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Abstract
The Gaussian kernel plays a central role in machine learning, uncertainty quantifi-
cation and scattered data approximation, but has received relatively little attention
from a numerical analysis standpoint. The basic problem of finding an algorithm
for efficient numerical integration of functions reproduced by Gaussian kernels has
not been fully solved. In this article we construct two classes of algorithms that
use N evaluations to integrate d-variate functions reproduced by Gaussian kernels
and prove the exponential or super-algebraic decay of their worst-case errors. In
contrast to earlier work, no constraints are placed on the length-scale parameter of
the Gaussian kernel. The first class of algorithms is obtained via an appropriate
scaling of the classical Gauss–Hermite rules. For these algorithms we derive lower
and upper bounds on the worst-case error of the forms exp(−c1N

1/d)N1/(4d) and
exp(−c2N

1/d)N−1/(4d), respectively, for positive constants c1 > c2. The second
class of algorithms we construct is more flexible and uses worst-case optimal weights
for points that may be taken as a nested sequence. For these algorithms we derive
upper bounds of the form exp(−c3N

1/(2d)) for a positive constant c3.

1 Introduction
This article considers numerical approximation of a d-dimensional Gaussian integral

Iααα(f) :=

∫
Rd

f(xxx)

[
d∏
i=1

1√
2παi

exp

(
− x2

i

2α2
i

)]
dxxx, (1.1)

where the integrand f : Rd → R is assumed to belong to H(K`̀̀), the reproducing kernel
Hilbert space (RKHS) of the symmetric positive-definite Gaussian kernel

K`̀̀(xxx,yyy) :=

d∏
i=1

K`i(xi, yi), K`(x, y) := exp

(
− (x− y)2

2`2

)
, (1.2)
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where elements of both the variance parameter ααα = (α1, . . . , αd) and the length-scale
parameter `̀̀ = (`1, . . . , `d) are positive. The inner product and norm of H(K`̀̀) are
denoted 〈·, ·〉`̀̀ and ‖·‖`̀̀ . The Gaussian kernel and its RKHS are commonly used in machine
learning (Rasmussen and Williams, 2006; Steinwart and Christmann, 2008), uncertainty
quantification (Sullivan, 2015) and scattered data approximation (Wendland, 2005;
Fasshauer and McCourt, 2015). The quality of an integration ruleQn(f) :=

∑n
i=1 wif(xxxi),

having points xxxi ∈ Rd and weights wi ∈ R, for integration of functions in the RKHS can
be measured in terms of its worst-case error

eααα,̀`̀(Qn) := sup
‖f‖`̀̀≤1

|Iααα(f)−Qn(f)| = ‖Iααα,̀`̀ −Q`̀̀,n‖`̀̀ , (1.3)

where the functions Iααα,̀`̀ and Q`̀̀,n are the Riesz representers of the linear functionals Iααα
and Qn, meaning that Iααα(f) = 〈f, Iααα,̀`̀〉`̀̀ and Qn(f) = 〈f,Q`̀̀,n〉`̀̀ for any f ∈ H(K`̀̀). By
the reproducing property of the kernel K`̀̀ the representers can be computed pointwise
as (e.g., Oettershagen, 2017, Proposition 3.5)

Iααα,̀`̀(xxx) = Iααα(K`̀̀(·,xxx)) and Q`̀̀,n(xxx) =

n∑
i=1

wiK`̀̀(xxxi,xxx). (1.4)

Because ‖Iααα,̀`̀‖2`̀̀ = 〈Iααα,̀`̀, Iααα,̀`̀〉`̀̀ = Iααα(Iααα,̀`̀) and ‖Q`̀̀,n‖2`̀̀ = 〈Q`̀̀,n,Q`̀̀,n〉`̀̀ = Qn(Q`̀̀,n) by
definitions of the representers, expansion of the RKHS norm in (1.3) and (1.4) yields

eααα,̀`̀(Qn) =

√
‖Iααα,̀`̀‖2`̀̀ − 2〈Iααα,Q`̀̀,n〉`̀̀ + ‖Q`̀̀,n‖2`̀̀

=

√√√√IxxxαααI
yyy
ααα(K`̀̀(xxx,yyy))− 2

n∑
i=1

wiIααα(K`̀̀(·,xxxi)) +

n∑
i=1

n∑
j=1

wiwjK`̀̀(xxxi,xxxj),
(1.5)

where the superscript in Ixxxααα indicates that integration is to be performed with respect to
the dummy variable xxx in (1.5). By means of the worst-case error, the integration error
for any f ∈ H(K`̀̀) can be decomposed as follows:

|Iααα(f)−Qn(f)| ≤ ‖f‖`̀̀ eααα,̀`̀(Qn). (1.6)

The only prior work containing bounds on the worst-case errors in this setting
appears to be due to Kuo and Woźniakowski (2012) and Kuo et al. (2017). When d = 1
they consider the n-point Gauss–Hermite rule QGH

α,n, which satisfies QGH
α,n(f) = Iα(f)

whenever f is a polynomial of degree at most 2n− 1, and prove that

eα,`(Q
GH
α,n) ≤ bn

(
α2

`2

)n
,

with (bn)∞n=1 a decreasing sequence converging to 2−1/4. That is, the Gauss–Hermite
rule converges with an exponential rate if ` > α.1 Their potential non-convergence
when ` ≤ α is perhaps not surprising because these rules are not adapted to the RKHS,
and in particular to the length-scale parameter. Tensor product extensions for the
multivariate case are also available, with similar constraints on αi and `i. Karvonen
and Särkkä (2019) propose using certain scaled versions of Gauss–Hermite rules but are
unable to prove the convergence of their rules, their error estimates being dependent on
the sum of absolute values of the weights. Approximation, measured in the L2-norm
corresponding to (1.1), is analysed in worst-case setting in Fasshauer et al. (2012) and

1Note that the matching lower bound claimed in Kuo and Woźniakowski (2012) is erroneous as
pointed out by Kuo et al. (2017, p. 830).
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Sloan and Woźniakowski (2018) and in average-case setting in Fasshauer et al. (2010) and
Chen and Wang (2019). Techniques similar to those used here have been used by Irrgeher
et al. (2015, 2016) and Dick et al. (2018) to analyse integration and approximation of
functions in Hermite spaces whose reproducing kernels admit expansions in terms of
Hermite polynomials.

1.1 Contributions
We develop kernel-dependent integration rules that are parameter-universal in that they
provably converge for all values of the variance and scale parameters ααα and `̀̀:

• In Section 2 we consider appropriately scaled versions of Gauss–Hermite rules and
their tensor products. In the univariate case these rules, denoted QGH

α,`,n, satisfy

C1

(
α2

2(α2 + `2)

)n
n1/4 ≤ eα,`(QGH

α,`,n) ≤ C2

(
α2

α2 + `2

)n
n−1/4

for any n ≥ 1 and certain positive constants C1 and C2, which shows that the
rules enjoy exponential convergence for any values of α and `. See Theorem 2.5
for details when d = 1 and Theorem 2.10 and Corollary 2.11 for the multivariate
case. The rules are related to those developed by Karvonen and Särkkä (2019), but
much simpler and more amenable to error analysis.

• In Section 3 we consider potentially nested integration rules with worst-case optimal
weights (Larkin, 1970; Oettershagen, 2017), often known as kernel quadrature rules
or, in statistical literature, Bayesian quadrature rules (Briol et al., 2019). For a
point set X ⊂ R such a rule is denoted Qopt

α,`,X . After decomposing the unbounded
integration domain into bounded sub-domains and a “tail domain” we apply results
from scattered data approximation literature (Rieger and Zwicknagl, 2010) to each
of the bounded sub-domains and thereafter sum the individual errors. For a specific
sequence (Xk)∞k=1 of point sets, each containing n = k(k + 1) points, we compute

eα,`(Q
opt
α,`,Xk

) ≤ C exp

(
−
√
n

2
√

2α2

)
for a positive constant C and for any sufficiently large k ≥ 1. The main results for
d = 1 are Proposition 3.2 and Theorem 3.3 while the multivariate case is contained
in Theorem 3.4 and Corollary 3.5. The domain decomposition technique we use has
been inspired by the method in Dick et al. (2018) and Suzuki (2020, Chapter 6).

1.2 Hilbert space of the Gaussian kernel
Before proceeding we review some facts about the Hilbert space H(K`̀̀). Recall that
any symmetric positive-definite kernel K : Ω × Ω → R on a set Ω induces a unique
RKHS H(K) consisting of real-valued functions defined on Ω and equipped with an
inner product 〈·, ·〉 and the associated norm ‖·‖. For any x ∈ Ω, the function K(·, x)
is in H(K) and the kernel has the reproducing property: 〈f,K(·, x)〉 = f(x) for any
f ∈ H(K) and x ∈ Ω.

To describe the structure of the RKHS H(K`̀̀) of the Gaussian kernel (1.2) we make
use of a simple orthonormal basis from Steinwart et al. (2006), De Marchi and Schaback
(2009) and Minh (2010). Consider first the case d = 1 and define

φ`,m(x) :=
1

`m
√
m!

xm exp

(
− x2

2`2

)
. (1.7)
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Then it follows (Minh, 2010) from the expansion K`(x, y) =
∑∞
m=0 φ`,m(x)φ`,m(y) that

{φ`,m}∞m=0 is an orthonormal basis of H(K`) and consequently

H(K`) =

{
f =

∞∑
m=0

fmφ`,m : ‖f‖2` :=

∞∑
m=0

f2
m <∞

}
. (1.8)

Because the multivariate Gaussian kernels (1.2) we consider are products of univariate
kernels, the RKHS H(K`̀̀) of d-variate functions is the tensor product of the univariate
spaces H(K`i) for i = 1, . . . , d (Berlinet and Thomas-Agnan, 2004, p. 31). Moreover, the
functions

φ`̀̀,mmm(xxx) :=
1

`̀̀mmm
√
mmm!
xxxmmm

d∏
i=1

exp

(
− x2

i

2`2i

)
(1.9)

for mmm ∈ Nd0 form an orthonormal basis of H(K`̀̀). Here Nd0 is the collection of d-
dimensional non-negative multi-indices (and later Nd will be that of positive multi-indices),
mmm! := m1!× · · · ×md! and xxxmmm := xm1

1 × · · · × xmd

d for mmm ∈ Nd0 and xxx ∈ Rd.
The prior work (Kuo and Woźniakowski, 2012; Kuo et al., 2017; Karvonen and Särkkä,

2019) on integration in the Gaussian RKHS is based on the Mercer basis functions

ϕα,`,m(x) :=

√
bα,`
m!

exp(−c2α,`x2)Hm

(
bα,`x

α

)
, (1.10)

where bα,` and cα,` are certain constants and Hm are the probabilists’ Hermite polynomials,
to be defined in (2.1). The functions ϕα,`,m have the L2-orthonormality property

1√
2πα

∫
R
ϕα,`,p(x)ϕα,`,q(x) exp

(
− x2

2α2

)
dx = δpq (1.11)

while {λ1/2
α,`,mϕα,`,m}∞m=0, for an exponentially decaying positive sequence (λα,`,m)∞m=0,

is an orthonormal basis of H(K`) and K`(x, y) =
∑∞
m=0 λα,`,mϕα,`,m(x)ϕα,`,m(y). It

seems to us that in many situations the simpler basis (1.7) ought to be preferred over the
Mercer basis (1.10). As will become evident in Section 2, the L2-orthonormality (1.11)
of the Mercer basis is not necessary for analysing integration error.

2 Scaled Gauss–Hermite rules
In this section we introduce an appropriate RKHS-dependent scaling for Gauss–Hermite
rules and their tensor product extensions. The use of this scaling guarantees exponential
convergence for all values of the variance and length-scale parameters ααα and `̀̀.

2.1 Gauss–Hermite quadrature
In one dimension, the n-point (generalised) Gauss–Hermite rule

QGH
α,n(f) :=

n∑
i=1

wGH
n,if(αxGH

n,i)

approximates the integral Iα(f) and is uniquely characterised by the property that

QGH
α,n(p) = Iα(p) for every polynomial p of degree at most 2n− 1.

Its points are obtained by scaling xGH
n,i, the roots of the nth Hermite polynomial

Hn(x) := (−1)n ex
2/2 dn

dxn
e−x

2/2, (2.1)
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and the weights are

wGH
n,i :=

n!

n2Hn−1(xGH
n,i)

.

Note that
∑n
i=1 w

GH
n,i = 1 since the rule must be exact for constant functions. Furthermore,

the point set is symmetric: for every i ≤ n there is j ≤ n such that xGH
n,i = −xGH

n,j . In
practice, the weights and points are computed with the Golub–Welsch algorithm that
exploits the three-term recurrence relation of the Hermite polynomials (Gautschi, 2004,
Section 3.1.1.1). If f has 2n continuous derivatives, then the error of the Gauss–Hermite
quadrature is (Hildebrand, 1987, Section 8.7)

Iα(f)−QGH
α,n(f) = f (2n)(ξ)

α2nn!

(2n)!
for some ξ ∈ R, (2.2)

which in particular implies that QGH
α,n underestimates the value of the integral if the 2nth

derivative of the integrand is everywhere positive.

2.2 Integration of the orthonormal basis
Recall from Section 1.2 that

φ`,m(x) =
1

`m
√
m!
xm exp

(
− x2

2`2

)
form an orthonormal basis of H(K`). Denote

ψ`,m(x) := xm exp

(
− x2

2`2

)
,

so that φ`,m = (`m
√
m!)−1ψ`,m(x). We now construct an n-point scaled Gauss–Hermite

rule, QGH
α,`,n, such that

QGH
α,`,n(φ`,m) = Iα(φ`,m) (2.3)

for every 0 ≤ m ≤ 2n− 1. Note that this is equivalent to QGH
α,`,n(ψ`,m) = Iα(ψ`,m) for

every 0 ≤ m ≤ 2n− 1. Let

β :=

√
α2`2

α2 + `2
.

Then each of the 2n exactness conditions (2.3) can be written as

QGH
α,`,n(ψ`,m) = Iα(ψ`,m) =

1√
2πα

∫
R
xm exp

(
− x2

2`2

)
exp

(
− x2

2α2

)
dx

=
β

α

1√
2πβ

∫
R
xm exp

(
− x2

2β2

)
dx

=
β

α
Iβ(xm).

(2.4)

The desired quadrature rule can be thus realised as a scaled Gauss–Hermite rule for
approximation of Iβ :

QGH
α,`,n(f) :=

β

α
QGH
β,n(fexp) for fexp(x) := f(x) exp

(
x2

2`2

)
,

the exactness up to order 2n of which can be verified by observing that for f = ψ`,m we
have fexp(x) = xm and thus, by (2.4),

QGH
α,`,n(ψ`,m) =

β

α
QGH
β,n(xm) =

β

α
Iβ(xm) = Iα(ψ`,m)
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for every 0 ≤ m ≤ 2n− 1. The scaled rule can be written as

QGH
α,`,n(f) =

β

α

n∑
i=1

wGH
n,i exp

(
β2(xGH

n,i)
2

2`2

)
f(βxGH

n,i) =

n∑
i=1

wGH
α,`,n,if(xGH

α,`,n,i),

the points and weights being

xGH
α,`,n,i := βxGH

n,i and wGH
α,`,n,i :=

β

α
wGH
n,i exp

(
β2(xGH

n,i)
2

2`2

)
> 0. (2.5)

This is an example of a generalised Gaussian quadrature rule, a quadrature rule that uses
n function evaluations to integrate exactly a collection of 2n functions (Barrow, 1978).

Remark 2.1. Note that the above construction can be carried out for general weighted
integration problems. Namely, consider the computation of Iν(f) :=

∫ b
a
f(x)ν(x) dx for

−∞ ≤ a < b ≤ ∞ and a weight function ν : Ω → [0,∞) that is sufficiently regular to
guarantee (Gautschi, 2004, Section 1.1) the existence of a Gaussian quadrature rule
Qνn(f) :=

∑n
i=1 w

ν
n,if(xνn,i) such that Qνn(p) = Iν(p) < ∞ for every polynomial p of

degree at most 2n− 1. Define then ν̄(x) := exp(−x2/(2`2))ν(x) and write

Iν(ψ`,m) =

∫ b

a

xm exp

(
− x2

2`2

)
ν(x) dx = I ν̄(xm).

It is easy to see that the quadrature rule

Qν`,n(f) :=

n∑
i=1

wν̄n,i exp

(
(xν̄n,i)

2

2`2

)
f(xν̄n,i)

satisfies Qν`,n(φ`,m) = Iν(φ`,m) for 0 ≤ m ≤ 2n−1. The worst-case error can be bounded
using the methods in Section 2.3, but the bounds involve integrals of monic ν̄-orthogonal
polynomials that appear difficult to estimate (Hildebrand, 1987, Section 8.4).

2.3 Error estimates in one dimension
This section establishes exponential upper and lower bounds on the worst-case error of
the scaled Gauss–Hermite rule QGH

α,`,n. For these estimates recall Stirling’s approximation

n! ∼
√

2πnn+1/2 e−n . (2.6)

A version that is valid for finite n is
√

2πnn+1/2 e−n ≤ n! ≤ enn+1/2 e−n . (2.7)

These follow from the more precise bounds due to Robbins (1955).

Lemma 2.2. The sequence (Cn)∞n=1 defined by

Cn :=
2nn!√
(2n)!

n−1/4 (2.8)

is strictly decreasing and satisfies

lim
n→∞

Cn = π1/4 and π1/4 < Cn ≤
e

(2π)1/4
.
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Proof. Write

Cn
Cn+1

=

√
(2n+ 1)(2n+ 2)

2(n+ 1)

(
n+ 1

n

)1/4

=

√
2n+ 1

2n+ 2

(
n+ 1

n

)1/4

.

Because (
2n+ 1

2n+ 2

)2
n+ 1

n
=

(
1− 1

2(n+ 1)

)2
n+ 1

n
= 1 +

1

4n(n+ 1)
> 1,

the sequence (Cn)∞n=1 is strictly decreasing. Its limit is obtained from the asymptotic
form (2.6) of Stirling’s approximation and the upper bound Cn ≤ e(2π)−1/4 from (2.7).

Lemma 2.3. For any n ≥ 1 we have

Iα(φ`,2n)−QGH
α,`,n(φ`,2n) = Cn

β

α

(
β2

2`2

)n
n1/4,

where Cn > 0 is defined in (2.8).

Proof. Because

Iα(ψ`,m) =
β

α
Iβ(xm) and QGH

α,`,n(ψ`,m) =
β

α
QGH
β,n(xm)

for every m ≥ 0, we can use the Gauss–Hermite error formula (2.2) to deduce that

Iα(φ`,2n)−QGH
α,`,n(φ`,2n) =

β

α

1

`2n
√

(2n)!
[Iβ(x2n)−QGH

β,n(x2n)] =
β

α

β2nn!

`2n
√

(2n)!

= Cn
β

α

(
β2

2`2

)n
n1/4.

Lemma 2.4. For any n ≥ 1 and q ≥ 0 we have

|Iα(φ`,2q)−QGH
α,`,n(φ`,2q)| ≤ C−1

q

β

α

(
β2

`2

)q
q−1/4,

where Cq > 0 is defined in (2.8).

Proof. For q < n the statement is trivial since the scaled Gauss–Hermite rule is exact
for φ`,2q. For q ≥ n write

|Iα(φ`,2q)−QGH
α,`,n(φ`,2q)| =

β

α

1

`2q
√

(2q)!
|Iβ(x2q)−QGH

β,n(x2q)| .

By the positivity of the Gauss–Hermite weights and (2.2) we have, for some ξ ∈ R,

0 < QGH
β,n(x2q) = Iβ(x2q)− β2nn!

(2n!)

(2q)!

(2(q − n))!
ξ2(q−n) ≤ Iβ(x2q).

Therefore |Iβ(x2q)−QGH
β,n(x2q)| ≤ Iβ(x2q). The triangle inequality and the Gaussian

moment formula then yield

|Iα(φ`,2q)−QGH
α,`,n(φ`,2q)| ≤

β

α

1

`2q
√

(2q)!
Iβ(x2q) =

β

α

1

`2q
√

(2q)!

β2q(2q)!

2qq!

=

√
(2q)!

2qq!

β

α

(
β2

`2

)q
= C−1

q

β

α

(
β2

`2

)q
q−1/4.
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Theorem 2.5. For any n ≥ 1 we have

Cn
`√

α2 + `2

(
α2

2(α2 + `2)

)n
n1/4 ≤ eα,`(QGH

α,`,n) < π−1/4 `√
α2 + `2

(
α2

α2 + `2

)n
n−1/4,

(2.9)
where Cn > 0 is defined in (2.8).

Proof. Since ‖φ`,m‖` = 1 for every m ≥ 0, the lower bound follows immediately from
Lemma 2.3. Let f =

∑∞
m=0 fmφ`,m ∈ H(K`). BecauseQGH

α,`,n is exact for φ`,0, . . . , φ`,2n−1

and QGH
α,`,n(φ`,m) = Iα(φ`,m) = 0 if m is odd,

|Iα(f)−QGH
α,`,n(f)| ≤

∞∑
m=0

|fm| |Iα(φ`,m)−QGH
α,`,n(φ`,m)|

=

∞∑
q=n

|f2q| |Iα(φ`,2q)−QGH
α,`,n(φ`,2q)| .

Recall from Lemma 2.2 that C−1
q < π−1/4. Lemma 2.4 thus yields

|Iα(f)−QGH
α,`,n(f)| ≤ β

α

∞∑
q=n

|f2q|C−1
q

(
β2

`2

)q
q−1/4

=
β

α

(
β2

`2

)n ∞∑
q=0

|f2(n+q)|C−1
n+q

(
β2

`2

)q
(n+ q)−1/4

< π−1/4 β

α

(
β2

`2

)n
n−1/4

∞∑
q=0

|f2(n+q)|
(
β2

`2

)q
.

We conclude that

sup
‖f‖`≤1

|Iα(f)−QGH
α,`,n(f)| < π−1/4 β

α

(
β2

`2

)n
n−1/4 sup

‖f‖`≤1

∞∑
q=0

|f2(n+q)|
(
β2

`2

)q
= π−1/4 β

α

(
β2

`2

)n
n−1/4

because β2 < `2 and the supremum is thus attained by f = φ`,2n, hich corresponds to
f2(n+q) = 1 for q = 0 and f2(n+q) = 0 for q > 0.

Remark 2.6. The exponential difference in the upper and lower bounds of Theorem 2.5
partially stems from the rough estimate in Lemma 2.4, which is merely double the
integral of φ`,2q (indeed, this estimate only depends on q, not on n). A more careful
analysis of the Gauss–Hermite error for even polynomials, |Iβ(x2q)−QGH

β,n(x2q)|, could
be expected to yield improvements. See Figure 1 for numerical results.

Kuo and Woźniakowski (2012) and Kuo et al. (2017) analyse integration in H(K`)
under the constraint that ` > α. Theorem 4.1 in Kuo et al. (2017) contains a lower
bound for the nth minimal worst-case error

emin
α,`,n := inf

Qn

eα,`(Qn), (2.10)
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Figure 1: Worst-case errors of the scaled Gauss–Hermite rule QGH
α,`,n and the standard Gauss–Hermite

rule QGH
α,n and our theoretical bounds (2.9) for eα,`(QGH

α,`,n). Note that the earlier results for the standard
Gauss–Hermite rule in Kuo and Woźniakowski (2012) and Kuo et al. (2017) do not apply in the left
panel because α > `. Rates of decay computed from the numerical results for scaled Gauss–Hermite
rules are rn for r ≈ 0.528 (left panel) and rn for r ≈ 0.203 (right panel). Interestingly, the upper
bound in (2.9) appears to be almost exact for the standard Gauss–Hermite rule. All computations were
implemented in Python with 100-digit precision.

where the infimum is taken over all n-point quadrature rules Qn. A careful reading
reveals that the assumption ` > α is not required in the proof of the lower bound. Let

γ :=
α

`
and ωγ :=

2γ2

1 + 2γ2 +
√

1 + 4γ2
< 1. (2.11)

Then a generalisation of Theorem 4.1 in Kuo et al. (2017) states that

emin
α,`,n ≥

√
2(1 + 4γ2)1/4

(1 + 2γ2 +
√

1 + 4γ2) e

ωnγn!

(n+ 1)(2n)!
. (2.12)

Because ω` < 1 and

n!

(2n)!
∼ en

22n+1/2nn
, which for finite n is

n!

(2n)!
≥
√
π

en−1

22nnn
, (2.13)

this lower bound is super-exponential and likely non-strict; see p. 847 in Kuo et al. (2017)
for more discussion. By combining the lower bound (2.12), the Stirling estimates (2.13)
and the upper bound from Theorem 2.5, we obtain the first (at least) exponential bounds
on the nth minimal error for all values of α and ` in this setting.

Theorem 2.7. For any n ≥ 1 the nth minimal error (2.10) satisfies

C̄n(γ)

(
ωγ e

4n

)n
(n+ 1)−1 ≤ emin

α,`,n < π−1/4 `√
α2 + `2

(
α2

α2 + `2

)n
n−1/4,

where γ and ωγ are defined in (2.11) and

C̄n(γ) :=

√
2(1 + 4γ2)1/4

(1 + 2γ2 +
√

1 + 4γ2) e

n!

(2n)!

(
e

4n

)−n
(2.14)

is a positive sequence such that

lim
n→∞

C̄n(γ) =

√
(1 + 4γ2)1/4

(1 + 2γ2 +
√

1 + 4γ2 ) e
and C̄n(γ) ≥

√
2π(1 + 4γ2)1/4

(1 + 2γ2 +
√

1 + 4γ2) e3
.
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2.4 Error estimates for tensor product rules
Let nnn := (n1, · · · , nd) ∈ Nd. We now consider the tensor product extensions

QGH
ααα,̀`̀,nnn := QGH

α1,`1,n1
× · · · ×QGH

αd,`d,nd
(2.15)

of the scaled Gauss–Hermite rules defined in Section 2.2. The approximation to Iααα(f)
for f : Rd → R is thus

QGH
ααα,̀`̀,nnn(f) =

∑
iii∈Nd, iii≤nnn

wGH
ααα,̀`̀,nnn,iiif(xxxGH

ααα,̀`̀,nnn,iii),

where iii ≤ nnn stands for ij ≤ nj for every j = 1, . . . , d and the points and weights are
defined using the univariate versions in (2.5) as follows:

xxxGH
ααα,̀`̀,nnn,iii := (xGH

α1,`1,n1,i1 , . . . , x
GH
αd,`d,nd,id

) and wGH
ααα,̀`̀,nnn,iii :=

d∏
j=1

wGH
αj ,`j ,nj ,ij .

Recall from Section 1 that there exist representers Iααα,̀`̀ and QGH
ααα,̀`̀,nnn in H(K`̀̀) such that

Iααα(f) = 〈f, Iααα,̀`̀〉`̀̀ and QGH
ααα,̀`̀,nnn(f) = 〈f,QGH

ααα,̀`̀,nnn〉`̀̀

for every f ∈ H(K`̀̀) and that

eααα,̀`̀(Q
GH
ααα,̀`̀,nnn) = ‖Iααα,̀`̀ −QGH

ααα,̀`̀,nnn‖`̀̀ . (2.16)

Furthermore, the representers have the explicit forms

Iααα,̀`̀(xxx) =

d∏
i=1

Iαi,`i(xi) =

d∏
i=1

[
1√

2παi

∫
R
K`i(yi, xi) exp

(
− y2

i

2α2
i

)
dyi

]
and

QGH
ααα,̀`̀,nnn(xxx) =

d∏
i=1

QGH
αi,`i,ni

(xi) =

d∏
i=1

[
ni∑
j=1

wGH
αi,`i,ni,jK`i

(
xGH
αi,`i,ni,j , xi

)]

for xxx ∈ Rd.

Lemma 2.8. For any α, ` > 0 and n ≥ 1 we have

‖QGH
α,`,n‖` ≤ ‖Iα,`‖` =

(
1 +

2α2

`2

)−1/4

< 1.

Proof. Recall from Section 1 that ‖Iα,`‖2` = Iα(Iα,`) and ‖QGH
α,`,n‖

2

`
= QGH

α,`,n(QGH
α`,n). It

is then fairly straightforward to compute that

Iα,`(x) =
1√
2πα

∫
R
K`(y, x) exp

(
− y2

2α2

)
dy =

(
`2

α2 + `2

)1/2

exp

(
− x2

2(α2 + `2)

)
(2.17)

and

‖Iα,`‖` =

(
1√
2πα

∫
R

(
`2

α2 + `2

)1/2

exp

(
− x2

2(α2 + `2)

)
exp

(
− x2

2α2

)
dx

)1/2

=

(
1 +

2α2

`2

)−1/4

.
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The norm of the quadrature representer is

‖QGH
α,`,n‖` =

(
n∑
i=1

n∑
j=1

wGH
α,`,n,iw

GH
α,`,n,jK`

(
xGH
α,`,n,i, x

GH
α,`,n,j

))1/2

=
β

α

(
n∑
i=1

n∑
j=1

wGH
n,iw

GH
n,j exp

(
β2(xGH

n,i)
2

2`2

)
exp

(
β2(xGH

n,j)
2

2`2

)

× exp

(
−
β2(xGH

n,i − xGH
n,j)

2

2`2

))1/2

=
β

α

(
n∑
i=1

wGH
n,i

n∑
j=1

wGH
n,j exp

(
β2xGH

n,ix
GH
n,j

`2

))1/2

.

We recognise the inner sum in the last equation as the Gauss–Hermite integral approx-
imation QGH

1,n(gi) for the function gi(x) := exp(β2xGH
n,ix/`

2). Because derivatives of all
orders of these function are everywhere positive, we conclude from (2.2) that

n∑
j=1

wGH
n,j exp

(
β2xGH

n,ix
GH
n,j

`2

)
≤ 1√

2π

∫
R

exp

(
β2xGH

n,ix

`2

)
exp

(
− x2

2

)
dx

= exp

(
β4(xGH

n,i)
2

2`4

)
.

The positivity of the Gauss–Hermite weights thus gives

‖QGH
α,`,n‖` ≤

β

α

(
n∑
i=1

wGH
n,i exp

(
β4(xGH

n,i)
2

2`4

))1/2

, (2.18)

where the sum is the Gauss–Hermite approximation of I1(g) for g(x) := exp(β4x2/(2`4)).
Because even order derivatives of g are everywhere positive, it follows from (2.2) that

n∑
i=1

wGH
n,i exp

(
β4(xGH

n,i)
2

2`4

)
≤ 1√

2π

∫
R

exp

(
β4x2

2`4

)
exp

(
− x2

2

)
dx

=
`2√
`4 − β4

=

(
1− α4

(α2 + `2)2

)−1/2

.

Inserting the above estimate into (2.18) and observing that

β

α

(
1− α4

(α2 + `2)2

)−1/4

=
β

α

(
1− β4

`4

)−1/4

=

(
α4

β4
− α4

`4

)−1/4

=

(
1 +

2α2

`2

)−1/4

yields the claim.

Lemma 2.9. Let nnn ∈ Nd and 1 ≤ i ≤ d. For the function

fi(xxx) := φ`1,0(x1) · · ·φ`i−1,0(xi−1) φ`i,2ni
(xi) φ`i+1,0(xi+1) · · ·φ`d,0(xd)

we have

Iααα(fi)−QGH
ααα,̀`̀,nnn(fi) = Cni

[
d∏
j=1

βj
αj

](
β2
i

2`2i

)ni

n
1/4
i ,
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where Cni
> 0 is defined in (2.8) and

βi :=

√
α2
i `

2
i

α2
i + `2i

.

Proof. Write

Iααα(fi)−QGH
ααα,̀`̀,nnn(fi) =

[
Iαi

(φ`i,2ni
)−QGH

αi,`i,ni
(φ`i,2ni

)
]∏
j 6=i

Iαj
(φ`j ,0)

+QGH
αi,`i,ni

(φ`i,2ni
)

[∏
j 6=i

Iαj
(φ`j ,0)−

∏
j 6=i

QGH
αj ,`j ,nj

(φ`j ,0)

]
.

Since QGH
αj ,`j ,nj

(φ`j ,0) = Iαj
(φ`j ,0) for j = 1, . . . , d, the second term vanishes. Because

∏
j 6=i

Iαj
(φ`j ,0) =

∏
j 6=i

[
1√

2παj

∫
R

exp

(
−
x2
j

2`2j

)
exp

(
−

x2
j

2α2
j

)
dxj

]
=
∏
j 6=i

βj
αj
,

the claim then follows from Lemma 2.3.

Theorem 2.10. For any nnn ∈ Nd, the tensor product rule (2.15) satisfies

eααα,̀`̀(Q
GH
ααα,̀`̀,nnn) < π−1/4

d∑
i=1

`i
(α2
i + `2i )

1/2

[∏
j 6=i

(
1 +

2α2
j

`2j

)−1/4
](

α2
i

α2
i + `2i

)ni

n
−1/4
i

and

eααα,̀`̀(Q
GH
ααα,̀`̀,nnn) ≥

[
d∏
j=1

`j
(α2
j + `2j )

1/2

]
min

i=1,...,d
Cni

(
α2
i

2(α2
i + `2i )

)ni

n
1/4
i ,

where Cni > 0 is defined in (2.8).

Proof. The lower bound follows directly from Lemma 2.9 because for each i = 1, . . . , d
the function fi is one of the orthonormal basis functions (1.9) and thus of unit norm. The
proof of the upper bound is fairly standard. We use the representer form of the worst-case
error in (2.16). For any zzz ∈ Rd and 2 ≤ q ≤ d+ 1 define zzz1:q := (z1, . . . , zq−1) ∈ Rq−1.
Also denote

Iααα,̀`̀[q] := Iααα1:q ,̀`̀1:q , QGH
ααα,̀`̀,nnn[q] := QGH

ααα1:q ,̀`̀1:q,nnn1:q
and QGH

ααα,̀`̀,nnn[q] := QGH
ααα1:q ,̀`̀1:q,nnn1:q

.

Write

Iααα,̀`̀ −QGH
ααα,̀`̀,nnn = Iααα,̀`̀[d]

(
Iαd,`d −QGH

αd,`d,nd

)
+QGH

αd,`d,nd

(
Iααα,̀`̀[d]−QGH

ααα,̀`̀,nnn[d]
)
.

Therefore

eααα,̀`̀(Q
GH
ααα,̀`̀,nnn) = ‖Iααα,̀`̀ −QGH

ααα,̀`̀,nnn‖`̀̀ ≤ ‖Iααα,̀`̀[d]‖
`̀̀1:d

eαd,`d(QGH
αd,`d,nd

)

+ ‖QGH
αd,`d,nd

‖
`d
eα1:d,`1:d

(
QGH
ααα,̀`̀,nnn[d]

)
.
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Iteration of this inequality and repeated applications of Lemma 2.8 yield

eααα,̀`̀(Q
GH
ααα,̀`̀,nnn) ≤ eαd,`d(QGH

αd,`d,nd
)

d−1∏
j=1

(
1 +

2α2
j

`2j

)−1/4

+

(
1 +

2α2
d

`2d

)−1/4

eα1:d,`1:d

(
QGH
ααα,̀`̀,nnn[d]

)
≤ eαd,`d(QGH

αd,`d,nd
)

d−1∏
j=1

(
1 +

2α2
j

`2j

)−1/4

+

(
1 +

2α2
d

`2d

)−1/4
[
eαd−1,`d−1

(QGH
αd−1,`d−1,nd−1

)

d−2∏
j=1

(
1 +

2α2
j

`2j

)−1/4

+

(
1 +

2α2
d−1

`2d−1

)−1/4

eα1:d−1,`1:d−1

(
QGH
ααα,̀`̀,nnn[d− 1]

)]
...

≤
d∑
i=1

eαi,`i(Q
GH
αi,`i,ni

)
∏
j 6=i

(
1 +

2α2
j

`2j

)−1/4

.

The claim then follows from the upper bound in (2.9) applied to each of the d one-
dimensional worst-case errors.

In the isotropic case the statement of Theorem 2.10 simplifies considerably.

Corollary 2.11. Consider the tensor product rule (2.15) when α1 = · · · = αd = α,
`1 = · · · = `d = ` and n1 = · · · = nd = n for α, ` > 0 and n ≥ 1. Then

eααα,̀`̀(Q
GH
ααα,̀`̀,nnn) < dπ−1/4 `√

α2 + `2

(
1 +

2α2

`2

)−(d−1)/4(
α2

α2 + `2

)n
n−1/4

and

eααα,̀`̀(Q
GH
ααα,̀`̀,nnn) ≥ Cn

(
`2

α2 + `2

)d/2(
α2

2(α2 + `2)

)n
n1/4,

where Cn > 0 is defined in (2.8).

Remark 2.12. As the total number of points in Corollary 2.11 is N = nd, we obtain

C1

(
α2

2(α2 + `2)

)N1/d

N1/(4d) ≤ eααα,̀`̀(QGH
ααα,̀`̀,nnn) < C2

(
α2

α2 + `2

)N1/d

N−1/(4d) (2.19)

for certain constants C1, C2 > 0. The curse of dimensionality thus manifests itself in
the exponent N1/d that grows slower with N when d is large. From (2.19) one could
derive a number of dimensional tractability results, as is done for tensor products of
Gauss–Hermite rules in Kuo et al. (2017).

As a final result of this section we provide a multivariate generalisation of Theorem 2.7.
Let N + 1 =

∏d
i=1(ni + 1) for any ni ≥ 1. As in the one-dimensional case, Kuo et al.

(2017, Theorem 5.1) have proved the lower bound

emin
ααα,̀`̀,N ≥

1

N + 1

d∏
i=1

[√
2(1 + 4γ2

i )1/4

(1 + 2γ2
i + (1 + 4γ2

i )1/2) e

ωni
γi ni!

(2ni)!

]
(2.20)

for the Nth minimal error
emin
ααα,̀`̀,N := inf

QN

eααα,̀`̀(QN ), (2.21)
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where the infimum is over d-dimensional N -point quadrature rules QN . Here

γi :=
αi
`i

and ωγi :=
2γ2
i

1 + 2γ2
i +

√
1 + 4γ2

i

< 1. (2.22)

Combining the upper bound of Theorem 2.10 and (2.13) with the bound (2.20) yields
the following result, where the upper bound based on the tensor product rule with∏d
i=1 ni < N points is valid since the minimal error is decreasing in the number of points.

Theorem 2.13. For any N ≥ 1 such that N + 1 =
∏d
i=1(ni + 1) for some ni ≥ 1 the

N th minimal error (2.21) satisfies

(N + 1)−1
d∏
i=1

C̄ni
(γi)

(
ωγi e

4ni

)ni

≤ emin
ααα,̀`̀,N < π−1/4

d∑
i=1

Ĉi

(
α2
i

α2
i + `2i

)ni

n
−1/4
i ,

where γi and ωγi are defined in (2.22), (C̄n(γ))∞n=1 is the positive sequence in (2.14) and

Ĉi :=
`i

(α2
i + `2i )

1/2

∏
j 6=i

(
1 +

2α2
j

`2j

)−1/4

.

3 Locally uniform points and optimal weights
This section contains a flexible construction which permits nested point sets in situations
where an extensible integration rule is required. In contrast to the scaled Gauss–Hermite
rules in Section 2, this construction is only proved to converge with a sub-exponential
(though still super-algebraic) rate. The construction and its analysis are based on results
in scattered data approximation literature (Wendland, 2005; Fasshauer and McCourt,
2015) and worst-case optimal integration rules in RKHSs (Oettershagen, 2017).

3.1 Rules with optimal weights
Let X = {xxx1, . . . ,xxxn} ⊂ Rd be an arbitrary set of n distinct points. The integration rule
based on these points having the minimal worst-case error is

Qopt
ααα,̀`̀,X(f) :=

n∑
i=1

wopt
ααα,̀`̀,X,if(xxxi)

with the weights
(wopt

ααα,̀`̀,X,1, . . . , w
opt
ααα,̀`̀,X,n) = arg min

www∈Rn

eααα,̀`̀(QX,www),

where QX,www(f) :=
∑n
i=1 wif(xxxi). Because the explicit form of the worst-case error

in (1.5) is

eααα,̀`̀(Qn) =
√
IxxxαααI

yyy
ααα(K`̀̀(xxx,yyy))− 2wwwTzzz +wwwTKKKXwww, (3.1)

where zi = Iααα(K`̀̀(·,xxxi)) = Iααα,̀`̀(xxxi) and KKKX is the n× n positive-definite kernel Gram
matrix with elements (KKKX)i,j = K`̀̀(xxxi,xxxj), it is easy to see that the optimal weights are
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the solution to the linear system2
K`̀̀(xxx1,xxx1) · · · K`̀̀(xxx1,xxxn)

...
. . .

...
K`̀̀(xxxn,xxx1) · · · K`̀̀(xxxn,xxxn)



wopt
ααα,̀`̀,X,1
...

wopt
ααα,̀`̀,X,n

 =


Iααα,̀`̀(xxx1)

...
Iααα,̀`̀(xxxn)

 . (3.2)

These integration rules, sometimes known as kernel quadrature rules, are useful because
no restrictions are placed on the geometry of the evaluation points. They also carry an
interpretation as Bayesian quadrature rules (Briol et al., 2019) which can be used to
quantify the epistemic uncertainty in the integral approximation.

Because the optimal weights solve (3.2) it follows from (3.1) that

eααα,̀`̀(Q
opt
ααα,̀`̀,X) = ‖Iααα,̀`̀ −Qopt

ααα,̀`̀,X‖`̀̀ =
√
‖Iααα,̀`̀‖2`̀̀ − ‖Q

opt
ααα,̀`̀,X‖

2

`̀̀

=

√√√√IxxxαααI
yyy
ααα(K`̀̀(xxx,yyy))−

n∑
i=1

wopt
ααα,̀`̀,X,iIααα(K`̀̀(·,xxxi)),

(3.3)

where Qopt
ααα,̀`̀,X is the representer of the integration rule Qopt

ααα,̀`̀,X . To bound the worst-case
error we use the connection between kernel quadrature rules and kernel interpolation.
The kernel interpolant is the minimum-norm interpolant

s`̀̀,Xf := arg min
g∈H(K`̀̀)

{‖g‖`̀̀ : g(xxxi) = f(xxxi) for all xxxi ∈ X} (3.4)

to f at the points X and it can be shown that the optimal integration rule is obtained by
integrating this interpolant: Qopt

ααα,̀`̀,X(f) = Iααα(s`̀̀,Xf). The power function P`̀̀,X is defined
as the pointwise worst-case error of the kernel interpolant,

P`̀̀,X(xxx) := sup
‖f‖`̀̀≤1

|f(xxx)− (s`̀̀,Xf)(xxx)|

= sup{f(xxx) : ‖f‖`̀̀ ≤ 1 and f(xxxi) = 0 for all xxxi ∈ X}.
(3.5)

The power function provides an error decoupling for approximation similar to (1.6):

|f(xxx)− (s`̀̀,Xf)(xxx)| ≤ ‖f‖`̀̀ P`̀̀,X(xxx) (3.6)

for any f ∈ H(K`̀̀) and xxx ∈ Rd. Since

f(xxx) = 〈f,K`̀̀(·,xxx)〉`̀̀ ≤ ‖f‖`̀̀ ‖K`̀̀(·,xxx)‖`̀̀ = ‖f‖`̀̀
√
K`̀̀(xxx,xxx) = ‖f‖`̀̀ (3.7)

for f ∈ H(K`̀̀) and xxx ∈ Rd, it follows from (3.5) that P`̀̀,X ≤ 1. Now, using (3.6) the
worst-case error can be bounded as follows:

eααα,̀`̀(Q
opt
ααα,̀`̀,X) = sup

‖f‖`̀̀≤1

|Iααα(f)−Qopt
ααα,̀`̀,X(f)| ≤ sup

‖f‖`̀̀≤1

Iααα( |f − s`̀̀,Xf | ) ≤ Iααα(P`̀̀,X). (3.8)

2The representers on the right-hand side can be computed in closed from by taking products of the
one-dimensional representers in (2.17). Because the Gaussian kernel is analytic, the linear system tends
to become severely ill-conditioned (Schaback, 1995), which can be somewhat mitigated by the use of
approximations based on truncation of an orthonormal expansion of the Gaussian kernel (Fasshauer and
McCourt, 2012; Karvonen and Särkkä, 2019).
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3.2 Error estimates in one dimension
We begin by presenting a general result on the L1-norm of the power function on
bounded cubes in dimension d. For any finite point set X = {xxx1, . . . ,xxxn} ⊂ Rd define
the fill-distance hX,Ω on a bounded set Ω ⊂ Rd as

hX,Ω := sup
xxx∈Ω

min
xxxi∈X∩Ω

‖xxx− xxxi‖ . (3.9)

Note that this differs from the standard definition of the fill-distance in scattered data
approximation literature (e.g., Wendland, 2005, Definition 1.4) in that X is not required
to be a subset of Ω. The following result is a localised version of the convergence results
in Wendland (2005, Chapter 11) and Rieger and Zwicknagl (2010). For other similar
results, see Rieger and Zwicknagl (2014). We use ‖·‖L1(Ω) to denote the L1-norm on a
Lebesgue-measurable set Ω ⊂ Rd. That is, ‖f‖L1(Ω) =

∫
Ω
|f(xxx)|dxxx.

Proposition 3.1. Let Ω ⊂ Rd be a closed cube with side length R > 0 and let X ⊂ Rd
be a finite collection of distinct points. Consider the isotropic case `̀̀ = (`, . . . , `) ∈ Rd
for some ` > 0. Then there exist positive constants C and h0, which depend only on `, d
and R, such that

‖P`̀̀,X‖L1(Ω)
≤ exp

(
C log(hX,Ω)h−1

X,Ω

)
(3.10)

whenever hX,Ω ≤ h0.

Proof. Let Y ⊂ Ω be a finite point set and u ∈ H(K`̀̀) a function that vanishes on Y .
Let ‖·‖`̀̀,Ω denote the norm of the restriction of H(K`̀̀) on Ω. By Theorems 4.5 and 6.1
in Rieger and Zwicknagl (2010) with p = 2 and q = 1, there are positive constants C
and h0, which depend only on `, d and R, such that

‖u‖L1(Ω) ≤ ‖u‖`̀̀,Ω exp
(
C log(hY,Ω)h−1

Y,Ω

)
≤ ‖u‖`̀̀ exp

(
C log(hY,Ω)h−1

Y,Ω

)
(3.11)

if hY,Ω ≤ h0. From the characterisation (3.5) of the power function it then follows that

‖P`̀̀,Y ‖L1(Ω)
≤ exp

(
C log(hY,Ω)h−1

Y,Ω

)
.

and P`̀̀,X(xxx) ≤ P`̀̀,Y (xxx) for every xxx ∈ Rd if Y ⊂ X. Therefore

‖P`̀̀,X‖L1(Ω)
≤ ‖P`̀̀,X∩Ω‖L1(Ω)

≤ exp
(
C log(hX∩Ω,Ω)h−1

X∩Ω,Ω

)
= exp

(
C log(hX,Ω)h−1

X,Ω

)
.

Next we consider the univariate case and apply Proposition 3.1 after decomposing
the full integration domain R into a number of disjoint unit intervals and a “tail domain”
of the form (−∞,−a) ∪ (a,∞). The full one-dimensional Gaussian integral Iα(P`,X),
which according to (3.8) is an upper bound to the worst-case error, is then evaluated by
summing and appropriately weighting by the Gaussian weight function the L1-norms
of the power function on the intervals. If the points are selected in a suitable way, the
resulting sum can be explicitly bounded. Section 3.3 contains extensions for tensor
product rules. There are two principal reasons for using tensor products instead of
constructing higher dimensional point sets and applying Proposition 3.1 directly on
them: (i) Proposition 3.1 is available only for isotropic Gaussian kernels and (ii) in a
multivariate version of (3.12) the constant cqu in (3.12) can no longer be independent of
m because, unlike in one dimension, the volume of a fixed width annulus depends on its
radius. The structure of a specific point set satisfying the assumptions of Proposition 3.2
and Theorem 3.3 can be seen in Figure 2 which depicts a product grid version.
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Proposition 3.2. Let (n̄m)∞m=1 be a strictly increasing sequence of positive integers and
(Ym)∞m=1 a sequence of sets such that each Ym ⊂ (0, 1) consists of n̄m distinct points and
the quasi-uniformity condition

hYm,(0,1) ≤ cqun̄
−1
m (3.12)

holds for some cqu > 0. Let Y q,+p := {x+ q − 1 : x ∈ Yp}, Y q,−p := {x− q : x ∈ Yp} and

Xk :=

k⋃
m=1

(
Y m,+k−m+1 ∪ Y

m,−
k−m+1

)
,

so that n := #Xk = 2
∑k
m=1 n̄m. If k ≥ cquh̄

−1
0 for h̄0 := min{h0, c

−1
qu }, then

eα,`(Q
opt
α,`,Xk

) ≤ exp

(
− g(k)2

2α2

)
+ C1

k∑
m=k−g(k)+1

exp

(
−
[

(k −m)2

2α2
+ C2n̄m log(n̄m)

])
,

(3.13)

where g(k) := bk + 1− cquh̄
−1
0 c, the positive constants C1 and C2 are defined in (3.16)

and C and h0 ≤ 1 are the positive constants in Proposition 3.1 for d = 1 and R = 1.

Proof. Let C and h0 be the positive constants of Proposition 3.1 for d = 1 and R = 1
and note that, trivially, h0 ≤ 1 since every set has fill-distance of at most one on the
unit interval. Consequently, h̄0 ≤ h0 ≤ 1. Define the open intervals

Ω+
q := (q − 1, q) and Ω−q := (−q,−q + 1),

so that Y q,+p ⊂ Ω+
q and Y q,−p ⊂ Ω−q for all p, q ∈ N, and hk,m := hXk,Ω

+
m

= hXk,Ω
−
m
.

By (3.12) and the definition of Xk we have

hk,m ≤ cqun̄
−1
k−m+1 (3.14)

for all m, k ∈ N such that m ≤ k. That is, hk,m ≤ h0 when n̄k−m+1 ≥ cquh̄
−1
0 . Because

(n̄m)∞m=1 is a strictly increasing integer sequence such that n̄1 ≥ 1, it holds that n̄m ≥ m.
Hence n̄k−m+1 ≥ cquh̄

−1
0 holds at least when m ≤ g(k) = bk + 1− cquh̄

−1
0 c. Under the

assumption k ≥ cquh̄
−1
0 we have g(k) ≥ 1, which means that the sums below are not

empty. Recall then (3.8) and decompose the integration domain in the following way:

eα,`(Q
opt
α,`,Xk

) ≤ 1√
2πα

∫
R
P`,Xk

(x) exp

(
− x2

2α2

)
dx

=

g(k)∑
m=1

1√
2πα

∫
Ω+

m∪Ω−
m

P`,Xk
(x) exp

(
− x2

2α2

)
dx︸ ︷︷ ︸

=:ε(m)

+
1√
2πα

∫
R\[−g(k),g(k)]

P`,Xk
(x) exp

(
− x2

2α2

)
dx︸ ︷︷ ︸

=:ρ(g(k))

.

(3.15)

To estimate ε(m), first use the facts that exp(−x2/(2α2)) ≤ exp(−(m− 1)2/(2α2)) on
Ω+
m and Ω−m and hk,m = hXk,Ω

+
m

= hXk,Ω
−
m

and then apply Proposition 3.1:

ε(m) ≤ 1√
2πα

exp

(
− (m− 1)2

2α2

)(
‖P`,Xk

‖L1(Ω+
m) + ‖P`,Xk

‖L1(Ω−
m)

)
≤
√

2√
πα

exp

(
− (m− 1)2

2α2

)
exp

(
C log(hk,m)h−1

k,m

)
.
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As the function x 7→ log(x)x−1 is increasing on (0, e], it follows from (3.14) that
log(hk,m)h−1

k,m ≤ c−1
qu n̄k−m+1[log(cqu)− log(n̄k−m+1)] if n̄k−m+1 ≥ cqu e−1, which holds

at least if m ≤ bk + 1 − cqu e−1c because n̄m ≥ m. Since h̄0 ≤ 1, this is implied by
m ≤ g(k). Furthermore, log(n̄k−m+1) − log(cqu) ≥ 1

2 log(n̄k−m+1) because n̄m ≥ m,
m ≤ bk + 1− cquh̄

−1
0 c and h̄0 = min{h0, c

−1
qu } ≤ c−1

qu . Hence

ε(m) ≤
√

2√
πα

exp

(
−
[

(m− 1)2

2α2
+ Cc−1

qu n̄k−m+1

[
log(n̄k−m+1)− log(cqu)

]])

≤ C1 exp

(
−
[

(m− 1)2

2α2
+ C2n̄k−m+1 log(n̄k−m+1)

])

when m ≤ g(k), where

C1 :=

√
2√
πα

and C2 :=
C

2cqu

. (3.16)

Therefore,

g(k)∑
m=1

ε(m) ≤ C1

g(k)∑
m=1

exp

(
−
[

(m− 1)2

2α2
+ C2n̄k−m+1 log(n̄k−m+1)

])

= C1

k∑
m=k−g(k)+1

exp

(
−
[

(k −m)2

2α2
+ C2n̄m log(n̄m)

])
.

(3.17)

Since P`,Xk
≤ 1 by (3.7), the remainder term in (3.15) admits the bound

ρ(g(k)) =
1√
2πα

∫
R\[−g(k),g(k)]

P`,Xk
(x) exp

(
− x2

2α2

)
dx

≤ 1√
2πα

∫
R\[−g(k),g(k)]

exp

(
− x2

2α2

)
dx

= erfc

(
g(k)√

2α

)
,

where erfc(x) := 2π−1/2
∫∞
x

exp(−t2) dt is the complementary error function. Using the
standard estimate erfc(x) ≤ exp(−x2) we thus obtain the bound

ρ(g(k)) ≤ exp

(
− g(k)2

2α2

)
. (3.18)

The claim of the theorem follows by inserting the estimates (3.17) and (3.18) into (3.15).

The main result of this section is obtained by selecting the cardinalities of the sets
Ym in Proposition 3.2 so as to make derivation of an explicit upper bound feasible.

Theorem 3.3. Consider the point sets Xk in Proposition 3.2 and set n̄m = m. Let
h̄0 and cqu be the positive constants in Proposition 3.2 and n = #Xk. Then there is a
positive constant C, which depends only on `, α and cqu, such that

eα,`(Q
opt
α,`,Xk

) ≤ C exp

(
−
√
n

2
√

2α2

)
(3.19)

whenever k ≥ 2cquh̄
−1
0 .
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Proof. With n̄m = m we have n = #Xk = 2
∑k
m=1 n̄m = 2

∑k
m=1m = k(k + 1) ≤ 2k2.

Let h̄0 and cqu be the positive constants from Proposition 3.2 and suppose that k is large
enough that k − cquh̄

−1
0 ≥ k/2 (i.e., k ≥ 2cquh̄

−1
0 ). Then

exp

(
− g(k)2

2α2

)
= exp

(
− (bk + 1− cquh̄

−1
0 c)2

2α2

)
≤ exp

(
− (k − cquh̄

−1
0 )2

2α2

)
≤ exp

(
− k2

8α2

)
≤ exp

(
− n

16α2

)
.

Furthermore,

k∑
m=k−g(k)+1

exp

(
−
[

(k −m)2

2α2
+ C2n̄m log(n̄m)

])

≤
k∑

m=1

exp

(
−
[

(k −m)2

2α2
+ C2n̄m log(n̄m)

])

≤
k∑

m=1

exp

(
−
[
k −m2

2α2
+ C2n̄m log(n̄m)

])

≤ exp

(
− k

2α2

) k∑
m=1

exp

(
−
[
C2n̄m log(n̄m)− m

2α2

])

≤ exp

(
− k

2α2

) k∑
m=1

exp

(
−m

[
C2 log(m)− 1

2α2

])
.

Because the exponent in the sum is negative when log(m) ≥ (2C2α
2)−1 and for such m

the terms in the sum decay super-exponentially, we conclude that there is C3 > 0, which
depends only on `, α and cqu, such that

k∑
m=k−g(k)+1

exp

(
−
[

(k −m)2

2α2
+ C2n̄m log(n̄m)

])
≤ C3 exp

(
− k

2α2

)

≤ C3 exp

(
−
√
n

2
√

2α2

)
.

(3.20)

Upon insertion of the estimates above into (3.13) it is seen that (3.20) dominates the
estimate. This yields the claim.

The bound (3.19) is worse than the bound (2.9) for scaled Gauss–Hermite rules
and the bounds obtained in Kuo and Woźniakowski (2012) and Kuo et al. (2017) for
standard Gauss–Hermite rules. We partly attribute this to the sub-optimal selection,
done out of convenience, of the points Xk; given that the Gaussian weight function decays
super-exponentially, one would expect that the points should be more concentrated at
the origin. Moreover, the bound (3.10) on which the results are based is potentially
sub-optimal and the locally quasi-uniform point sets we are using are likely not suitable
for approximating analytic functions (Platte and Driscoll, 2005; Platte, 2011; Platte et al.,
2011). As is evident from Figure 3, the estimates used in the proofs of Proposition 3.2
and Theorem 3.3 appear to be somewhat rough. Nevertheless, this second integration
rule we have proposed enjoys substantial flexibility with respect to the choice of the point
set, in particular it admits sequences of nested point sets for an extensible treatment.
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Figure 2: The point set Xkkk in R2 with kkk = (6, 6) and Ym consisting of the first m points in the van
der Corput sequence. The total number of points is 1764.

3.3 Error estimates for tensor product rules
In this section we consider the multivariate Gaussian kernel (1.2), with length-scale
parameter `̀̀. Let Xk be the point sets constructed in Theorem 3.3. For kkk ∈ Nd define
the product grid

Xkkk := Xk1 × · · · ×Xkd . (3.21)

This set consists of N := #Xkkk =
∏d
i=1 #Xki =

∏d
i=1 ki(ki + 1) points.

Theorem 3.4. Consider the product grid Xkkk defined in (3.21). Let h̄0 and cqu be the
positive constants in Proposition 3.2. and ni := #Xki . Then, for i = 1, . . . , d, there are
positive constants Ci, each of which only depends on `i, αi and cqu, such that

eααα,̀`̀(Q
opt
ααα,̀`̀,Xkkk

) ≤
d∑
i=1

Ci

[∏
j 6=i

(
1 +

2α2
j

`2j

)−1/4
]

exp

(
−
√
ni

2
√

2α2
i

)

whenever ki ≥ 2cquh̄
−1
0 for every i = 1, . . . , d.

Proof. Proceeding as in the proof of Theorem 2.10 yields

eααα,̀`̀(Q
opt
ααα,̀`̀,Xkkk

) ≤
d∑
i=1

eαi,`i(Q
opt
αi,`i,Xki

) ‖Iααα,̀`̀(i)‖`̀̀(1:i)

d∏
j=i+1

‖Qopt
αj ,`j ,Xkj

‖
`j
.

From (3.3) it follows that ‖Qopt
α,`,X‖` ≤ ‖Iα,`‖` for any α, ` > 0 and any point set X ⊂ R.

Estimates in Theorem 3.3 and Lemma 2.8 for the worst-case errors and the norms of the
integral representers, respectively, yield the claim.

In the isotropic case the statement simplifies to the statement in Corollary 3.5:
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Figure 3: True worst-case error and the upper bound (3.22) (with C = 1) in the isotropic setting for
d = 2 and k = 1, . . . , 20. As in Figure 2, Ym consists of the m first in the van der Corput sequence. All
computations were implemented in Python with 400-digit precision.

Corollary 3.5. Consider the product grid Xkkk defined in (3.21). Let α1 = · · · = αd = α,
`1 = · · · = `d = ` and k1 = · · · = kd = k for α, ` > 0 and k ≥ 1. Let h̄0 and cqu be the
positive constants in Proposition 3.2 and n = #Xk = k(k + 1). Then there is a positive
constant C, which only depends on `, α, d and cqu, such that

eααα,̀`̀(Q
opt
ααα,̀`̀,Xkkk

) ≤ C exp

(
−
√
n

2
√

2α2

)
(3.22)

whenever k ≥ 2cquh̄
−1
0 .

Because N = #Xkkk = nd, in terms of the total number of points this bound is

eααα,̀`̀(Q
opt
ααα,̀`̀,Xkkk

) ≤ C exp

(
− N1/(2d)

2
√

2α2

)
,

which, like (2.19), shows that for large d one should expect slower convergence. Figure 3
shows that the above error bounds are very conservative.

Remark 3.6. To the best of our knowledge no lower bounds from which a counterpart
to Proposition 3.1 could be derived have been established. The only lower bound we
can supply follows from Theorem 2.13. In the isotropic setting of Corollary 3.5 with
N + 1 = (n+ 1)d the bound is

eααα,̀`̀(Q
opt
ααα,̀`̀,Xkkk

) ≥ C̄n(γ)d(N + 1)−1

(
ωγ e

4n

)dn
≥ C̄n(γ)dc−(N+1)1/d(N + 1)−((N+1)1/d+1),

where c = (4/(ωγ e))d > 1 and γ, ωγ and C̄n(γ) are defined in Theorem 2.7.

4 Conclusions and discussion
We constructed two classes of integration rules for integration of functions in reproducing
kernel Hilbert spaces of Gaussian kernels defined on Rd. For the first class of methods,
those based on suitable scaling of Gauss–Hermite rules, we derived upper and lower
bounds on the worst-case integration error. In dimension d, the lower bounds are of
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the form exp(−c1N1/d)N1/(4d) and upper bounds of the form exp(−c2N1/d)N−1/(4d),
where N is the total number of points and c1 > c2 are positive constants. In contrast
to integration rules analysed in previous work, the bounds are valid for any variance
parameter of the integration density and length-scale parameter of the kernel. Our second
construction used optimal weights for points that can be taken as a nested sequence. In
this case we proved an upper bound for the worst-case error of the form exp(−c3N1/(2d))
for a constant c3 > 0. Several improvements and extensions are possible:

• As observed in Remark 2.6 and Figure 1, there is room for improvement in the
upper and lower bounds for the worst-case error of a scaled Gauss–Hermite rule.

• Extending the construction and error estimates in Section 2 for general weight
functions would be interesting, but explicit error estimates may be more difficult
to derive; see Remark 2.1.

• The point sets used in Theorem 3.3 and its tensor product extensions are likely
sub-optimal, placing too many points away from the origin, where most of the
probability mass is located, and being locally too uniform. We believe that it may
be possible to derive exponential rates of convergence for this construction if the
points are placed more carefully.

• It is clear that the domain decomposition technique used to prove Proposition 3.2
and Theorem 3.3 can be used also in higher dimensions, circumventing the need
for restrictive product grids. However, decomposition into sub-domains that are
not translations of one another may be necessary, and this requires more careful
handling of the constants C and h0 in Proposition 3.1 or its generalisation for
general domains Rieger and Zwicknagl (2010) and the constant cqu in (3.12).

• The point selection and error analysis in Section 3 are not intrinsically related to
the Gaussian kernel and weight function. Other kernels for which results similar to
Proposition 3.1 have been proved, such as those inducing Sobolev spaces, could be
used instead.

• As has been noted, various tractability results could be proved following Kuo et al.
(2017).
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