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Abstract. We study numerical integration by combining the trapezoidal rule
with a Möbius transformation that maps the unit circle onto the real line. We

prove that the resulting transformed trapezoidal rule attains the optimal rate

of convergence if the integrand function lives in a weighted Sobolev space with a
weight that is only assumed to be a positive Schwartz function decaying mono-

tonically to zero close to infinity. Our algorithm only requires the ability to

evaluate the weight at the selected nodes, and it does not require sampling from
a probability measure defined by the weight nor information on its derivatives.

In particular, we show that the Möbius transformation, as a change of vari-

ables between the real line and the unit circle, sends a function in the weighted
Sobolev space to a periodic Sobolev space with the same smoothness. Since

there are various results available for integrating and approximating periodic

functions, we also describe several extensions of the Möbius-transformed trape-
zoidal rule, including function approximation via trigonometric interpolation,

integration with randomized algorithms, and multivariate integration.

1. Introduction

This paper considers numerical integration for weighted Sobolev spaces on the
real line. The aim is to attain the optimal rate of convergence in terms of the
smoothness of the integrand function for a wide class of weights, namely for the pos-
itive Schwartz functions that decay monotonically to zero close to infinity, dubbed
simply as monotonic Schwartz weights in what follows. Here the “optimality” of
an algorithm is to be understood in the sense of the worst-case asymptotic error
amongst all linear quadratures. We propose a simple algorithm that matches this
optimality criterion by combining a Möbius transformation that maps the unit circle
onto the real line with the trapezoidal rule for periodic functions. The introduced
Möbius-transformed trapezoidal rule can also be straightforwardly generalized into
a randomized integration method and combined with trigonometric interpolation
to introduce an algorithm for function approximation in weighted Sobolev spaces.
These extensions also exhibit optimal convergence rates in terms of the smooth-
ness of the target function. For completeness, it should be mentioned that building
quadrature rules via a variable change and a subsequent application of the trape-
zoidal rule is definitely not a new idea [32, 35, 39, 43], but it seems that there are
no previous works proving optimal convergence of such an approach for integration
in weighted Sobolev spaces on the real line.
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Weighted Sobolev spaces have attracted a significant amount of attention within
the numerical analysis community in the recent years. In particular, weighted
integration of finitely smooth functions over unbounded domains is widely studied
in the area of uncertainty quantification to tackle partial differential equations with
random coefficients; see, e.g, [17, 25, 34]. Although such problems often require
algorithms for high-dimensional integration, the present paper mainly focuses on
one-dimensional numerical integration over the real line, which has the potential
to lay foundations for high-dimensional counterparts, such as sparse grids [4] and
quasi-Monte Carlo methods [8].

Let us briefly review recent literature on numerical integration and function
approximation for finitely smooth functions over unbounded domains. When the
weight is a Gaussian probability density, the corresponding weighted Sobolev spaces
have been considered by numerous authors; see, e.g., [7, 20, 6, 12, 13] and the
references therein. Freud weights, one possible generalization of Gaussian weights,
have also been studied in our general context [10, 9], as have unweighted Sobolev
spaces with a certain decay condition [31]. All aforementioned articles use the same
weight for defining the Sobolev space for the target function and measuring the error
in the considered approximation, which is an assumption that can be dropped: [29]
employs unweighted Sobolev spaces for the target function but presents weighted
L2 and L∞ error estimates, [27] studies the relation between the two weights in a
general framework, and univariate optimal algorithms and their convergence rates
are considered in [24, 21]. Table 1 summarizes the settings of those aforementioned
papers whose foci are close to ours.

Concerning results in related settings, there have been studies on periodization
strategies which transform a non-periodic target function defined on a finite closed
interval into a periodic one. Combined with a subsequent use of the trapezoidal
rule, one can attain a faster convergence rate. We refer to [36, Section 1] for an
overview. However, we emphasize that for such studies on finitely smooth functions,
the smoothness of the target function is often required as an input for the algorithm
to attain the desired rate of convergence, whereas our method does not require this
information and still achieves the optimal rate of convergence automatically. The
multivariate counterpart of periodization strategy has been studied in the context
of quasi-Monte Carlo methods, more precisely, lattice rules (see, e.g., [36, 26]).
For instance, [16] shows that tent-transformed lattice rules can achieve second-
order convergence in an appropriate function space setting, without any dimension
dependence.

In addition to the optimal convergence rates (without any extra logarithmic fac-
tors) for integration and function approximation, the Möbius-transformed trape-
zoidal rule also exhibits other desirable characteristics. First of all, its implementa-
tion does not require information on the smoothness of the target integrand function
or the ability to sample from the probability distribution defined by the employed
weight. Moreover, its capability to handle monotonic Schwartz weights, i.e., weights
whose all derivatives converge to zero at infinity (only) faster than the reciprocal
of any polynomial, allows to consider weights that converge to zero slower than a
Gaussian density, say, only at the rate e−|x| or even slower. In particular, the choice
of the monotonic Schwartz weight does not affect the rate of convergence for any
of the introduced algorithms. It is also worth noting that the Möbius-transformed
trapezoidal rule enables nested implementations, where function evaluations are
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Table 1. Summary of the settings in some papers mentioned in
the literature review of Section 1. For conciseness, we omit settings
where the focus is different from ours; e.g., [12, 10] also contain
results for infinitely smooth functions. Refer to Section 2.3 for the
used notation. The subscript ”mix” here means Sobolev spaces of
the dominating-mixed smoothness type; see the precise definition
in each reference.

App or Int Source space Target error Note

ρ: Gaussian

[7] Integration Wα,2
ρ,mix(Rd) ρ-weighted integral

[20] Integration Wα,2
ρ (R) ρ-weighted integral

[6] Both Wα,q
ρ,mix(Rd) ρ-weighted int., Lpρ 1 ≤ p < q <∞

and p = q = 2

[12] Both Wα,2
ρ,⊗(Rd) ρ-weighted int., L2

ρ Infinite dimension

[13] Integration Wα,2
ρ (R) ρ-weighted integral Randomized setting

ρ: Freud weight
[10] Both Wα,2

ρ (R) ρ-weighted int., L2
ρ

[9] Approximation Wα,q
ρ,mix(Rd) Lpρ 1 ≤ p < q ≤ ∞

and more

Other settings

[31] Integration Wα,2
mix(Rd) Unweighted integral

[29] Approximation Wα,2
mix(Rd) L2

ρ and L∞
ρ̃

[27] Integration W 1,2
ψ,⊗(Rd) ρ-weighted integral ψ ̸= ρ

Ours Both Wα,q
ρ (R) ρ-weighted int., Lpρ 1 ≤ p < q <∞

reused when the number of quadrature points is increased, and combining it with
trigonometric interpolation in function approximation allows the use of Fast Fourier
Transform (FFT) to ease the computational burden.

The rest of this paper is organized as follows. In Section 2, we introduce and
prove necessary concepts and useful lemmas related to monotonic Schwartz weights,
Möbius transformations, and Sobolev spaces. Section 3 presents our main result for
numerical integration, i.e., that the Möbius-transformed trapezoidal rule achieves
the optimal rate of convergence. Section 4 extends this result to a randomized
setting. In Section 5, we consider a problem of function approximation and prove
the optimality of an algorithm that is based on combining the Möbius-transformed
trapezoidal rule with trigonometric interpolation. Section 6 briefly considers a mul-
tidimensional extension of our method. Finally, Section 7 presents the concluding
remarks. Induction proofs for a few technical results that are utilized in our analysis
are collected in Appendix A.

2. Preliminaries

2.1. Monotonic Schwartz weights. Although the main motivation for our con-
siderations are integrals weighted by the standard Gaussian measure, our arguments
work without major modifications for a wider class of rapidly decreasing weights.
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To introduce our setting, consider the one-dimensional Schwartz space

S =
{
ω ∈ C∞(R)

∣∣ ∥ω∥α,β <∞ for all α, β ∈ N0

}
,

where

∥ω∥α,β = sup
x∈R

|xαω(β)(x)|,

and ω(β) denotes the (weak) derivative of order β. If ∥ω∥α,0 is finite for all α ∈ N0,
we say that ω is rapidly decreasing.

Consider the set of positive Schwartz weights on R,

S+ =
{
ω ∈ S | ω : R → R, ω(x) > 0 for all x ∈ R

}
,

and, in particular, its subset

Smon
+ =

{
ω ∈ S+ | ∃K ∈ R+ such that xω′(x) ≤ 0 for all x ∈ R \ [−K,K]

}
consisting of functions that are monotonic on (−∞,−K) and (K,∞) for some
K > 0. The following lemma and corollary form the basis for our treatment of
these monotonic Schwartz weights.

Lemma 2.1. Let ω ∈ Smon
+ and α, β ∈ N0. For any r > 1,∥∥∥∥ |ω(β)|r

ω

∥∥∥∥
α,0

<∞,

i.e., |ω(β)|r
ω is rapidly decreasing.

Proof. Let ω ∈ Smon
+ be arbitrary and K such that ω is monotonic on (−∞,−K)

and (K,∞). Due to symmetry as well as the smoothness and positivity of ω, it is
sufficient to prove that

lim
x→∞

xα
|ω(β)(x)|r

ω(x)
= 0

for any r > 1 and α, β ∈ N0.
As the case β = 0 is trivial, assume that β ∈ N. Consider a forward finite

difference formula of an arbitrary order m ∈ N,

(2.1)

∣∣∣∣ω(β)(x)− 1

hβ

β+m−1∑
j=0

aj,β,m ω(x+ jh)

∣∣∣∣ ≤ Cβ,mh
m∥ω∥0,β+m = C ′

β,m,ωh
m

with x ∈ (K,∞) and h > 0. The existence of such a0,β,m, . . . , aβ+m−1,β,m ∈ R
follows, e.g., by applying the construction in [5, p. 161–162] to an equidistant grid
and just a term of order β in the approximated differential expression, which yields
the sought-for scaling by h−β in the difference scheme. By the monotonicity of ω
and the inverse triangle inequality, the estimate (2.1) leads to

(2.2)
∣∣ω(β)(x)

∣∣ ≤ C ′′
β,m

ω(x)

hβ
+ C ′

β,m,ωh
m =: r(h),

where C ′′
β,m =

∑β+m−1
j=0 |aj,β,m|. As (2.2) holds for any h > 0 and r(h) tends to

infinity when h → 0+ or h → ∞, the optimal version of (2.2) is obtained at the
unique zero of the derivative of r, i.e., at

h =

(
β C ′′

β,mω(x)

mC ′
β,m,ω

)1/(m+β)

.
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This finally gives

(2.3)
∣∣ω(β)(x)

∣∣ ≤ C ′′′
β,m,ωω(x)

m/(m+β),

where the constant C ′′′
β,m,ω > 0 is independent of x ∈ (K,∞).

Fix N ∋ m > β/(r − 1), which guarantees that

mr

m+ β
> 1.

Thus, by virtue of (2.3) and because ω ∈ S,

xα
|ω(β)(x)|r

ω(x)
≤ (C ′′′

β,m,ω)
rxαω(x)mr/(m+β)−1 −→ 0

as x→ ∞ for any α ∈ N0. □

Corollary 2.2. If ω ∈ Smon
+ , then also ωs ∈ Smon

+ for any s > 0.

Proof. Since the function x 7→ xs maps the open positive real axis R+ smoothly onto
itself for any s > 0, the power ωs belongs to C∞(R) for any ω ∈ Smon

+ . Moreover, the
monotonicity of the sth power guarantees that ωs is decreasing/increasing precisely
when ω is. Hence, the assertion follows if we show that

(2.4) ∥ωs∥α,β <∞

for any α, β ∈ N0.
As (2.4) immediately follows from the definition of S for β = 0, we may assume

that β ∈ N. A straightforward induction argument, presented in Appendix A,
shows that for any s > 0, the derivative (ωs)(β) is a finite linear combination of
terms of the form

(2.5) ωs
γ∏
j=1

ω(τj)

ω
=

γ∏
j=1

ω(τj)

ω1−s/γ ,

where the positive integers γ and τj satisfy

γ ≤ β and

γ∑
j=1

τj = β.

By Lemma 2.1,

ω(τj)

ω1−s/γ

is rapidly decreasing, which means that the same also applies to any term of the
product form (2.5). By the triangle inequality, (ωs)(β) is thus rapidly decreasing,
which completes the proof. □

2.2. Möbius transformations. Our main tool for reducing integrals over R into
periodic ones over T = T1 are Möbius transformations that map the unit circle
onto the real axis of the complex plane. Here and in what follows, Td denotes
the d-dimensional torus, that is, [0, 2π]d with opposite faces identified. All Möbius
transformations (see, e.g., [18]) with the aforementioned property can be given in
the form

Φζ,ϑ(z) =
ζz − eiϑζ

z − eiϑ
, z ∈ C.
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Here, ϑ ∈ R corresponds to a rotation prior to mapping the unit circle onto the
real axis and its interior and exterior, respectively, onto the upper and lower halves
of the complex plane (or vice versa). As selecting ϑ essentially only corresponds
to choosing the preimage of infinity on the unit circle, it plays no essential role in
our analysis and can be set to ϑ = 0, meaning that Φ(1) = ∞. The other free
parameter ζ ∈ C, with a nonvanishing imaginary part, determines the image of
the origin under Φ. Without loss of generality, we may assume that Re(ζ) = 0
since a nonzero real part of ζ only corresponds to a horizontal translation on the
image side. Hence, we set ζ = i c and note that the sign of 0 ̸= c ∈ R defines the
half of the complex plane to which Φ maps the unit disk; from the standpoint of
the restriction of Φ onto the unit circle, the choice between ±c corresponds to the
orientation of the parametrization, that is, choosing whether increase in the polar
angle on the unit circle leads to movement to right or left on the real axis.

With these choices, our transformation of the unit circle onto the real line as a
function of the polar angle θ ∈ (0, 2π) reads

ϕc(θ) = Φic,0(e
iθ) = −ic

eiθ + 1

eiθ − 1
= −c

1
2 (e

iθ/2 + e−iθ/2)
1
2i (e

iθ/2 − e−iθ/2)
= −c cot

(θ
2

)
.

Furthermore,

(2.6) ϕ′c(θ) =
c

2 sin2(θ/2)
, ϕ−1

c (x) = 2 arccot
(
−x
c

)
, (ϕ−1

c )′(x) =
2 c

c2 + x2
.

For simplicity and without severe loss of generality, we assume that c > 0 so that
the derivatives in (2.6) are positive everywhere. Unless the scaling by c plays an
essential role, we write ϕ(θ) instead of ϕc(θ).

2.3. Sobolev spaces. This section provides a brief overview of the Sobolev spaces
used in this paper. We denote by Lqρ(R) the space of Lebesgue measurable functions
f : R → C with the norm

∥f∥Lq
ρ(R) :=

(∫
R
|f(x)|qρ(x) dx

)1/q

<∞, 1 ≤ q <∞.

When we do not include the subscript ρ, i.e., write Lq(R), we mean the unweighted
space with ρ ≡ 1. Our target functions live in the weighted Sobolev space

Wα,q
ρ (R) :=

{
f ∈ Lqρ(R)

∣∣∣ ∥f∥Wα,q
ρ (R) :=

( α∑
τ=0

∫
R
|f (τ)(x)|qρ(x) dx

)1/q

<∞
}

for some 1 < q < ∞ and α ∈ N, with f (τ) denoting the τth weak derivative of
f . The fact that Wα,q

ρ (R) is a Banach space (or a Hilbert space for q = 2) for
ρ ∈ Smon

+ is a consequence of [23, Theorem 1.1 & Remark 4.10]. In what follows,
we always consider the continuous representative of any given f ∈Wα,q

ρ (R), which
is possible for α ∈ N due to the Sobolev embedding theorem and the inclusion
Wα,q
ρ (R) ⊂ W 1,q

loc (R). In Section 3, we specifically consider the case q = 2 for
numerical integration, even though the results also hold for any q ∈ (1,∞).

When suitably composed with the Möbius transformation introduced in Sec-
tion 2.2, our target functions are transformed into the periodic Sobolev space

Wα,q(T) :=
{
f ∈ Lq(T)

∣∣∣ ∥f∥qWα,q(T) :=

α∑
τ=0

∫
T
|f (τ)(x)|q dx <∞

}
(2.7)
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for 1 < q < ∞ and α ∈ N. In our analysis, it is useful to employ an equivalent
definition for Wα,q(T) as a subspace of the standard Sobolev space Wα,q(0, 2π) on
(0, 2π) with compatibility conditions between the values of weak derivatives at 0
and 2π:

Wα,q
per (0, 2π) =

{
f ∈ Lq(0, 2π)

∣∣∣ ∥f∥qWα,q(0,2π)
:=

α∑
τ=0

∫ 2π

0

|f (τ)(θ)|q dθ <∞,

f (τ)(0) = f (τ)(2π) for τ = 0, . . . , α− 1

}
.(2.8)

The point evaluations at 0 and 2π in (2.8) are well-defined due to the trace theorem
[1, Theorem 7.53] or the continuous embedding Wα,q(0, 2π) ↪→ Cα−1,λ([0, 2π]) for
Hölder indices 0 < λ ≤ 1−1/q [1, Part II in Theorem 5.4], demonstrating also that
Wα,q

per (0, 2π) is a Banach space (or a Hilbert space for a q = 2) as a closed subspace
of Wα,q(0, 2π). The closure of the smooth compactly supported test functions

C∞
c (0, 2π) in the topology of Wα,q(0, 2π) is denoted by W̊α,q(0, 2π) ⊂Wα,q

per (0, 2π).

Note that in (2.7) the weak derivative f (τ) is defined via partial integration of
periodic functions on T (see, e.g., [33, Section 5.2]), whereas in (2.8), f (τ) denotes
the standard weak derivative on (0, 2π) ⊂ R, with C∞

c (0, 2π) serving as the space
of test functions.

The following proposition shows that Wα,q(T) and Wα,q
per (0, 2π) are, indeed, es-

sentially the same space.

Proposition 2.3. For 1 < q <∞ and α ∈ N, the spaces Wα,q(T) and Wα,q
per (0, 2π)

can be identified via a bijective linear isometry T :Wα,q(T) →Wα,q
per (0, 2π).

Proof. Let φ : R ∋ θ 7→ (cos θ, sin θ) be the standard 2π-periodic parametrization
with respect to a polar angle θ for the embedding of T into R2. As |φ′| ≡ 1, it is
straightforward to conclude that the linear mapping T : g 7→ g◦φ defines a bijective
isometry from Wα,q(T) to

W̃α,q
per (0, 2π) =

{
f ∈ Lq(0, 2π)

∣∣ ∥f∥
W̃α,q(0,2π)

<∞
}
,

where the algebraic definition of the norm ∥f∥
W̃α,q(0,2π)

is the same as that of

∥f∥Wα,q(0,2π), but the involved weak derivatives are required to satisfy the more
restrictive condition

(2.9)

∫ 2π

0

f (τ)(θ)ψ(θ) dθ = (−1)τ
∫ 2π

0

f(θ)ψ(τ)(θ) dθ, τ = 1, . . . , α,

for all 2π-periodic ψ ∈ C∞(R) (cf. [33, (5.5), (5.13) & Exercise 5.3.2]). Hence, the

assertion follows if we prove that W̃α,q
per (0, 2π) = Wα,q

per (0, 2π). This boils down to
showing that the weak derivatives of f ∈Wα,q

per (0, 2π) satisfy (2.9) and that those of

f ∈ W̃α,q
per (0, 2π) are compatible with the conditions on point evaluations at 0 and

2π in (2.8).
Any f ∈Wα,q(0, 2π) satisfies∫ 2π

0

f (τ)(θ)ψ(θ) dθ =

τ∑
k=1

(−1)k+1
(
f (τ−k)(2π)− f (τ−k)(0)

)
ψ(k−1)(0)

+ (−1)τ
∫ 2π

0

f(θ)ψ(τ)(θ) dθ, τ = 1, . . . , α,(2.10)
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for all 2π-periodic ψ ∈ C∞(R), which could be proved by, e.g., approximating f with
smooth functions, integrating by parts and employing the continuous embedding
Wα,q(0, 2π) ↪→ Cα−1,λ([0, 2π]) for 0 < λ ≤ 1− 1/q (cf. [1, Theorem 3.18 & Part II
of Theorem 5.4]). The claim now follows by choosing in turns f ∈Wα,q

per (0, 2π) and

f ∈ W̃α,q
per (0, 2π) in (2.10) and comparing with (2.8) and (2.9). □

In Section 6, we consider a multivariate extension of our results via a componen-
twise Möbius transformation. For this setting, we assume that the target function
lives in a tensor product of one-dimensional weighted Sobolev spaces

(2.11) Wα,q
ρ,⊗(Rd) :=

d⊗
j=1

Wα,q
ρj (R).

After the componentwise Möbius transformation, the target function is shown to
be in a tensor product of periodic Sobolev spaces

Wα,q
⊗ (Td) :=

d⊗
j=1

Wα,q(T).

This space is known to be norm-equivalent to the Sobolev space of dominating
mixed smoothness (see, e.g., [38])

Wα,q
mix(T

d) :=

{
f ∈ Lq(Td)

∣∣∣ ∥f∥Wα,q(Td) :=

( ∑
|τ |∞≤α

∫
Td

|f (τ )(x)|q dx
)1/q

<∞
}
,

where τ = (τ1, . . . , τd) ∈ Nd0 is a multi-index and |τ |∞ = maxj=1,...,d τj .

3. Möbius-Transformed Trapezoidal Rule

For ρ ∈ Smon
+ , denote a weighted integral of a continuous function f : R → C

over the real line as

Iρ(f) :=

∫
R
f(x)ρ(x) dx =

∫ 2π

0

f(ϕ(θ))ρ(ϕ(θ))ϕ′(θ) dθ

and consider the approximation

Qρ,n(f) :=
2π

n

n∑
j=1

f(ϕ(θj))ρ(ϕ(θj))ϕ
′(θj) ≈ Iρ(f),(3.1)

where θj := 2πj/n for j = 1, . . . , n. We interpret Iρ and Qρ,n as linear functionals
on the ρ-weighted L2-based Sobolev space Wα,2

ρ (R).
Our main theorem is as follows:

Theorem 3.1 (Upper bound on integration error). Let α ∈ N, ρ ∈ Smon
+ and

f ∈Wα,2
ρ (R). Then it holds that∣∣Iρ(f)−Qρ,n(f)

∣∣ ≤ Cρ,αn
−α∥f∥Wα,2

ρ (R),

where Cρ,α > 0 is independent of f and n ∈ N.
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The proof relies on showing that g = ((fρ) ◦ ϕ)ϕ′ belongs to the 2π-periodic
L2-based Sobolev space Wα,2

per (0, 2π)
∼=Wα,2(T) if f ∈Wα,2

ρ (R) for α ∈ N. Indeed,
after proving this, a classical result for the trapezoidal rule on periodic Sobolev
spaces guarantees the convergence rate of order n−α; see, e.g., [2, Proposition 7.5.6]
and [47, Theorem 2.4.1].

Lemma 3.2. Let α ∈ N, f ∈ Wα,2
ρ (R), ρ ∈ Smon

+ and g = ((fρ) ◦ ϕ)ϕ′. For
τ = 0, . . . , α,

(3.2)
∥∥g(τ)∥∥

L2(0,2π)
≤ Cρ,τ∥f∥Wα,2

ρ (R),

where the constant Cρ,τ > 0 is independent of f . Moreover, for τ = 0, . . . , α− 1,

(3.3) lim
θ→0+

g(τ)(θ) = lim
θ→2π−

g(τ)(θ) = 0.

In consequence, g ∈Wα,2
per (0, 2π).

Proof. Let us start with two auxiliary results that are proved by straightforward
induction arguments in Appendix A. First, the weak derivative g(τ), τ ∈ N0, on the
open interval (0, 2π) is a finite linear combination of terms of the form

(3.4)
(
(f (τ1)ρ(τ2)) ◦ ϕ

) τ1+τ2+1∏
j=1

ϕ(τ3,j)

where the nonnegative integers τ1, τ2, and τ3,j satisfy

τ1 + τ2 ≤ τ and

τ1+τ2+1∑
j=1

τ3,j = τ + 1.

Secondly,

(3.5) ϕ(τ)(θ) =
ψτ (θ)

sinτ+1(θ/2)
, τ ∈ N0,

where ψτ ∈ C∞(R) is a bounded finite linear combination of products of trigono-
metric functions. In particular, g(τ) is continuous on (0, 2π) for τ = 0, . . . , α− 1.

Let us first consider (3.2). Combining (3.4) and (3.5), it follows from the triangle
inequality that it is, in fact, sufficient to prove (3.2) with

g̃τ (θ) =
(f (τ1)ρ(τ2)) ◦ ϕ(θ)

sinη+2(θ/2)
, τ1 + τ2 ≤ τ ≤ α, η = τ + τ1 + τ2 ≤ 2τ,

replacing g(τ). A direct calculation gives,∥∥g̃τ (θ)∥∥2L2(0,2π)
=

∫ 2π

0

∣∣∣∣f (τ1)(ϕ(θ)) ρ(τ2)(ϕ(θ)) 1

sinη+2(θ/2)

∣∣∣∣2 dθ

=

∫
R

∣∣∣∣f (τ1)(x) ρ(τ2)(x) 1

sinη+2(ϕ−1(x)/2)

∣∣∣∣2 ∣∣(ϕ−1)′(x)
∣∣dx

≤
∫
R

∣∣f (τ1)(x)∣∣2ρ(x) dx sup
x∈R

∣∣∣∣∣ (ϕ−1)′(x)

sin2(η+2)(ϕ−1(x)/2)

(ρ(τ2)(x))2

ρ(x)

∣∣∣∣∣
≤ Cτ,τ2∥f∥2Wα,2

ρ (R),
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where the last step follows from Lemma 2.1 after expanding

(ϕ−1)′(x)

sin2(η+2)(ϕ−1(x)/2)
=

2c

c2 + x2
1

sin2(η+2)(arccot(−x/c))

=
2

c2η+3

(
c2 + x2

)η+1
(3.6)

by virtue of (2.6) and basic trigonometry. Hence, g ∈Wα,2(0, 2π).
To establish (3.3), we demonstrate that any term of the form (3.4) approaches

0 as θ → 0± for τ = 0, . . . , α − 1; here and in what follows, θ → 0− is to be
understood as the limit θ → 2π− on the open interval (0, 2π). To this end, consider
the following bound for any ε ∈ (0, 1/2):∣∣∣∣∣((f (τ1)ρ(τ2)) ◦ ϕ(θ))

τ1+τ2+1∏
j=1

ϕ(τ3,j)(θ)

∣∣∣∣∣(3.7)

≤
∣∣∣(f (τ1)ρ1/2+ε) ◦ ϕ(θ)∣∣∣ ∣∣∣∣∣ ρ(τ2)ρ1/2+ε

◦ ϕ(θ)
τ1+τ2+1∏
j=1

ϕ(τ3,j)(θ)

∣∣∣∣∣.
Our plan is to show that the first term on the right-hand side of (3.7) is bounded
and the second one tends to zero as θ → 0±.

Define

hτ1 := f (τ1)ρ1/2+ε, τ1 = 0, . . . , α− 1,

which are continuous functions on R. Our aim is to prove that hτ1 ∈ W 1,2(R), so
that one can conclude

∥hτ1∥L∞(R) ≤ C∥hτ1∥W 1,2(R) <∞

by virtue of the Sobolev inequality [1, Theorem 5.4]. First,∫
R
|hτ1(x)|2 dx =

∫
R

∣∣f (τ1)(x)∣∣2ρ(x)1+2ε dx(3.8)

≤
∥∥f (τ1)∥∥2

L2
ρ(R)

sup
x∈R

ρ(x)2ε <∞

due to ∥f (τ1)∥L2
ρ(R) ≤ ∥f∥W 2,α

ρ (R) <∞. To estimate ∥h′τ1∥L2(R), we first employ the

triangle inequality:

∥h′τ1∥L2(R) =
∥∥f (τ1+1)ρ1/2+ε + (1/2 + ε)f (τ1)ρε−1/2ρ′

∥∥
L2(R)(3.9)

≤
∥∥f (τ1+1)ρ1/2+ε

∥∥
L2(R) + (1/2 + ε)

∥∥f (τ1)ρε−1/2ρ′
∥∥
L2(R).

Through the same line of reasoning as in (3.8), we obtain∥∥f (τ1+1)ρ1/2+ε
∥∥2
L2(R) ≤

∥∥f (τ1+1)
∥∥2
L2

ρ(R)
sup
x∈R

ρ(x)2ε <∞.

Moreover, the second term on the right-hand side of (3.9) satisfies∥∥f (τ1)ρε−1/2ρ′
∥∥2
L2(R) =

∫
R

∣∣f (τ1)(x)∣∣2ρ(x) ρ′(x)2

ρ(x)2−2ε
dx

≤ sup
x∈R

(
ρ′(x)2

ρ(x)2−2ε

) ∥∥f (τ1)∥∥2
L2

ρ(R)
<∞,
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where the last inequality follows from Lemma 2.1. Hence,

sup
θ∈(0,2π)

∣∣∣(f (τ1)ρ1/2+ε) ◦ ϕ(θ)∣∣∣ = ∥hτ1∥L∞(R) <∞,

which demonstrates the boundedness of the first term on the right-hand side of (3.7).
To conclude the proof of (3.3), consider the second term on the right-hand side

of (3.7). By Lemma 2.1, we know that

lim
x→±∞

xγ
ρ(τ2)(x)

ρ(x)1/2+ε
= 0

for any γ ∈ N0. Combining this observation with (3.5) yields

lim
θ→0±

∣∣∣∣∣ ρ(τ2)ρ1/2+ε
◦ ϕ(θ)

τ1+τ2+1∏
j=1

ϕ(τ3,j)(θ)

∣∣∣∣∣ = 0,

which establishes (3.3); see also (3.6).
The final conclusion that g ∈Wα,2

per (0, 2π) follows from the definition (2.8). □

We demonstrate our method numerically for the integrand function f(x) = |x|p,
with p ∈ {1, 3, 5}, which is p times weakly differentiable and in W p,2

ρ (R), but not

in W p+1,2
ρ (R) for ρ ∈ Smon

+ . We use the value c = 1 for the free parameter in the
Möbius transformation but note that its choice does not seem to have an effect
on the observed asymptotic convergence rates. Two rapidly decreasing weights

are considered: the standard Gaussian ρ(x) = e−x
2/2/

√
2π and logistic ρ(x) =

e−x/(1 + e−x)2 densities. The tests are performed on Matlab 2022b with double
precision arithmetic.

Figure 1 compares the error convergence for the Möbius-transformed trapezoidal
rule for the Gaussian weight with two other methods, i.e., the Gauss–Hermite quad-
rature and the trapezoidal rule with a cut-off from [20]. Regarding the logistic distri-
bution, Figure 2 shows a comparison between the Möbius-transformed trapezoidal
rule and the Gauss–Logistic quadrature for which we use the Matlab software by
Walter Gautschi [11]. Interestingly, Gaussian quadrature shows much slower rate of
convergence in the latter case. This slow convergence of the Gauss–Logistic quad-
rature is not due to the mere double precision in our computations: if the higher
precision supported by the implementation of the Gauss–Logistic quadrature is
used, the decay rate of the error remains the same.

Remark 3.3 (Implementation). From a standpoint of an implementation on a
computer, it should be pointed out that certain function evaluations in (3.1) at the
Möbius-transformed equidistant points on the unit circle may cause numerical errors
due to the unbounded values of ϕ and ϕ′ at 0 and 2π. This problem can be easily
circumvented in two alternative ways: (i) by (3.3) we know that g(0) = g(2π) = 0,
which means that one can set the integrand function to zero at 0 and 2π without
actually evaluating ϕ or ϕ′ at those points; or (ii) one can add a shift ∆ ∈ (0, 2π/n)
to all equidistant quadrature points on the unit circle, which leads to evaluating the
integrand in (3.1) at θ′j = 2πj/n+∆ for j = 1, . . . , n.

Moreover, since our Möbius-transformed quadrature is based on the trapezoidal
rule on the unit circle, it is straightforward to implement a nested/embedded ver-
sion of the algorithm such that one can reuse previous function evaluations when
increasing the number of quadrature points n in (3.1).
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Figure 1. Absolute integration error for the Gaussian weight and
f(x) = |x|p, which corresponds to Iρ(f) = (2p/π)1/2Γ((p + 1)/2)
where Γ is the Gamma function. The blue line shows the error for
the Gauss–Hermite quadrature and the red line for the trapezoidal
rule with a cut-off from [20]. The Möbius-transformed trapezoidal
rule (green) achieves the fastest convergence of the error.

To support our claim that the Möbius-transformed trapezoidal rule achieves the
optimal rate of worst-case error amongst any linear quadrature for the considered
integration problem with a monotonic Schwartz weight ρ ∈ Smon

+ , we still need to
deduce a matching general lower bound for this class of algorithms. We follow the
argument in [6, Theorem 2.3], where the authors consider the standard Gaussian
weight.
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Figure 2. Absolute integration error for the logistic weight and
f(x) = |x|p, which corresponds to Iρ(f) = −2 p! Lip(−1) where
Li denotes the polylogarithm [19, Corollary 4.2]. The blue line
shows the error for the Gauss–Logistic quadrature from [11]. The
Möbius-transformed trapezoidal rule (green) exhibits much faster
convergence.

Proposition 3.4 (General lower bound). Let ρ ∈ Smon
+ , 1 < q < ∞, and α ∈ N.

Then, for any linear quadrature of the form

Aρ,n(f) :=

n∑
j=1

wjf(xj), wj ∈ R, xj ∈ R,

we have ∥∥Iρ −Aρ,n
∥∥

L (Wα,q
ρ (R),C) = sup

0̸=f∈Wα,q
ρ (R)

|Iρ(f)−Aρ,n(f)|
∥f∥Wα,q

ρ (R)
≥ C

1

nα
,
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where the constant C is independent of n.

Proof. The space W̊α,q(0, 1) can be interpreted as a subspace of Wα,q(R) via
zero continuation of its elements onto R \ (0, 1) [1, Lemma 3.22], and thus also

W̊α,q(0, 1) ⊂Wα,p
ρ (R). Since

max
x∈[0,1]

ρ(x)1/q
(∫ 1

0

∣∣g(x)∣∣q dx)1/q ≥ (∫
R

∣∣g(x)∣∣qρ(x) dx)1/q
for all g ∈ Lq(0, 1), including the first α partial derivatives of f ∈ W̊α,q

ρ (0, 1), we
have

sup
0̸=f∈Wα,q

ρ (R)

|Iρ(f)−Aρ,n(f)|
∥f∥Wα,q

ρ (R)

≥ 1

maxx∈[0,1] ρ(x)1/q
sup

0 ̸=f∈W̊α,q(0,1)

|Iρ(f)−Aρ,n(f)|
∥f∥Wα,q(0,1)

=
1

maxx∈[0,1] ρ(x)1/q
sup

0 ̸=f∈W̊α,q(0,1)

|I(f)−Aρ,n(f/ρ)|
∥f/ρ∥Wα,q(0,1)

,(3.10)

where I(f) denotes the unweighted integral of f over R and the last step is a conse-

quence of the mapping R : f 7→ f/ρ being a linear homeomorphism on W̊α,q(0, 1)
due to the positivity and smoothness of ρ on [0, 1]. In particular,

sup
0̸=f∈W̊α,q(0,1)

|I(f)−Aρ,n(f/ρ)|
∥f/ρ∥Wα,q(0,1)

≥ 1

∥R∥L (W̊α,q(0,1))

sup
0̸=f∈W̊α,q(0,1)

|I(f)−Aρ,n(f/ρ)|
∥f∥Wα,q(0,1)

≥ Cρ,α
1

nα
,

where the last inequality corresponds to a lower bound for the accuracy of linear
quadrature rules for unweighted integrals of functions in W̊α,q(0, 1) over (0, 1) [46].
Combined with (3.10), this proves the claim. □

4. Randomized trapezoidal rule

The considered integration problem for the important special case of a Gaussian
weight is tackled by randomized algorithms in [13]. In particular, the best attainable
worst-case root-mean-squared error (RMSE), amongst any possibly nonlinear or
adaptive algorithm, is proved to be of order n−α−1/2 [13, Theorem 2.1]. Using our
Möbius-transformed trapezoidal rule, with a suitable randomization, one can attain
this optimal rate, without a logarithmic multiplicative factor as in [13, Theorem 3.3]
for a truncated randomized trapezoidal rule.

In the following, we call A a randomized algorithm, which is a pair of a probability
space (Ω,Σ, µ) and a family of mappings (Aω)ω∈Ω, when (i) each fixed ω ∈ Ω
defines a deterministic algorithm Aω and (ii) the number of nodes used for each
fixed integrand f is measurable with respect to ω. We define the worst-case RMSE
for a randomized algorithm A on Wα,2

ρ (R) as

ermse
(
A,Wα,2

ρ (R)
)
:= sup

0̸=f∈Wα,2
ρ (R)

( ∫
Ω

∣∣Iρ(f)−Aω(f)
∣∣2 dµ(ω))1/2

∥f∥Wα,2
ρ (R)

.
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Definition 4.1 (Randomized Möbius-transformed trapezoidal rule). Let M be an
integer-valued random variable that is distributed uniformly over {⌊n2 ⌋, . . . , n}, and
let δ be a uniformly distributed random variable on [0, 1]. Assume that M and δ are
mutually independent. For a continuous function f : R → C, we define a weighted

randomized Möbius-transformed trapezoidal rule An,RMT = (AM,δ
n,RMT)M,δ by

(4.1) AM,δ
n,RMT(f) :=

2π

M

M−1∑
j=0

f(ϕ(θj)) ρ(ϕ(θj))ϕ
′(θj),

where the integration nodes are defined as θj := 2π(j + δ)/M .

The convergence rate n−α−1/2 of the RMSE for the randomized quadrature rule
(4.1) is a direct consequence of Lemma 3.2 combined with the classical result by
Bakhvalov, [3] or [22, Theorem 11] where multidimensional settings are considered.
Since our setting is one-dimensional, we refer to [13, p. 1670] for a better bound
on the RMSE for 2T -periodic functions. For completeness, we formally state this
result as follows:

Theorem 4.2 (Upper bound on randomized integration). For ρ ∈ Smon
+ and α ∈ N,

the randomized Möbius-transformed trapezoidal rule (4.1) satisfies

ermse
(
An,RMT,W

α,2
ρ (R)

)
≤ Cn−α−1/2,

where C > 0 is independent of n.

5. Lpρ approximation

In this section, we consider approximating functions in the Lpρ(R)-norm. More
precisely, we aim to construct an algorithm An :Wα,q

ρ (R) → Lpρ(R) using n function
evaluations, so that the the worst-case error

∥I −An∥L (Wα,q
ρ (R),Lp

ρ(R)) = sup
0̸=f∈Wα,q

ρ (R)

∥f −Anf∥Lp
ρ(R)

∥f∥Wα,q
ρ (R)

is as small as possible for 1 ≤ p < q <∞.
To begin with, let us expand the Lpρ(R)-error as follows:

∥f −Anf∥pLp
ρ(R) =

∫
R
|f(x)− (Anf)(x)|p ρ(x) dx

=

∫ 2π

0

∣∣f(ϕ(θ))(ρ(ϕ(θ))ϕ′(θ))1/p − (Bnf)(θ)
∣∣pdθ,

where the transformed approximation operator Bn on the unit circle is defined by

(Bnf)(θ) = (Anf)(ϕ(θ))
(
ρ(ϕ(θ))ϕ′(θ)

)1/p
.

Hence, deviating slightly from the integration problem of Section 3, our aim is
to construct an approximation for gp := ((fρ1/p) ◦ ϕ)(ϕ′)1/p on the torus T. We
propose the following algorithm, which is nothing but trigonometric interpolation
of gp using equidistant points on the unit circle:

Definition 5.1 (Trigonometric interpolation with Möbius transformation). Let
n ∈ N and gp := ((fρ1/p)◦ϕ)(ϕ′)1/p. We define the algorithm Bn via trigonometric



16 YUYA SUZUKI, NUUTTI HYVÖNEN, AND TONI KARVONEN

interpolation of gp:

(Bnf)(θ) :=

⌊(n−1)/2⌋∑
k=⌊−(n−1)/2⌋

ĝp(k)e
ikθ, ĝp(k) :=

1

2πn

n−1∑
j=0

gp(θj)e
−ikθj ,(5.1)

where θj = 2πj/n. The resulting algorithm over the real line is then given by

(Anf)(x) = (Bnf)(ϕ
−1(x))

(
ρ(x)ϕ′(ϕ−1(x)

)−1/p
,

where

ϕ′(ϕ−1(x)) =
1

(ϕ−1)′(x)
=

1

2c

(
x2 + c2

)
by (2.6).

We claim that this algorithm achieves the optimal rate of convergence; this result
is presented in two parts as Theorem 5.2 and Proposition 5.4.

Theorem 5.2 (Upper bound on Lpρ approximation). For ρ ∈ Smon
+ and 1 ≤ p <

q <∞, it holds that

∥I −An∥L (Wα,q
ρ (R),Lp

ρ(R)) ≤ Cρ,α,p,qn
−α, α ∈ N,

where Cρ,α,p,q > 0 is independent of n ∈ N.

To deduce the convergence rate of Theorem 5.2, we generalize Lemma 3.2 to show
that the transformed target function gp belongs to the periodic Lq-based Sobolev
space Wα,q

per (0, 2π)
∼= Wα,q(T) for q > p. The proof of Theorem 5.2 then follows

from a trigonometric interpolation result by Temlyakov [47, Theorem 2.7].

Lemma 5.3. Let α ∈ N, 1 ≤ p < q < ∞, f ∈ Wα,q
ρ (R), ρ ∈ Smon

+ and gp =

((f ρ1/p) ◦ ϕ)(ϕ′)1/p. For τ = 0, . . . , α,

(5.2)
∥∥g(τ)p

∥∥
Lq(0,2π)

≤ Cρ,τ,p,q∥f∥Wα,q
ρ (R),

where the constant Cρ,τ,q,p > 0 is independent of f . Moreover, for τ = 0, . . . , α−1,

(5.3) lim
θ→0+

g(τ)p (θ) = lim
θ→2π−

g(τ)p (θ) = 0.

In consequence, gp ∈Wα,q
per (0, 2π).

Proof. The proof follows the general structure of that for Lemma 3.2. To begin
with, note that ρ1/p ∈ Smon

+ due to Corollary 2.2.
A straightforward induction argument, presented in Appendix A, demonstrates

that the weak derivative g
(τ)
p , τ ∈ N, on the open interval (0, 2π) is a finite linear

combination of terms of the form

(5.4)
(
(f (τ1)(ρ1/p)(τ2)) ◦ ϕ

)
(ϕ′)1/p−τ3

τ1+τ2+τ3∏
j=1

ϕ(τ4,j),

where the nonnegative integers τ1, τ2, τ3 and τ4,j satisfy

τ1 + τ2 + τ3 ≤ τ and

τ1+τ2+τ3∑
j=1

τ4,j = τ + τ3.

Recall that the structure of ϕ(τ) is as indicated in (3.5); see also (2.6).
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Let us first tackle (5.2). Because of (5.4), (3.5), (2.6) and the triangle inequality,
it is sufficient to prove (5.2) with

g̃τ,p(θ) :=

(
f (τ1)(ρ1/p)(τ2)

)
◦ ϕ(θ)

sinη+2/p(θ/2)
, τ1 + τ2 ≤ τ ≤ α, η = τ + τ1 + τ2 ≤ 2τ,

replacing g
(τ)
p . We have∥∥g̃τ,p∥∥qLq(0,2π)

=

∫ 2π

0

∣∣∣∣f (τ1)(ϕ(θ)) (ρ1/p)(τ2)(ϕ(θ)) 1

sinη+2/p(θ/2)

∣∣∣∣q dθ
=

∫
R

∣∣∣∣f (τ1)(x) (ρ1/p)(τ2)(x) 1

sinη+2/p(ϕ−1(x)/2)

∣∣∣∣q∣∣(ϕ−1)′(x)
∣∣dx

≤
∫
R

∣∣f (τ1)(x)∣∣qρ(x) dx
× sup

x∈R

∣∣(ρ1/p)(τ2))(x)∣∣q
(ρ1/p)(x)p

|(ϕ−1)′(x)|∣∣ sinqη+2q/p(ϕ−1(x)/2)
∣∣

≤ Cp,q,τ2∥f∥
q
Wα,q

ρ (R).

The last inequality follows from Lemma 2.1 with ω = ρ1/p and r = q/p > 1
(cf. Corollary 2.2) since

(ϕ−1)′(x)

sinqη+2q/p(ϕ−1(x)/2))
=

2c

c2 + x2
1

sinqη+2q/p(arccot(−x/c))
(5.5)

=
2

cqη+2q/p−1

(
c2 + x2

)qη/2+q/p−1

by elementary trigonometry and (2.6).
To prove (5.2), we start by bounding a term of the form (5.4) for any ε ∈

(0, (q − p)/pq) as follows:∣∣∣∣∣((f (τ1)(ρ1/p)(τ2)) ◦ ϕ(θ))ϕ′(θ)1/p−τ3
τ1+τ2+τ3∏

j=1

ϕ(τ4,j)(θ)

∣∣∣∣∣(5.6)

≤
∣∣∣(f (τ1)ρ1/q+ε) ◦ ϕ(θ)∣∣∣ ∣∣∣∣∣

(
(ρ1/p)(τ2)

ρ1/q+ε
◦ ϕ(θ)

)
ϕ′(θ)1/p−τ3

τ1+τ2+τ3∏
j=1

ϕ(τ4,j)(θ)

∣∣∣∣∣.
Since 1/q + ε < 1/p, it is a consequence of Lemma 2.1, Corollary 2.2, (2.6) and
(3.5) that

(5.7) lim
θ→±0

∣∣∣∣∣
(
(ρ1/p)(τ2)

ρ1/q+ε
◦ ϕ(θ)

)
ϕ′(θ)1/p−τ3

τ1+τ2+τ3∏
j=1

ϕ(τ4,j)(θ)

∣∣∣∣∣ = 0;

see also (5.5).
Consider then the first term on the right-hand side of (5.6), or more precisely,

the continuous function hq,τ1 := f (τ1)ρ1/q+ε, τ1 = 0, . . . , τ ≤ α − 1, with the weak
derivative

(5.8) h′q,τ1 = f (τ1+1)ρ1/q+ε + (1/q + ε)f (τ1)ρ1/q+ε−1ρ′.
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By showing that both hq,τ1 and h′q,τ1 belong to Lq(R), the (essential) boundedness

of hq,τ1 follows from the Sobolev embedding W 1,q(R) ↪→ L∞(R). We have

∥hq,τ1∥
q
Lq(R) =

∫
R

∣∣f (τ1)(x)∣∣qρ1+qε(x) dx ≤
∥∥f (τ1)∥∥q

Lq
ρ(R)

sup
x∈R

ρqε(x) <∞.

Moreover, the two terms composing h′p,τ1 in (5.8) satisfy∥∥f (τ1+1)ρ1/q+ε
∥∥q
Lq(R) ≤

∥∥f (τ1+1)
∥∥q
Lq

ρ(R)
sup
x∈R

ρqε(x) <∞,

and ∥∥f (τ1)ρ1/q+ε−1ρ′
∥∥q
Lq(R) =

∫
R

∣∣f (τ1)(x)∣∣qρ(x) |ρ′(x)|q

ρ(x)q−qε
dx

≤
∥∥f (τ1)∥∥q

Lq
ρ(R)

sup
x∈R

|ρ′(x)|q

ρ(x)q−qε
<∞,

where the last inequality is a consequence of Lemma 2.1. Combining these estimates
with (5.7) proves (5.3).

The final conclusion that gp ∈Wα,q
per (0, 2π) follows from the definition (2.8). □

In order to prove the claimed optimality of the Möbius-transformed trigonometric
interpolation, we also give a lower bound for all linear approximation algorithms.

Proposition 5.4 (General lower bound). Let ρ ∈ Smon
+ , 1 ≤ p < q < ∞, and

α ∈ N. Then, for any linear operator An :Wα,q
ρ (R) → Lpρ(R) with rank(An) ≤ n,

∥I −An∥L (Wα,q
ρ (R),Lp

ρ(R)) ≥ C
1

nα
,

where the constant C is independent of n and An.

Proof. We follow the line of reasoning in [6, Proof of Theorem 3.3]. To this end, let
f ∈ Wα,q

per (0, 1) and denote its 1-periodic extension onto the real line by the same
symbol. An argument similar to that in the proof of Proposition 2.3 demonstrates
that the extension f belongs to Wα,q

loc (R). For any N ∈ N,

∥f∥q
Wα,q

ρ (R) =

α∑
τ=0

∫
R

∣∣f (τ)(x)|qρ(x) dx
=

α∑
τ=0

∑
k∈Z

∫ 1

0

∣∣f (τ)(x+ k)|qρ(x+ k) dx

≤
α∑
τ=0

∫ 1

0

∣∣f (τ)(x)|q dx∑
k∈Z

sup
x∈[0,1]

ρ(x+ k)

≤ Cρ,N∥f∥qWα,q(0,1)

∑
k∈Z

sup
x∈[0,1]

1

(1 + (x+ k)2)N

≤ Cρ∥f∥qWα,q(0,1)

since ρ is rapidly decreasing. In particular, f ∈Wα,q
ρ (R).

Since the above construction applies to any f ∈ Wα,q
per (0, 1) with the same con-

stant Cρ, we have

∥I −An∥L (Wα,q
ρ (R),Lp

ρ(R)) = sup
0̸=f∈Wα,q

ρ (R)

∥(I −An)f∥Lp
ρ(R)

∥f∥Wα,q
ρ (R)
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≥
minx∈[0,1] ρ(x)

1/p

C
1/q
ρ

sup
0 ̸=f∈Wα

per(0,1)

∥(I −An)f∥Lp(0,1)

∥f∥Wα,q(0,1)
.

The claim then follows from a lower bound for the approximation of periodic func-
tions [47, Theorem 2.1.1], presented originally in [28]. □

Remark 5.5 (Fast Fourier Transform). If one resorts to the Fast Fourier Trans-
form (FFT) in (5.1), the computational cost and memory usage by the algorithm of
Definition 5.1 are only O(n log n) and O(n), respectively. The article [41] considers
another interpolation algorithm based on FFT, with the same computational cost.
However, our algorithm achieves a better error decay than the one in [41].

6. Multivariate extension by componentwise transforms

This section extends the one-dimensional integration result in Section 3 to a
multidimensional setting. We consider a componentwise Möbius transformation
ϕc : (0, 2π)d → Rd,

ϕc(θ) :=
(
c1 cot(θ1/2), c2 cot(θ2/2), . . . , cd cot(θd/2)

)
,

and aim to approximate the multi-dimensional weighted integral

Iρ(f) :=

∫
Rd

f(x)ρ(x) dx =

∫
(0,2π)d

f(ϕc(θ))ρ(ϕc(θ))

d∏
k=1

ckϕ
′(θk) dθ.(6.1)

Assuming that the target integrand function f lives in a tensor product of one-
dimensional weighted Sobolev spaces Wα,2

ρ,⊗(Rd) defined by (2.11), the transformed

integrand in (6.1) is in the periodic Sobolev space of the same smoothnessWα,2
⊗ (Td).

This is a direct consequence of Lemma 3.2.

Proposition 6.1. Let α ∈ N, ρ(x) =
∏d
k=1 ρk(xk) with ρk ∈ Smon

+ , f ∈Wα,2
ρ,⊗(Rd),

and

g(θ) := f(ϕc(θ))ρ(ϕc(θ))

d∏
k=1

ckϕ
′(θk).

Then g ∈Wα,2
⊗ (Td).

As the modified integrand function in (6.1) is in the periodic Sobolev space

Wα,2
⊗ (Td) that is norm-equivalent to the Sobolev space of dominating mixed smooth-

ness Wα,2
mix(Td), one can employ in (6.1) good rank-1 lattice points [30, Equa-

tion (5.27)], [37, Section 4.5] to obtain the error convergence rate n−α(log n)αd or
alternatively resort to higher-order digital nets [15] to achieve the exactly optimal
rate of n−α(log n)(d−1)/2.

7. Concluding remarks

In this paper, we introduced the Möbius-transformed trapezoidal rule for numer-
ical integration over the real line. We proved that this rule attains the optimal rate
of convergence for the worst-case error for a wide class of weighted Sobolev spaces.
Let us review some notable features of our method. The assumption ρ ∈ Smon

+ is

general enough to include weights that decay at the speed e−|x| or even slower as
x approaches infinity. Indeed, we can see the expected convergence for an integral
weighted by the logistic probability density in Figure 2. Moreover, the implemen-
tation of our method is straightforward: no information on the smoothness of the
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inputted integrand function is required, the only needed information on the weight
are its values at Möbius-transformed equidistant points on the unit circle, and the
computational cost of the method is low.

As noted already in Section 1, quadrature rules based on a variable trans-
formation and a subsequent application of the trapezoidal rule have a long his-
tory [32, 35, 39, 43]. However, in contrast to the Möbius-transformed trapezoidal
rule, most existing rules have been designed to integrate analytic functions. We
highlight the relatively popular single and double exponential formulas [42, 40, 45]
that use the change of variables and what is called a single or double exponential
transformation ψ : R → I to approximate an integral over an interval I as∫

I

f(x) dx =

∫
R
f(ψ(t))ψ′(t) dt ≈ h

n∑
j=−n

f(ψ(jh))ψ′(jh),

where h > 0. These formulas are known to exhibit fast rates of convergence for
functions analytic in certain regions of the complex plane [44]. Even the optimality
of the double exponential formula is shown in [40] for analytic functions. We also
refer to [14] for recent further results for analytic functions.

When I = (−1, 1), the single and double exponential transformations are

ψSE(x) = tanh

(
x

2

)
and ψDE(x) = tanh

(
π

2
sinh(x)

)
.

To obtain other quadrature rules such as (3.1) to integrate functions in weighted
Sobolev spaces over R, one could replace the Möbius transformation with the inverse
of a single or double exponential transformation. We have observed numerically
that the inverse single exponential transformation works well. However, it is not
known yet if these formulas can achieve the optimal rate of convergence for weighted
Sobolev spaces, and answering this question is left for future studies.
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Appendix A. Induction proofs

The purpose of this appendix is to provide induction proofs for four technical
results used in the above analysis, namely the representations (2.5), (3.4), (3.5) and
(5.4).

Let us first prove (2.5), i.e., that for any β ∈ N, the derivative (ωs)(β) is a finite
linear combination of terms of the form

(A.1) ωs
γ∏
j=1

ω(τj)

ω
, with γ ≤ β and

γ∑
j=1

τj = β.

First of all, for β = 1,

(ωs)′ = sωs
ω′

ω
,

which is of the required form with γ = 1 and τ1 = 1. Assume then that the claim
holds for an arbitrary but fixed β ∈ N. The proof is completed by showing that the



MÖBIUS-TRANSFORMED TRAPEZOIDAL RULE 21

derivative of a term of the form (A.1) is a linear combination of terms that satisfy
the same conditions with β replaced by β + 1:(
ωs

γ∏
j=1

ω(τj)

ω

)′

= sωs
(
ω′

ω

γ∏
j=1

ω(τj)

ω

)
+

γ∑
k=1

ωs
γ∏
j=1

ω(τj+δjk)

ω
− γωs

(
ω′

ω

γ∏
j=1

ω(τj)

ω

)

= (s− γ)ωs
(
ω′

ω

γ∏
j=1

ω(τj)

ω

)
+

γ∑
k=1

ωs
γ∏
j=1

ω(τj+δjk)

ω
,

where δjk is the Kronecker delta. As all summands on the right-hand side are of
the required form, with the first one having γ +1 ≤ β +1 terms in its product and
the others γ terms, the assertion follows.

We then prove (3.4), i.e., that for g = ((fρ) ◦ ϕ)ϕ′ the derivative g(τ), τ ∈ N0, is
a finite linear combination of terms of the form

(A.2)
(
(f (τ1)ρ(τ2))◦ϕ

) τ1+τ2+1∏
j=1

ϕ(τ3,j), with τ1+τ2 ≤ τ and

τ1+τ2+1∑
j=1

τ3,j = τ+1.

The case τ = 0 obviously holds with τ1, τ2 = 0 and τ3,1 = 1. Assume then that the
claim is true for an arbitrary but fixed τ ∈ N0. The proof is completed by showing
that the derivative of a term of the form (A.2) is a linear combination of terms that
satisfy the same conditions with τ replaced by τ + 1:((

(f (τ1)ρ(τ2)) ◦ ϕ
) τ1+τ2+1∏

j=1

ϕ(τ3,j)
)′

=

τ1+τ2+1∑
k=1

(
(f (τ1)ρ(τ2)) ◦ ϕ

) τ1+τ2+1∏
j=1

ϕ(τ3,j+δjk)

+
(
(f (τ1+1)ρ(τ2) + f (τ1)ρ(τ2+1)) ◦ ϕ

)(
ϕ′
τ1+τ2+1∏
j=1

ϕ(τ3,j)
)
.

As all summands on the right-hand side are of the required form, with either τ1
or τ2 increasing by one on the second line and neither of the two increasing on the
first line when increasing the order of the derivative from τ to τ + 1, the assertion
follows.

Then it is the turn of (5.4), i.e., we aim to prove that for gp = ((f ρ1/p)◦ϕ)(ϕ′)1/p

the derivative g
(τ)
p , τ ∈ N, is a finite linear combination of terms of the form

(A.3)
(
(f (τ1)(ρ1/p)(τ2)) ◦ ϕ

)
(ϕ′)1/p−τ3

τ1+τ2+τ3∏
j=1

ϕ(τ4,j),

with

(A.4) τ1 + τ2 + τ3 ≤ τ and

τ1+τ2+τ3∑
j=1

τ4,j = τ + τ3.

To prove the case τ = 1, write((
(f ρ1/p) ◦ ϕ

)
(ϕ′)1/p

)′
=
(
(f ′ρ1/p + f(ρ1/p)′) ◦ ϕ

)
(ϕ′)1/pϕ′

+
1

p

(
(f ρ1/p) ◦ ϕ

)
(ϕ′)1/p−1ϕ(2),

where all three terms are of the required form with (τ1, τ2, τ3, τ4,1) = (1, 0, 0, 1),
(0, 1, 0, 1) and (0, 0, 1, 2), respectively. Assume then that the claim is true for an
arbitrary but fixed τ ∈ N. The proof is completed by showing that the derivative
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of a term of the form (A.3) is a linear combination of terms that satisfy the same
conditions (A.3)-(A.4) with τ replaced by τ + 1:((

(f (τ1)(ρ1/p)(τ2)) ◦ ϕ
)
(ϕ′)1/p−τ3

τ1+τ2+τ3∏
j=1

ϕ(τ4,j)
)′

=
((
f (τ1+1)(ρ1/p)(τ2) + f (τ1)(ρ1/p)(τ2+1)

)
◦ ϕ
)
(ϕ′)1/p−τ3

(
ϕ′
τ1+τ2+τ3∏

j=1

ϕ(τ4,j)
)

+ (1/p− τ3)
(
(f (τ1)(ρ1/p)(τ2)) ◦ ϕ

)
(ϕ′)1/p−(τ3+1)

(
ϕ(2)

τ1+τ2+τ3∏
j=1

ϕ(τ4,j)
)

+

τ1+τ2+τ3∑
k=1

(
(f (τ1)(ρ1/p)(τ2)) ◦ ϕ

)
(ϕ′)1/p−τ3

τ1+τ2+τ3∏
j=1

ϕ(τ4,j+δjk).

As all summands on the right-hand side are of the required form, with either τ1 or
τ2 increasing by one on the first line, τ3 increasing by one on the second line and
none of the three indices increasing on the final line when increasing the order of
the derivative from τ to τ + 1, the assertion follows.

This appendix is completed by proving (3.5), i.e., that the derivatives of ϕ(θ) =
−c cot(θ/2) satisfy

(A.5) ϕ(τ)(θ) =
ψτ (θ)

sinτ+1(θ/2)
, τ ∈ N0,

with ψτ (θ) ∈ C∞(R) being a bounded finite linear combination of products of
trigonometric functions. By definition, the claim holds for τ = 0. Assume that ϕ(τ)

is of the form (A.5) for an arbitrary but fixed τ ∈ N0 and let us differentiate:

ϕ(τ+1)(θ) =
ψ′
τ (θ) sin(θ/2)− τ+1

2 ψτ (θ) cos(θ/2)

sinτ+2(θ/2)
,

which immediately proves the claim.
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[10] Martin Ehler and Karlheinz Gröchenig. An abstract approach to Marcinkiewicz–Zygmund
inequalities for approximation and quadrature in modulation spaces. Math. Comp., 2023.

[11] Walter Gautschi. Gauss quadrature and Christoffel function for the logistic weight function,

May 2020. https://purr.purdue.edu/publications/3418/1.
[12] M. Gnewuch, A. Hinrichs, K. Ritter, and R. Rüßmann. Infinite-dimensional integration and
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high dimensions. Numer. Algorithms, 46(4):369–391, 2007.

[27] Frances Y. Kuo, Grzegorz W. Wasilkowski, and Benjamin J. Waterhouse. Randomly shifted

lattice rules for unbounded integrands. J. Complexity, 22(5):630–651, 2006.
[28] Ju I Makovoz. On a method for estimation from below of diameters of sets in banach spaces.

Mathematics of the USSR-Sbornik, 16(1):139, 1972, English translation.
[29] Robert Nasdala and Daniel Potts. Transformed rank-1 lattices for high-dimensional approx-

imation. Electron. Trans. Numer. Anal., 53:239–282, 2020.

[30] Harald Niederreiter. Random number generation and quasi-Monte Carlo methods, volume 63
of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, PA, 1992.

[31] Dirk Nuyens and Yuya Suzuki. Scaled lattice rules for integration on Rd achieving higher-
order convergence with error analysis in terms of orthogonal projections onto periodic spaces.

Math. Comp., 92(339):307–347, 2023.

[32] T. W. Sag and G. Szekeres. Numerical evaluation of high-dimensional integrals. Math. Comp.,
18(86):245–253, 1964.



24 YUYA SUZUKI, NUUTTI HYVÖNEN, AND TONI KARVONEN
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