfy ∫

Ω

ψiψj dµ = ciδij , ci 6= 0,

and degψi = i. A particular property of these polynomials is
that µ(ψi) = 0 for i > 0 because ϕi = ϕ0ϕi/

√
c0.

Theorem 3 (Gaussian quadrature). There exists a unique n-
point classical quadrature rule of degree 2n− 1. The nodes
of this rule are the roots of the nth orthogonal polynomial ψn
and its weights are positive.

Degree of an n-point classical quadrature rule is not re-
stricted to n − 1 or 2n − 1. A rule of degree 2n − m − 1,
1 ≤ m ≤ n, can be constructed by selecting the nodes to be
the roots of the polynomial

ψn + γn−1ψn−1 + · · ·+ γn−mψn−m

for any non-zero constants γn−1, . . . , γn−m. This follows
easily for example from [16, Theorem 1.45].

2.2. Bayesian quadrature

In Bayesian quadrature, the integrand f : Ω→ R is assigned
a Gaussian process prior [17]. What this means is that for any
finite collection x1, . . . , xn ∈ Ω of points the joint distribution
of f(x1), . . . , f(xn) is N (0,K), where [K]ij = k(xi, xj) is
the covariance (or kernel) matrix defined by the choice of the
symmetric covariance kernel k : Ω× Ω→ R (not assumed
positive-definite in general).

If the number of points n is such that the matrix K
is positive-definite, the data D, consisting of the points
X = {x1, . . . , xn} and the function evaluations (or “obser-
vations” in GP jargon) y = (f(x1), . . . , f(xn)), induces a
Gaussian posterior process f | D with the mean and covari-
ance

E[f(x) | D] = yTK−1k(X , x),

Cov[f(x), f(x′) | D] = k(x, x′)− k(X , x)TK−1k(X , x′),

where [k(X , x)]i = k(xi, x). It then follows [1, 18, 2] that the
integral µ(f) =

∫
Ω
f dµ has a Gaussian distribution with the

mean and variance

QBQ(f) := E[µ(f) | D] = yTK−1kµ(X ),

VBQ := Var[µ(f) | D] = µ(kµ)− kµ(X )TK−1kµ(X ),

where kµ :=
∫

Ω
k(·, x) dµ(x) is the kernel mean. The integral

posterior mean QBQ is called the Bayesian quadrature rule and
is indeed of the form (1):

QBQ(f) =

n∑
i=1

[K−1kµ(X )]if(xi) =:
n∑
i=1

wBQ
i f(xi).

The posterior variance, that is independent of the integrand, is
actually the Bayesian quadrature approximation error for the
kernel mean:

VBQ = µ(kµ)−QBQ(kµ). (3)

This can be seen by recognising that

kµ(X )TK−1kµ(X ) = kµ(X )TwBQ

in the expression for the variance.
Minimisation of the integral posterior variance VBQ pro-

vides a natural way of selecting the “best” Bayesian quadrature
nodes. An optimal Bayesian quadrature rule is a Bayesian
quadrature rule whose nodes X opt globally minimise VBQ:

X opt = arg min
X∈Ωn

VBQ = arg min
X∈Ωn

[
µ(kµ)−kµ(X )TK−1kµ(X )

]
.

2.3. Reproducing kernel Hilbert spaces

Every positive-definite kernel (and some other kernels too, as
discussed in Section 3) induces a unique reproducing kernel
Hilbert space [19, 20] (RKHS) H of functions from Ω to R
characterised by the properties i) k(·, x) ∈ H for every x ∈ Ω



and ii) 〈f, k(·, x)〉H = f(x) for every x ∈ Ω (the reproducing
property).

The worst-case error (WCE) e(Q) of a quadrature rule Q
is defined as

e(Q) := sup
‖f‖H≤1

|µ(f)−Q(f)| . (4)

It turns out (see e.g. [2, 21] for a more thorough review) that
the weights of a Bayesian quadrature rule with given nodes are
such that the WCE is minimised among all quadrature rules
QX with a fixed set of nodes X = {x1, . . . , xn}. That is,

(wBQ
1 , . . . , w

BQ
n )

= arg min
w1,...,wn∈R

e(QX )

= arg min
w1,...,wn∈R

sup
‖f‖H≤1

∣∣∣∣∫
Ω

f dµ−
n∑
i=1

wif(xi)

∣∣∣∣
and it also follows that the (root) integral posterior variance
of a Bayesian quadrature rule is equal to the WCE of the rule:√
VBQ = e(QBQ).

3. CLASSICAL QUADRATURE RULES VIA
GAUSSIAN PROCESSES

Let p ≥ 0 and ϕ0, . . . , ϕp−1 with degϕi = i be linearly
independent polynomials that form a basis of Pp−1, the space
of polynomials of degree at most p − 1. We define kp, the
polynomial kernel of degree p (not to be confused with some
other kernels with similar names in the literature), as

kp(x, x′) =

p−1∑
i=0

ϕi(x)ϕi(x
′). (5)

Given n ≤ p distinct points x1, . . . , xn, the kernel matrix can
be written as

K = ΦΦΦTΦΦΦ +

p−1∑
i=n

ϕi(X )ϕi(X )T,

where [ϕi(X )]j = ϕi(xj) and [ΦΦΦ]ij = ϕi−1(xj) is a (gen-
eralised) Vandermonde matrix. Because ΦΦΦ is non-singular
by the assumption on linear independency of ϕi, the product
ΦΦΦTΦΦΦ is positive-definite and, as rest of the terms are positive-
semidefinite, the whole kernel matrix is positive-definite. How-
ever, note that kp is not a positive-definite kernel in the strict
sense of the definition because the kernel matrix is positive-
definite only if the number of points does not exceed p.

The finite-dimensional RKHS induced by kp is Pp−1. It is
easy to determine the inner product of this Hilbert space. For

f =

p−1∑
i=0

fiϕi ∈ span(ϕ0, . . . , ϕp−1) = Pp−1,

g =

p−1∑
i=0

giϕi ∈ Pp−1,

define the inner product 〈f, g〉 =
∑p−1
i=0 figi. Then, since

kp(·, x) ∈ Pp−1 for any x ∈ Ω, we have

〈f, kp(·, x)〉 =

p−1∑
i=0

fiϕi(x) = f(x),

which is exactly the reproducing property and consequently
〈·, ·〉H = 〈·, ·〉. Note that ϕi are then orthonormal. Further-
more, if these polynomials are orthonormal also under the
regular L2(µ) inner product 〈f, g〉L2(µ) =

∫
Ω
fg dµ, this in-

ner product is that of the RKHS:

〈f, kp(·, x)〉L2(µ) =

p−1∑
i=0

p−1∑
j=0

fjϕi(x)

∫
Ω

ϕiϕj dµ

=

p−1∑
i=0

fiϕi(x)

∫
Ω

ϕ2
i dµ

= f(x).

We say that a Bayesian quadrature rule coincides with
a classical quadrature rule if the rules have the same nodes
and weights. We can now state and prove the main result of
this article that establishes a necessary and sufficient condi-
tion for Bayesian quadrature with the polynomial kernel (5)
constructed out of orthogonal polynomials to coincide with a
classical quadrature rule. We are confident that the orthogo-
nality assumption is not necessary but have not been able to
furnish a proof that does not make use of this fact.

Theorem 4. Let ϕ0, . . . , ϕp−1 be the orthogonal polynomials.
Then the Bayesian quadrature rule with the kernel kp coincides
with a classical quadrature rule of degree m− 1 if and only if
n ≤ p ≤ m. For such a rule, VBQ = 0.

Proof. Suppose first that p ≤ m. Let x1, . . . , xn be the nodes
of a classical quadrature rule of degree m − 1. Because
H = Pp−1 ⊂ Pm−1, this classical rule has zero worst-case
error. But, as the weights of the Bayesian quadrature rule
minimise the WCE for given nodes and the weights of a clas-
sical quadrature rule are uniquely determined by the nodes, it
follows that these two rules must coincide.

Suppose then that p > m and that the BQ rule coincides
with the classical one. From Equation (4) we have√

VBQ = sup
‖f‖H≤1

|µ(f)−QBQ(f)|

= sup
‖f‖H≤1

∣∣∣∣p−1∑
i=0

fi
[
µ(ϕi)−QBQ(ϕi)

]∣∣∣∣
= sup
‖f‖H≤1

∣∣∣∣p−1∑
i=m

fi
[
µ(ϕi)−QBQ(ϕi)

]∣∣∣∣
≥
∣∣µ(ϕm)−QBQ(ϕm)

∣∣
> 0,



where f =
∑p−1
i=0 fiϕi, and the strict inequality follows from

that fact that µ(ϕm)−QBQ(ϕm) 6= 0 by the definition of degree
of a classical quadrature rule and the assumption on the BQ
rule coinciding with the classical one. However, Equation (3)
implies

VBQ =

p−1∑
i=m

µ(ϕi)
[
µ(ϕi)−QBQ(ϕi)

]
,

but this must be zero because a consequence of orthogonality
of ϕi (as noted in Section 2.1) is that µ(ϕi) = 0 for i > 1.
Thus the BQ rule must be different from the classical one.

When p < m = 2n, there are in general multiple optimal
Bayesian quadrature rules. For p = m = 2n, uniqueness of
Gaussian quadrature rules results in the following corollary.

Corollary 5. When ϕi are the orthogonal polynomials there
is a unique n-point optimal Bayesian quadrature rule for the
kernel k2n. This rule is the Gaussian quadrature rule for the
measure µ.

4. ON MULTIVARIATE GENERALISATIONS

It is possible to generalise Theorem 4 to cubature rules that
are just multivariate versions of quadrature rules:

Q(f) :=

n∑
i=1

wif(xi) ≈
∫

Ω

f dµ,

where Ω ⊂ Rd, µ is a probability measure on Ω, f is multivari-
ate function from Ω to R, and the nodes x1, . . . ,xn ∈ Ω are
vectors. Classical and Bayesian cubature rules can be defined
completely analogously to the univariate versions reviewed in
Section 2. Due to the lack of uniqueness results for approxima-
tion with multivariate polynomials (see the Mairhuber–Curtis
theorem in e.g. [22, Section 2.1]) the multivariate version of
Theorem 4 that can be straightforwardly obtained is weaker.

The space of d-variate polynomials of degree at most m is
denoted by Pdm. The dimension Nd

m of this space is

Nd
m := dimPdm =

(
m+ d

m

)
=

(m+ d)!

m! d!
. (6)

Analogously to the univariate case, a classical cubature rule
is said to be of degree m if it is exact for all polynomials
in Pdm. Unfortunately, in higher dimensions not all node sets
result in unique weights. A classical cubature rule is said to
be interpolatory if its weights are uniquely determined by the
nodes (see [15, Section 6.1]). A rule of degree m must satisfy
Q(ϕi) = µ(ϕi) for all ϕ1, . . . , ϕNd

m
that form a basis of Pdm.

That is, the nodes x1, . . . ,xn of an interpolatory rule are such
that the linear system of equations

ϕ1(x1) · · · ϕ1(xn)
...

. . .
...

ϕNd
m

(x1) · · · ϕNd
m

(xn)



w1

...
wn

 =


µ(ϕ1)

...
µ(ϕNd

m
)



has a unique solution. In contrast to the univariate case, this
system is, as evident from Equation (6), indeed overdetermined
whenever d > 1 even if m = n− 1. We can now formulate a
somewhat weaker but multivariate version of Theorem 4. The
proof is essentially the same and thus not presented. Note that
orthogonality of ϕi is not required due to weaker nature of the
result.

Theorem 6. Consider an interpolatory classical cubature rule
of degree m and a Bayesian one with the same nodes. If the
kernel is

k(x,x′) =

Nd
p∑

i=1

ϕi(x)ϕi(x
′), (7)

where p = m and the polynomials ϕi form a basis of Pdp,
the Bayesian and the classical rule coincide. The integral
posterior variance of this Bayesian cubature rule is zero.

This theorem extends the results of Särkkä et al. [10, Sec-
tion IV] who considered the special cases of certain fully sym-
metric rules of McNamee and Stenger [23] (see [21] for gen-
eral probabilistic versions of these rules) and Gauss–Hermite
product rules. Much more could probably be proved but we
do not pursue the issue further here. Instead, we end this sec-
tion be pointing out an interesting connection to multivariate
versions of Gaussian quadrature rules.

The following theorem, originally due to Mysovskikh [13]
(see also [15, Section 7.2]), provides an intriguing connec-
tion between polynomially optimal cubature rules (in effect,
multivariate versions of the Gaussian rules of Theorem 3) and
multivariate polynomial kernels of the form (7). Multivariate
orthogonal polynomials are defined completely analogously to
the univariate ones, though one should keep in mind that they
are not unique in higher dimensions.

Theorem 7. Let the multivariate polynomials ϕ1, . . . , ϕNd
m

form an orthonormal basis of Pdm. The nodes x1, . . . ,xn are
those of a classical cubature rule that is exact for Pd2m if and
only if the kernel matrix [K]ij = k(xi,xj) for the kernel

k(x,x′) =

Nd
m∑

i=1

ϕi(x)ϕi(x
′)

is diagonal and the diagonal elements are non-zero.

5. SOME NUMERICAL EXAMPLES

In this section we illustrate the theoretical results of Section 3
as well as the counterintuitive fact that a Gaussian process with
non-zero posterior variance can produce a Bayesian quadra-
ture rule with zero posterior integral variance. We work on the
interval [−1, 1] and use the uniform probability measure. That
is, Ω = [−1, 1] and dµ = 1

2 dx. We construct the kernel kp,
defined in Equation (5), from normalised Legendre polyno-
mials that are orthonormal for this selection of Ω and µ. The



Legendre polynomials Li, i ≥ 0, can be defined via Rodrigues’
formula as

Li(x) =
1

2ii!

di

dxi
[
(x2 − 1)i

]
(8)

and they satisfy

1

2

∫ 1

−1

Li(x)Lj(x) dx =
1

2i+ 1
δij .

For Gaussian process regression and Bayesian quadrature,
we set n = 4 and select the four nodes as the roots of L4 so
that the corresponding classical rule is Gaussian (recall Theo-
rem 3). Then Theorem 4 guarantees that, for p = 4, . . . , 8, the
kernels kp with ϕi = Li yield Bayesian quadrature rules that
coincide with the Gaussian one. The posterior processes for
p = 5, . . . , 8 (for p = 4 the posterior variance would vanish)
are depicted in Figure 1 for some rather arbitrarily picked data
values (i.e. integrand evaluations). What is interesting and
most likely slightly counterintuitive is that the posterior pro-
cesses have non-zero variance but, nevertheless, the Bayesian
quadrature integral posterior variances are zero in accordance
with Theorem 4.

6. CONCLUSIONS AND DISCUSSION

We have shown in Section 3 that any classical quadrature rule
can be interpreted as a Bayesian one if the kernel is an orthog-
onal polynomial kernel of the form (5) with suitable degree p.
Perhaps the most interesting consequence is the correspon-
dence of Gaussian quadrature rules to optimal Bayesian ones
for the selection p = 2n. We have also sketched a multivari-
ate extension of this result and pointed out some interesting
connections to polynomially optimal classical cubature rules.
Because the resulting probabilistic quadrature rules have zero
posterior integral variance, they cannot be used in modelling
uncertainty of numerical approximations and are therefore of
little practical interest.

We envision that at least the following four slight generali-
sations and extensions are possible:

— The requirement of orthogonality in Theorem 4 and
Corollary 5 can most likely be dispensed of.

— It is probably possible to do more in the multivariate
setting than what is done in Section 4.

— Most of the results can be retained even if the func-
tions ϕi in the definition of the kernel kp are replaced
with other linearly independent functions than polyno-
mials.

— If also derivative evaluations are used (see [24] for this
in BQ setting and [22, Chapter 16] for a more gen-
eral account of the topic), connections to Gauss–Turán
rules [25] (see also [16, Section 3.1.3]) should arise.

p = 5p = 5p = 5
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Fig. 1: Posterior processes corresponding to GP priors with
the kernel kp for p = 5, . . . , 8. The polynomials ϕi are the
Legendre polynomials (8). The data consists of the evaluations
8.5, 5.3, 7, and 6.8 at the roots of L4 that are roughly ±0.8611
and ±0.34. Posterior mean is blue, the data points red, and the
shaded area around the mean is the 95% confidence interval
of the posterior.
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