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ABSTRACT

Markov chain Monte Carlo (MCMC) methods are a cor-
nerstone of Bayesian inference and stochastic simulation.
The Metropolis-adjusted Langevin algorithm (MALA) is an
MCMC method that relies on the simulation of a stochastic
differential equation (SDE) whose stationary distribution is
the desired target density using the Euler–Maruyama algo-
rithm and accounts for simulation errors using a Metropolis
step. In this paper we propose a modification of the MALA
which uses Gaussian assumed density approximations for the
integration of the SDE. The effectiveness of the algorithm is
illustrated on simulated and real data sets.

Index Terms— Metropolis–Hastings, Langevin dynam-
ics, stochastic differential equation, Gaussian approximation

1. INTRODUCTION

Markov chain Monte Carlo (MCMC) methods [1] are im-
portant computational methods which are widely used in
Bayesian data analysis [2] as well as in statistical physics
and various other fields. In Bayesian data analysis the central
problem is to sample from a posterior distribution

p(θ | y) =
p(y | θ) p(θ)∫
p(y | θ) p(θ) dθ

, (1)

where θ ∈ RD is a vector of unknown parameters with prior
distribution p(θ) and y ∈ Rn is a set of measurements with
likelihood p(y | θ). In most real-world applications, the in-
tegral in the denominator of (1) is intractable however, the
unnormalized posterior distribution

π(θ) = p(y | θ) p(θ) (2)

can be easily evaluated.
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An example of a model in this form is a Bayesian neural
network (BNN) model [3], which we also consider as an ex-
ample in this paper. In hierarchical fashion, a simple BNN
model can be written as

yt | xt, w, λ ∼ N(yt | g(xt;w), λ−1), 1 ≤ t ≤ n
w ∼ p(w | ζ), ζ ∼ p(ζ), λ ∼ p(λ),

(3)

where yt are the measurements, λ is the precision of the
normal distribution, and xt are the covariates. The function
g(x;w) is a (deep) neural network parametrized by w, the
collection of weights and biases of the network with hierar-
chical prior defined by the hyperparameters ζ. In this case
the collection of parameters is θ = (w, ζ, λ) and the set of
measurements is y = (y1, . . . , yn).

Posterior inference relies on the computation of the full
posterior distribution

p(w, λ, ζ | {(xt, yt)}nt=1)

=
1

Z
p(λ) p(ζ) p(w | ζ)

n∏
t=1

N(yt | g(xt;w), λ−1),
(4)

which requires the computation of

Z =

∫ n∏
t=1

N(yt | g(xt;w), λ−1)

× p(λ) p(ζ) p(w | ζ) dw dζ dλ

(5)

that is clearly intractable.
MCMC methods aim to sample from the posterior distri-

bution – which from now on will be called the target distri-
bution. Posterior distributions arising from neural network
models have complicated geometric structure due to the non-
linearities induced by g(x;w), making the use of simple ran-
dom walk Metropolis–Hastings (MH) algorithms [1, 4, 5] in-
efficient, due to their slow exploration of the parameter space.
To overcome this difficulty, MCMC methods that use gradi-
ent information have become popular after the use of the hy-
brid or Hamiltonian Monte Carlo [6–8] (HMC) for training
Bayesian neural networks [3].
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Another class of gradient-based MCMC algorithms which
can be seen as a special case of the HMC, is the Metropolis-
adjusted Langevin algorithm (MALA) [8–10]. Roughly
speaking, in MALA, candidate samples are proposed by solv-
ing a stochastic differential equation (SDE) of the Langevin
type using the Euler–Maruyama integrator [11, 12]. Due to
SDE approximation errors a MH step is included to the algo-
rithm which determines if the proposed sample is accepted
or not. However, the problem with the Euler–Maruyama ap-
proximation as proposal distribution is that it only works for
very small time steps ∆t.

The contribution of this paper is to propose an MCMC
algorithm based on Gaussian assumed density approximation
[12] of the Langevin diffusion which is a commonly used ap-
proximation used in state-estimation context [13, 14]. This
provides greater flexibility on the choice of integration inter-
val. Brief theoretical analysis of the algorithm is also pro-
vided and its practical performance is empirically illustrated
and compared to competing approaches.

The paper is organized as follows. Section 2 introduces
the necessary background on MH and MALA samplers. The
Gaussian assumed density approximation for the solution of
an SDE and the proposed Gaussian Metropolis-adjusted algo-
rithm (GMALA) are presented in Section 3. Theoretical anal-
ysis of the algorithm is presented in Section 4. In Section 5
the effectiveness of the algorithm is illustrated on simulated
and real data sets. Finally, Section 6 concludes the paper.

2. BACKGROUND

In this section we provide the necessary background on the
MH and MALA methods for sampling from predetermined
target densities. A more detailed exposition of MCMC meth-
ods can be found in [1].

2.1. Metropolis–Hastings algorithm

A general MCMC framework for sampling from a given tar-
get density is the Metropolis–Hastings algorithm [4,5] where
candidate samples are drawn from a proposal distribution
with density q(θ′ | θ) and the following steps are performed
until the required number of samples S is acquired. The chain
starts from θ ∼ π0(θ) and a new sample θ′ is proposed ac-
cording to the proposal distribution q(θ′ | θ). The new sample
is accepted if a uniform random variable u ∼ U(0, 1) is less
than α(θ′ | θ), where

α(θ′ | θ) = min

[
1,
π(θ′) q(θ | θ′)
π(θ) q(θ′ | θ)

]
(6)

is the acceptance probability. If the sample is rejected, the
chain remains at θ.

Samples θ(i), 1 ≤ i ≤ S, obtained from the MH define a
Markov chain whose stationary distribution is defined by the

target distribution p(θ | y) ∝ π(θ). Asymptotically, the θ(i)

samples are draws from the target distribution [1].

2.2. Metropolis-adjusted Langevin algorithm

The key to the MH algorithm performance is the choice of the
proposal distribution q. Metropolis-adjusted Langevin algo-
rithm (MALA) [8–10] is a more sophisticated approach than
the classical random walk MH as it uses gradient information
in the proposal density. Consider an SDE

dθ(t) = f(θ(t)) dt+ dW (t), (7)

where f(·) is a given (locally Lipschitz) drift function and
W is a Brownian motion with diffusion matrix Qc. Provided
that the drift function is suitably stable, then as t → ∞ the
distribution of θ(t) converges to a stationary distribution with
a density p∞(θ).

A particularly useful case is obtained with Qc = I and
f(θ) = 1

2 ∇ log π(θ). In this case the Langevin diffusion
converges at an exponential rate [10] to the stationary distri-
bution which is given by p∞(θ) ∝ π(θ), namely, the density
of the target distribution. The MALA method is based on
the observation that samples from the target distribution can
be obtained by simulating (long enough) trajectories from the
SDE

dθ(t) =
1

2
∇ log π(θ(t)) dt+ dW (t). (8)

The choice of SDE with the given stationary distribution
is not unique and it is often useful to introduce a symmetric
positive definite preconditioner matrix M such that the SDE
becomes

dθ(t) =
1

2
M ∇ log π(θ(t)) dt+

√
M dW (t), (9)

where
√
M is a matrix such that M =

√
M
√
M

T
.

Unfortunately exact simulation from an SDE is usually
intractable [11,12] and numerical simulation methods need to
be employed. The idea in MALA [8–10] is to use the Euler–
Maruyama method [11, 12] to simulate from the SDE which
amounts to replacing the SDE with the stochastic difference
equation

θ(t+ ∆t) = θ(t) +
∆t

2
M ∇ log π(θ(t)) +

√
M ε, (10)

where ε ∼ N(0,∆t). This approximation is then used as the
proposal distribution in the Metropolis–Hastings algorithm:

q(θ′ | θ) = N

(
θ′ | θ +

∆t

2
M ∇ log π(θ),M ∆t

)
. (11)

To implement the algorithm we also need to be able to eval-
uate the backward transition probability density which in this
case is given as

q(θ | θ′) = N

(
θ | θ′ + ∆t

2
M ∇ log π(θ′),M ∆t

)
. (12)



By plugging these into the Metropolis–Hastings algorithm in
the previous section we now get the algorithm. The shortcom-
ing of this algorithm is that the Euler–Maruyama method pro-
vides a reasonable approximation for the SDE solution only
for small values of ∆t which allows the proposal distribution
to only take small steps. This reduces the behavior of MALA
to be close to random-walk MH algorithm.

3. GAUSSIAN APPROXIMATIONS OF SDES IN
MALA

In this section, we now show that the solution of the Langevin
diffusion in MALA can be approximated using a Gaussian
assumed density approximation.

3.1. Gaussian assumed density approximations of SDEs

One kind of approximations for SDEs are Gaussian assumed
density approximations that are commonly used in stochastic
filtering context [12–14]. In these approximations the proba-
bility density function of the SDE

dθ(t) = f(θ(t)) dt+ dW (t) (13)

is approximated with a Gaussian distribution. The mean and
covariance of the Gaussian distribution are from the ordinary
differential equations (ODEs)

dm(t)

dt
= Et[f(θ)],

dP (t)

dt
= Et[f(θ) (θ −m(t))T]

+ Et[(θ −m(t)) fT(θ)] +Qc,

(14)

where Qc is the diffusion matrix of the Brownian motion W ,
and Et[·] denotes an expectation over a Gaussian distribution
with mean m(t) and covariance P (t):

Et[g(θ)] =

∫
g(θ) N(θ | m(t), P (t)) dθ. (15)

Please note that θ is time-dependent also in (14) although we
have dropped the dependence for notation convenience. Due
to (15), the equation for the covariance can be equivalently
written as

dP (t)

dt
= Et[Fθ(θ)]P (t) + P (t) Et[Fθ(θ)

T] +Qc, (16)

where Fθ(·) is the Jacobian matrix of θ 7→ f(θ). This follows
from Stein’s lemma [12, Theorem 9.2].

3.2. Gaussian Metropolis-adjusted Langevin algorithm

In the case f(θ) = 1
2 M ∇ log π(θ) and Qc = M the mean

and covariance equations become

dm(t)

dt
=

1

2
M Et[∇ log π(θ)], (17)

dP (t)

dt
=

1

2
M Et[∇ log π(θ) (θ −m(t))T]

+
1

2
Et[(θ −m(t))∇T log π(θ)]M +M

=
1

2
M Et[∇∇T log π(θ)]P (t)

+
1

2
P (t) Et[∇∇T log π(θ)]M +M. (18)

We can now form the proposal density q(θ′ | θ) by integrat-
ing these ODEs for time span ∆t starting from m(0) = θ,
P (0) = 0, and by using the corresponding Gaussian transi-
tion density as the proposal. This corresponds to

q(θ′ | θ) = N(θ′ | m(∆t | θ), P (∆t | θ)), (19)

where we have explicitly denoted the starting point in the
mean and covariance. To implement a MH for this, we need
to evaluate q(θ | θ′) as well. This corresponds to integration
of the equations starting from θ′ over the period ∆t providing

q(θ | θ′) = N(θ | m(∆t | θ′), P (∆t | θ′)). (20)

Thus, a single iteration of the Gaussian Metropolis-adjusted
Langevin algorithm (GMALA) includes the steps of integrat-
ing the ODEs given in (17)–(18) as shown in Algorithm. 1.
We discuss computational methods for the mean and covari-
ance ODEs in the next section.

3.3. Numerical methods for mean and covariance ODEs

Unfortunately, the mean and covariance differential equations
(17) and (18) cannot be solved exactly due to the intractable
Gaussian integrals and due to the fact that they are non-linear
vector and matrix valued ODEs. However, we can approxi-
mate them easily (see, e.g., [12]).

Simple Taylor-series type of approximation can be ob-
tained by putting Et[f(θ)] ≈ f(m(t)) and Et[Fθ(θ)] ≈
Fθ(m(t)), which by plugging in the definition of f becomes

dm(t)

dt
=

1

2
M ∇ log π(m(t)), (21)

dP (t)

dt
=

1

2
M ∇∇T log π(m(t))P (t)

+
1

2
P (t)∇∇T log π(m(t))M +M. (22)

Another possibility is to use Gaussian cubature or sigma-point
approximations [14] such that θj(t) = m(t) +

√
P (t)ξj and

Et[f(θ)] ≈
∑
j

ωj f(m(t) +
√
P (t) ξj) (23)



Algorithm 1 Gaussian Metropolis-adjusted Langevin algo-
rithm

1: procedure GMALA(θ, ∆t)
2: Input: previous state, integration interval
3: Output: new state θ
4: Integrate ODEs in (17)-(18) with initial conditions

m(0) = θ, P (0) = 0 for time ∆t.
5: Sample θ′ ∼ N(θ′ | m(∆t | θ), P (∆t | θ)).
6: Integrate ODEs in (17)-(18) with initial conditions

m(0) = θ′, P (0) = 0 for time ∆t.
7: . Backward solve
8: Compute acceptance probability

α(θ′ | θ) = min

[
1,
π(θ′) q (θ | θ′)
π(θ) q (θ′ | θ)

]
.

. Evaluate q using (19)-(20)
9: Sample u ∼ U(0, 1) . Uniform random variable

10: if u ≤ α(θ′ | θ) then
11: θ ← θ′ . accept new state
12: else
13: θ ← θ . reject new state
14: return θ

Then

Et[f(θ) (θ −m(t))T]

≈
∑
j

ωj f(m(t) +
√
P (t) ξj) ξ

T
j

√
P (t)

T
,

Et[Fθ(θ)] = Et[f(θ) (θ −m(t))T]P−1

≈
∑
j

ωj f(m(t) +
√
P (t) ξj) ξ

T
j

√
P (t)

T
P−1 (24)

=
∑
j

ωj f(m(t) +
√
P (t) ξj) ξ

T
j

√
P (t)

−1
, (25)

which can be plugged into (14) or (16) to obtain approxima-
tions to the mean and covariance functions. In practice these
equations are badly behaving when covariance is close to sin-
gular and hence it is advisable to replace the zero initial con-
dition with P (0) = λ I , where λ > 0. Note that this does not
change the validity of the MCMC algorithm, provided that we
use the same initial condition in both directions.

We can now approximate the solution of the mean equa-
tion by taking, for example, an Euler integration step of length
∆t. For the covariance equation we need to assure that the
covariance remains positive definite. This can be assured by
using a discretization, where we fix F = Et[Fθ(θ)] which
reduces (16) to the following:

dP (t)

dt
= F P (t) + P (t)FT +Qc, (26)

where in this case we actually have F = FT. A positive-

definiteness preserving discretization is now obtained by

P (t+ ∆t) = A(∆t)P (t)AT(∆t) +Q(∆t), (27)

where

A(∆t) = exp(∆t F ),

Q(∆t) =

∫ ∆t

0

exp((∆t− τ)F )Qc exp((∆t− τ)F )T dτ.

In practice, we can now form a solution for a large time
step by taking K steps of length ∆t, which leads to a integra-
tion time interval of lengthK ∆t. This differs from the Euler–
Maruyama approximation used in MALA where we are only
allowed to take a single step of length ∆t.

4. THEORETICAL ANALYSIS

In this section, the aim is to investigate some theoretical prop-
erties of the method.

4.1. Validity of the algorithm

In order to have a valid MCMC algorithm, the proposal den-
sities given in (19) and (20) must be well defined. This means
that the covariance matrix of the Gaussian must be positive
definite with bounded covariance. As it has already been
mentioned, positive definiteness is preserved due to the dis-
cretization given in (27). The boundedness of the covariance
is verified in the next section.

4.2. Boundedness of the covariance

Let λmax(A) denote the largest eigenvalue of a matrix A and
define the constant

Lπ = sup
θ
λmax

[
∇∇T log π(θ)

]
.

Proposition 1. If Lπ < ∞ and M = aI for a > 0, then the
covariance in (18) satisfies, for every t ≥ 0,

trP (t) ≤ exp(aLπt) trP (0) +
(1− exp(Lπt))aD

aLπ
. (28)

In particular, there is a time-uniform bound if Lπ < 0.

Proof. By the trace inequality

tr
(

Et[∇∇T log π(θ)]P (t)
)
≤ Lπ trP (t),

which follows from [15, Prop. 8.4.13], we have

d trP (t)

dt
=

1

2
a tr

(
Et[∇∇T log π(θ)]P (t)

)
+

1

2
a tr

(
P (t) Et[∇∇T log π(θ)]

)
+ a tr I

≤ aLπ trP (t) + aD.



The bound in (28) then follows from Grönwall’s inequality
which states that u′(t) ≤ αu(t) + β implies that

u(t) ≤ u(0) exp(αt)− (1− exp(αt))β

α
.

The above proposition can be generalized to arbitrary M
as well as to some of the numerical methods reviewed in Sec-
tion 3.3 by following [16, Sect. II].

5. NUMERICAL EXPERIMENTS

In this section we demonstrate the performance of the pro-
posed methodology on simulated and real data sets. For com-
parison, we implemented the standard version of MALA [9,
10] and Hamiltonian Monte Carlo (HMC) [6, 7] algorithms.

5.1. Sampling from Rosenbrock banana function

The Rosenbrock banana density function is defined on RD as

π(θ) ∝ exp

(
− θ2

1

200
− 1

2

D∑
d=3

θ2
d −

1

2
(θ2 +Bθ2

1 − 100B)2

)
.

For the simulation, we set B = 0.1 and D = 10 and draw
samples from the target density using GMALA, with step
size ∆t = 0.2 and number of steps K = 50. We compare
the method with standard MALA with step size 0.2 and a
standard HMC algorithm using leapfrog integration with step
size 0.2 and 50 integration steps. We sample 10 independent
chains consisting of 5,000 samples obtained after a burn-in
period of 500 samples. In Fig. 1 the sampled values for the

Fig. 1. Samples drawn via MALA (top left), HMC (top right),
and GMALA (bottom) on the first two dimensions of a 10-
dimensional Rosenbrock banana distribution.

first two dimensions are superimposed over the true density.
Table 1 shows the effective sample size (ESS) [2] of the

Markov chains obtained from the three methods for the first

Table 1. Effective sample size (ESS) of the Markov chains
for the first two dimensions of the banana density. Results are
summarized over 10 chains.

θ MALA GMALA HMC
θ1 112.1 289.4 2558.6
θ2 111.0 264.0 2152.6

two dimensions (θ1, θ2). In Fig. 2 we provide the poten-
tial scaling reduction factor (PSRF) [17] summarized over 10
chains. A value close to one suggests that the parameter chain
is at equilibrium. Table 1 and Fig. 2 suggest that GMALA
mixes better than MALA in the particular example.

Fig. 2. PSRFs for MALA, HMC and GMALA (left to right).

5.2. Sampling from Bayesian neural network

In this section we consider Bayesian neural network (BNN)
based modeling of Canadian Lynx data which consists of the
annual trappings of lynx in the Mackenzie River District of
North–West Canada for the period from 1821 to 1934 result-
ing to a total of 114 observations. We aim to identify the pro-
cess responsible for the generation of the data with an auto-
regressive BNN of lag 2, consisting of 5 hidden neurons with
tanh activation functions. The first 100 observations were
used for training and each trained model predictive capabil-
ity is tested on the last 14 observations. We note here that
similarly to [3] only w, the collection of weights and biases
(D = 21) is sampled via MALA, GMALA, and HMC with
common step size 0.01 and K = 1, 10, 10 respectively. For
each algorithm, 5 chains of 20,000 were sampled. The rest of
the hyperparameters are sampled via Gibbs.

In Fig. 3 we represent the model estimated with GMALA
and the out-of-sample predictions for the next 14 values sum-
marized over 5 chains. Fig. 4 shows PSRFs for the summa-
rized chain. Due to neural network weight space symmetry,
it is impossible to choose important coordinates of the θ vec-
tor. For this reason, we report in Table 2 the minimum ESS
summarized over the 5 chains.

Table 2. Minimum effective sample size (minESS) of the
Markov chains sampled for the Bayesian neural network. Re-
sults are summarized over 5 chains.

GMALA HMC MALA
minESS 212.2 300.0 196.3

We note that GMALA and HMC algorithms produce sim-



Fig. 3. Fitted time series and 14-step ahead predictions for
the Canadian Lynx data (blue dots). Solid dark blue (purple)
lines represent the mean posterior function (prediction) and
the shaded regions represent the associated uncertainties.

Fig. 4. PSRFs of MALA, HMC, and GMALA (from left to
right) for the Bayesian neural network example. Results are
summarized over 5 chains.

ilar results in the identification and prediction of future val-
ues. On the other hand the MALA-trained Bayesian neural
network has acceptance rate below 5% for this step size, lead-
ing to biased estimates and predictions with high variance.

6. CONCLUSION

In this article, a variation of the Metropolis-adjusted Langevin
algorithm namely, the Gaussian Metropolis-adjusted Langevin
algorithm (GMALA), has been proposed. In GMALA, the
traditional Euler–Maruyama scheme used for simulation of
the SDE in MALA has been replaced with a Gaussian as-
sumed density approximation making the algorithm more
amenable to larger integration steps. Experiments in sim-
ulated and real data sets suggest that GMALA performs at
least similarly or better than MALA.
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