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ABSTRACT
This article studies the maximum likelihood estimates of
magnitude and scale parameters for a Gaussian process of
Ornstein–Uhlenbeck type used to model a deterministic func-
tion that does not have to be a realisation of an Ornstein–
Uhlenbeck process. Specifically, we derive explicit expres-
sions for the limiting values of the maximum likelihood es-
timates as the number of observations increases. The results
demonstrate that the function typically needs to be sufficiently
similar to a sample path of an Ornstein–Uhlenbeck process or
have discontinuities if the variance of the model is to remain
non-zero. Numerical examples illustrate the behaviour of
the estimates when the function is not a sample path of any
Ornstein–Uhlenbeck process.

Index Terms— Gaussian process regression, Ornstein–
Uhlenbeck process, maximum likelihood estimation, proba-
bilistic numerics

1. INTRODUCTION

Gaussian processes are often used to model deterministic
functions in computer experiments [13] and probabilistic
numerical analysis [10, 5, 2]. Despite being advertised as
non-parametric, Gaussian process models usually contain
covariance kernel hyperparameters that need to be selected
carefully to obtain useful posterior estimates and meaningful
quantification of uncertainty. The hyperparameters are often
selected by maximising the likelihood of the function eval-
uations given the hyperparameter values [12, Section 5.4.1].
Marginalisation and cross-validation are popular alternatives.

In probabilistic numerics, the Gaussian process regression
posterior variance quantifies the uncertainty associated to a
numerical approximation. If the Gaussian process model is
fixed, the posterior variance does not depend on the observa-
tions and is hence not useful for uncertainty quantification.
The most popular approach to make uncertainty quantifica-
tion meaningful, in the sense that it to some degree reflects
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the true numerical error, is to fit the kernel parameters using
maximum likelihood (see, e.g., [8, 1, 19]). However, even
when this is done it is possible that, for functions that are not
well modelled by the Gaussian process model, the posterior
variance is not representative of the true error. Unfortunately,
little work has been done to analyse how the maximum like-
lihood estimates behave for different functions. The only re-
sults we are aware of are by Xu and Stein [21] for the Gaus-
sian covariance kernel and either constant or linear functions.
Note that much work has been done in a slightly different set-
ting [20, 17, 18, 3].

In this article we consider arbitrary functions on [0, 1]
and analyse the asymptotic behaviour of the maximum like-
lihood estimates of magnitude and scale parameters of a
Gaussian process model with the Ornstein–Uhlenbeck ker-
nel (3) as the number of function evaluations on equispaced
points increases (implications to uncertainty quantification
are left future research). This particular model, related to the
more conventional zero-mean Matérn 1/2 model, is chosen
here because inference and maximum likelihood estimation
associated to it are highly tractable due to its representation
as a Ornstein–Uhlenbeck process (1). The main results are
contained in Propositions 3.2 to 3.4 that provide expression
for the limiting values of the maximum likelihood estimates.
Note that maximum likelihood estimation for the Ornstein–
Uhlenbeck process has been studied for a long time [9, 11].
Our analysis is distinguished from the previous work in that
we do not require that the observations come from a reali-
sation of an Ornstein–Uhlenbeck process; instead, much of
our interest is in the misspecified case when the function can-
not be a sample path of the Gaussian process used to model
it. This case is discussed in Section 3.3 and illustrated by a
numerical example in Section 4.

2. SETTING

Let f : [0, 1]→ R be a deterministic function that is evaluated
exactly at N + 1 ≥ 2 equispaced points

{tn}Nn=0 := {0, h, 2h, . . . , 1− h, 1}, h =
1

N
.
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The function evaluations are fn := f(tn) = f(nh) and the
full set of data is

DN = {(nh, f(nh))}Nn=0 = {(tn, fn)}Nn=0.

2.1. An Ornstein–Uhlenbeck Model

We model f with the Ornstein–Uhlenbeck process X , the so-
lution of the stochastic differential equation (SDE)

dX(t) = −λX(t) dt+
√

2λσ dW (t), (1)

where λ > 0 is a scale parameter, σ > 0 a magnitude param-
eter, and W the standard Wiener process. We use the deter-
ministic initial condition X(0) = f(0). This means that X is
a Gaussian process with the mean

E[X(t)] = f(0)e−λt (2)

and the covariance kernel

k(t, t′) = Cov[X(t), X(t′)] = σ2
(
e−λ|t−t

′| − e−λ(t+t
′)
)
.

(3)
The specific parametrisation of the Ornstein–Uhlenbeck pro-
cess that we use is motivated by a connection to the Matérn
1/2 (or exponential) kernel

k1/2(t, t′) = σ2e−λ|t−t
′|. (4)

This is the covariance kernel of the stationary version of X ,
which is obtained by using the Gaussian initial condition
X(0) ∼ N (0, σ2).

We are interested in analysing the behaviour of the max-
imum likelihood estimates σ2

ML and λML of the model param-
eters. Specifically, we study the asymptotic behaviour of the
maximum likelihood estimates as N →∞.

2.2. On sample paths of Ornstein–Uhlenbeck processes

A function f : [0, 1]→ R is said to be Hölder continuous with
parameter α > 0 if

|f(t)− f(t′)| ≤ C |t− t′|α

for some constant C > 0 and all t, t′ ∈ [0, 1]. If α = 1,
the function is Lipschitz continuous and hence continu-
ously differentiable; if α > 1, the function must be con-
stant. Almost all sample paths of the Brownian motion or
an Ornstein–Uhlenbeck process are non-differentiable and
(locally) Hölder continuous with any α < 1/2 [7, Proposi-
tion 3.4].

The quadratic variation

V 2(f) := lim
N→∞

N∑
n=1

(fn − fn−1)2

of f can be non-zero only if f is Hölder continuous with
α ≤ 1/2. To see this, note that

N∑
n=1

(fn − fn−1)2 ≤ C
N∑
n=1

h2α = CN1−2α,

which vanishes as N → ∞ if α > 1/2. In particular, almost
all sample paths of the standard Brownian motion on [0, 1]
have quadratic variation 1, while the quadratic variation of
almost any sample path of the Ornstein–Uhlenbeck process
X , as defined by (1), is 2λσ (e.g., [22, Equation (3)]).

3. ASYMPTOTICS OF MAXIMUM LIKELIHOOD
ESTIMATES

This section contains the main results of this article on the
asymptotic behaviour of λML and σ2

ML. We also discuss the in-
terpretation of the results. Note that the results do not require
that f is a sample path of an Ornstein–Uhlenbeck process.

3.1. Maximum likelihood estimation

Because the Ornstein–Uhlenbeck process is a Markov pro-
cess, the negative log-likelihood function of the function eval-
uations given the parameters can be conveniently factorised:

`(λ, σ2) := − log p(f0 . . . , fN | λ, σ2)

= − log

[ N∏
n=1

p(fn | fn−1, λ, σ2)

]

= −
N∑
n=1

log p(fn | fn−1, λ, σ2),

where the transition densities are

p(fn | fn−1, λ, σ2) = N
(
fn | fn−1e−λh, σ2[1− e−2λh]

)
.

The negative log-likelihood function is therefore

`(λ, σ2) =
1

2

N∑
n=1

[
log
(
2πσ2[1− e−2λh]

)
+

(fn − fn−1e−λh)2

σ2(1− e−2λh)

]
.

By using suitable substitutions it is fairly straightforward to
derive the maximum likelihood estimates [14, Section 11.3]
(see also [6, Section 3.1.1])

λML = − 1

h
log

[ ∑N
n=1 fnfn−1∑N
n=1 f

2
n−1

]
, (5)

σ2
ML =

1

N(1− e−2λMLh)

N∑
n=1

(fn − fn−1e−λMLh)2. (6)



Denote

bN =

N∑
n=1

fnfn−1, cN =

N∑
n=1

f2n−1, dN =

N∑
n=1

f2n.

Upon insertion of the expression for λML the magnitude esti-
mate becomes

σ2
ML =

1

N

(
dN −

b2N
cN

)
c2N

c2N − b2N
=
cN
N
× dNcN − b2N

c2N − b2N
.

3.2. Asymptotic analysis

We now analyse the asymptotic behaviour of the maximum
likelihood estimates (5) and (6).

Lemma 3.1. Suppose that f is Riemann integrable and
V 2(f) <∞. Then

lim
N→∞

1

N

N∑
n=1

f2n = lim
N→∞

1

N

N∑
n=1

fnfn−1 =

∫ 1

0

f(t)2 dt.

and

lim
N→∞

N∑
n=1

fn−1(fn − fn−1) =
1

2

[
f(1)2 − f(0)2 − V 2(f)

]
.

Proof. The first limit in the first statement follows from the
Riemann integrability of f . The other limits follow from the
expansion

N∑
n=1

(fn − fn−1)2 =

N∑
n=1

(f2n + f2n−1)− 2

N∑
n=1

fnfn−1.

That 1
N

∑N
n=1 fnfn−1 →

∫ 1

0
f(t)2 dt follows from arranging

this equation as
N∑
n=1

fnfn−1 =
1

2

[ N∑
n=1

(f2n+f2n−1)−
N∑
n=1

(fn−fn−1)2
]

(7)

and recalling that the quadratic variation has been assumed to
be finite. To prove the second statement, note that

N∑
n=1

fnfn−1 =

N∑
n=1

f2n−1 +

N∑
n=1

fn−1(fn − fn−1),

which, when combined with (7), yields
N∑
n=1

fn−1(fn − fn−1)

=
1

2

[ N∑
n=1

(f2n − f2n−1)−
N∑
n=1

(fn − fn−1)2
]

=
1

2

[
f(1)2 − f(0)2 −

N∑
n=1

(fn − fn−1)2
]

→ 1

2

[
f(1)2 − f(0)2 − V 2(f)

]

as N →∞.

Proposition 3.2. Suppose that f is Riemann integrable,
V 2(f) <∞, and f(0)2 − f(1)2 + V 2(f) 6= 0. Then

lim
N→∞

σ2
ML =

V 2(f)
∫ 1

0
f(t)2 dt

f(0)2 − f(1)2 + V 2(f)
.

Proof. First, observe that

cN − bN = −
N∑
n=1

fn−1(fn − fn−1)

→ 1

2

[
f(0)2 − f(1)2 + V 2(f)

]
as N →∞ by Lemma 3.1. By using the identity

dN = cN + f(1)2 − f(0)2

we can write

dNcN − b2N = c2N − b2N + cN [f(1)2 − f(0)2].

Therefore

σ2
ML =

cN
N
× dNcN − b2N

c2N − b2N
=
cN
N

(
1 +

cN [f(1)2 − f(0)2]

(cN + bN )(cN − bN )

)
→
∫ 1

0

f(t)2 dt

(
1 +

f(1)2 − f(0)2

f(0)2 − f(1)2 + V 2(f)

)
=

V 2(f)
∫ 1

0
f(t)2 dt

f(0)2 − f(1)2 + V 2(f)

as N →∞.

Proposition 3.3. Suppose that f is Riemann integrable,
V 2(f) <∞, and

∫ 1

0
f(t)2 dt > 0. Then

lim
N→∞

λML =
f(0)2 − f(1)2 + V 2(f)

2
∫ 1

0
f(t)2 dt

.

Proof. Observe that

λML = − 1

h
log

[ ∑N
n=1 f

2
n−1 +

∑N
n=1 fn−1(fn − fn−1)∑N
n=1 f

2
n−1

]

= − 1

h
log

[
1 +

∑N
n=1 fn−1(fn − fn−1)∑N

n=1 f
2
n−1

]
.

Because it holds that 1
N

∑N
n=1 f

2
n−1 →

∫ 1

0
f(t)2 dt > 0 and

1
N

∑N
n=1 fn−1(fn − fn−1) = O(N−1), we can expand the

logarithm and write

λML = −N
[ ∑N

n=1 fn−1(fn − fn−1)∑N
n=1 f

2
n−1

+O(N−2)

]

= −
∑N
n=1 fn−1(fn − fn−1)

1
N

∑N
n=1 f

2
n−1

+O(N−1).

The claim now follows from Lemma 3.1.



The two preceding propositions immediately yield the fol-
lowing result.

Proposition 3.4. Suppose that f is Riemann integrable,
V 2(f) <∞, and

∫ 1

0
f(t)2 dt > 0. Then

lim
N→∞

λMLσ
2
ML =

V 2(f)

2
.

This result means that the variance of the Wiener process
in the SDE (1) converges to the quadratic variation of f .

3.3. Interpretation of the results

We then briefly discuss the effects different properties of f
have on the asymptotic maximum likelihood estimates.

Quadratic variation. Let us first discuss the effect of
the quadratic variation V 2(f). If f is differentiable, then
V 2(f) = 0. Consequently,

λML →
f(0)2 − f(1)2

2
∫ 1

0
f(t)2 dt

= −
∫ 1

0
f(t)f ′(t) dt∫ 1

0
f(t)2 dt

(8)

and the SDE (1) becomes the deterministic ordinary dif-
ferential equation X ′(t) = −λMLX(t). This is reasonable
since −λMLf is the projection of f ′ onto f in L2([0, 1]).
Moreover, σ2

ML → 0, which is explained by the fact that a
function with zero quadratic variation is a sample path of the
Ornstein–Uhlenbeck process with probability zero.

Decay of f . For the limits of λML and σ2
ML to be positive it is

necessary that

f(0)2 − f(1)2 + V 2(f) > 0,

which is to say that unless the quadratic variation is suffi-
ciently large, the magnitude of the initial value of f must
exceed that at the end point. As (1) for λ > 0 describes a
contractive model, this is an intuitive requirement. Irregu-
larity (or “randomness”) of f , as measured by the quadratic
variation, allows for some deviation from the strict decay con-
dition |f(1)| < |f(0)|. If f(0)2 − f(1)2 + V 2(f) = 0 and
V 2(f) > 0, the model reverts to the Wiener model

dXt =
√
V 2(f) dWt

with the Brownian motion covariance kernel

kBM(t, t′) = V 2(f) min{t, t′}. (9)

Because the posterior mean of a Gaussian process with the
kernel (9) is the linear spline interpolant, this is reminiscent
of the observation in the scattered data approximation liter-
ature that at the limit λ → 0 kernel interpolants for finitely
smooth kernels convergence to certain polyharmonic spline
interpolants [16].

4. EXAMPLES

This section numerically illustrates the behaviour of the max-
imum likelihood estimates in (a) a misspecified setting with a
differentiable function that is a sample path of the Ornstein–
Uhlenbeck process with probability zero and (b) a more am-
biguous setting with a fairly regular function with discontinu-
ities. Furthermore, we comment on a function for which the
estimates are available in very simple form for any N ≥ 1.
All three example functions satisfy the assumption of the the-
oretical results in Section 3.

4.1. Differentiable function

We first consider the differentiable function

f(t) = 1−
√
t sin( 9

4πt) + 1
10 sin(64πt). (10)

Because the function is differentiable, V 2(f) = 0, which im-
plies that σ2

ML → 0. The limiting value of the scale parameter
is

lim
N→∞

λML ≈ 0.4212.

The function, as well as the maximum likelihood estimates
for N up to 10,000, are displayed in Figure 1.

4.2. Discontinuous function

As a second example we use the discontinuous function

f(t) =


1− 3 |t− 1

6 | if 0 ≤ t < 1
3

1
10 + 10(t− 1

2 )2 if 1
3 ≤ t ≤ 2

3

1− 3 |t− 5
6 | if 2

3 < t ≤ 1

. (11)

Due to the discontinuities at 1
3 and 2

3 , this function has the
non-zero quadratic variation

V 2(f) = 2( 1
10 + 10

36 − 1
2 )2 = 121

4050 ≈ 0.0299.

The limiting values for the maximum likelihood estimates are

lim
N→∞

λML ≈ 0.0370 and lim
N→∞

σ2
ML ≈ 0.4035.

The function and the maximum likelihood estimates are dis-
played in Figure 2.

4.3. Exponential function

Let f(t) = e−θt for θ > 0. Then it is easy to compute that

λML = θ and σ2
ML = 0

for any N ≥ 1. The probability of X deviating from f
vanishes as σ → 0 in the SDE (1). Consequently, if the
observations appear to come from an exponential function,
the most likely parameter values are those giving rise to the
ordinary differential equation X ′(t) = −θX(t), solved by
X(t) = f(t).
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Fig. 1: The differentiable function (10) on [0, 1] and the behaviour of the maximum likelihood estimates λML and σ2
ML in (5) and (6) as functions of N .
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Fig. 2: The discontinuous function (11) on [0, 1] and the behaviour of the maximum likelihood estimates λML and σ2
ML in (5) and (6) as functions of N .

5. CONCLUSIONS AND DISCUSSION

We have considered a Gaussian process model of Ornstein–
Uhlenbeck type, defined by (1) or, equivalently, by the mean
function (2) and covariance kernel (3), for a deterministic
function f : [0, 1] → R. Propositions 3.2 to 3.4 provide ex-
pressions for the limits of the maximum likelihood estimates
of the magnitude and scale parameters σ and λ of the Gaus-
sian process model as the number of evaluations increases.

The most important practical conclusions concern
stochasticity of the model, defined by the SDE (1). If
limN→∞ λMLσ

2
ML = 0, the Wiener process term vanishes

and the model becomes a deterministic differential equation.
Stochasticity of the model is typically retained if the func-
tion being modelled either (a) is sufficiently rough and simi-
lar to a sample path of an Ornstein–Uhlenbeck process in the
sense that its quadratic variation is non-zero or (b) has a finite
number of discontinuities. The latter condition is perhaps sur-
prising because elsewhere the function does not have to bear
any resemblance to sample paths of an Ornstein–Uhlenbeck
process. For example, the function can be infinitely smooth
outside the discontinuities.

To a Gaussian process user the model we have studied is

fairly atypical. We have focussed on this particular model
only because its analytical simplicity. It is easy to see that the
maximum likelihood estimate of σ for the more conventional
zero-mean Matérn 1/2 model specified by the kernel (4) is

σ2
ML =

1

N + 1

[
f20 +

N∑
n=1

(fn − fn−1e−λh)2

1− e−2λh

]
.

However, the scale parameter is only available as a solution
to the cubic equation

N ′(cN−f20 )a3 + (1− 2N ′)bNa
2

+ (N ′f20 +N ′dN − cN − dN )a+ bN = 0,
(12)

where N ′ = N/(N + 1) and a = e−λMLh. As mentioned in
Section 2, the only difference between the Matérn 1/2 model
and the one analysed here is the initialisation: the Matérn
model corresponds to (1) with X(0) ∼ N (0, σ2) while we
have usedX(0) = f(0). Because the effect of the prior ought
to diminish as more data is obtained, we expect that Proposi-
tions 3.2 to 3.4 hold also for the maximum likelihood esti-
mates of the Matérn 1/2 model. Proving this requires careful
analysis of limiting behaviour, as N →∞, of the appropriate
solution of (12).



An obvious further generalisations would be to consider
a general Matérn model of smoothness ν > 0, defined by the
covariance function

kν(t, t′) = σ2 21−ν

Γ(ν)

(
λ |t− t′|

)ν
Kν

(
λ |t− t′|

)
, (13)

where Γ is the Gamma function and Kν a modified Bessel
function of the second kind. When ν = p−1/2 for positive in-
teger p, the Gaussian process defined by (13) corresponds to a
pth order linear time-invariant SDE [4, 15]. Although this cor-
respondence leads to computational speed-ups, the likelihood
function becomes more complicated and theoretical analysis
accordingly more involved.
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