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Abstract

This paper focusses on the formulation of numerical integration as an inferential
task. To date, research effort has largely focussed on the development of Bayesian
cubature, whose distributional output provides uncertainty quantification for the
integral. However, the point estimators associated to Bayesian cubature can be
inaccurate and acutely sensitive to the prior when the domain is high-dimensional.
To address these drawbacks we introduce Bayes–Sard cubature, a probabilistic
framework that combines the flexibility of Bayesian cubature with the robustness
of classical cubatures which are well-established. This is achieved by considering
a Gaussian process model for the integrand whose mean is a parametric regression
model, with an improper prior on each regression coefficient. The features in
the regression model consist of test functions which are guaranteed to be exactly
integrated, with remaining degrees of freedom afforded to the non-parametric part.
The asymptotic convergence of the Bayes–Sard cubature method is established and
the theoretical results are numerically verified. In particular, we report two orders
of magnitude reduction in error compared to Bayesian cubature in the context of a
high-dimensional financial integral.

1 Introduction

This paper considers the numerical approximation of an integral I(f†) :=
∫
D
f†dν of a continuous

integrand f† : D → R against a Borel distribution ν defined on a domain D ⊆ Rd. The approxima-
tion of such integrals is a fundamental task in applied mathematics, statistics and machine learning,
and is usually achieved using an n-point cubature rule

In(f†) :=

n∑
i=1

wif
†(xi) ≈ I(f†)

with some weights w = (w1, . . . , wn) ∈ Rn and points (or nodes) X = {x1, . . . , xn} ⊂ Rd. The
scope and ambition of modern scientific and industrial computer codes is such that the integrand f†
can often represent the output of a complex computational model. In such cases the evaluation of the
integrand is associated with a substantial resource cost and, as a consequence, the total number of
evaluations will be limited. The research challenge, in these circumstances, manifests not merely in
the design of a cubature method but also in the assessment of the associated error.

The (generalised) Bayesian cubature (BC) method [27, 35, 29] provides a statistical approach to error
assessment. In brief, let Ω be a probability space and consider a hypothetical Bayesian agent who
represents their epistemic uncertainties in the form of a stochastic process f : D × Ω → R. This
stochastic process must arise from a Bayesian regression model and be consistent with obtained
evaluations of the true integrand, typically provided on a discrete point set {xi}ni=1 ⊂ D; that is
f(xi, ω) = f†(xi) for almost all ω ∈ Ω. The stochastic process acts as a stochastic model for the
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integrand f†, implying a random variable ω 7→
∫
D
f(·, ω)dν that represents the agent’s epistemic

uncertainty for the value of the integral I(f†) of interest.

The output of a (generalised) BC method is the law of the random variable ω 7→
∫
D
f(·, ω)dν. The

mean of this output provides a point estimate for the integral, whilst the standard deviation indicates
the extent of the agent’s uncertainty regarding the integral. The properties of this probabilistic output
have been explored in detail for the case of a centred Gaussian stochastic process (the standard BC
method): In certain situations the mean has been shown to coincide with a kernel-based integration
method [32] that is rate-optimal [1, 5], robust to misspecification of the agent’s belief [19, 20] and
efficiently computable [32, 22, 23, 18]. The non-Gaussian case and related extensions have been
explored empirically in [24, 37, 13, 31, 6]. The method has also been discussed in connection with
probabilistic numerics; see [10, 14, 7] for general background.

However, it remains the case that non-probabilistic numerical integration methods, such as Gaussian
cubatures [11] and quasi-Monte Carlo methods [16], are more widely used, due in part to how their
ease-of-use or reliability are perceived. This is despite the well-known fact that the trapezoidal rule
and other higher-order spline methods [8] can be naturally cast as Bayesian cubatures if the stochastic
process f is selected suitably [10]. It is also known that Gaussian cubature can be viewed as a special
(in fact, degenerate) case of a kernel method [46, 21]. However, no overall framework to derive
probabilistic analogies of popular cubatures, with corresponding ease-of-use and reliability, has yet
been developed.

This paper argues that the perceived performance gap between probabilistic and non-probabilistic
methods should be reconsidered. To this end, we consider a non-parametric Bayesian regression
model augmented with a parametric component. The features in the parametric component, that is
the pre-specified finite set of basis functions, will be denoted π. Then, an improper prior limit on
the regression coefficients (see [48, 33] and [42, Sec. 2.7]) is studied. This gives rise to Bayes–Sard
cubature1 (BSC), which differs at a fundamental level to standard BC, in that the functions in π are
now exactly integrated. The extension is similar, though not identical, to that proposed in 1974 by
Larkin [28] and in 1991 by O’Hagan [35], and non-probabilistic versions have appeared independently
in [3, 9] in the context of interpolation with conditionally positive definite kernels and optimal
approximation in reproducing kernel Hilbert spaces. For other recent work, see also [40, Sec. 2.4].
Our contributions therefore include (i) establishing a coherent and comprehensive Gaussian process
framework for BSC; (ii) rigorous study of convergence and conditions that need to be established on
π; (iii) empirical experiments that demonstrate improved accuracy in high dimensions and robustness
to misspecified kernel parameters compared to BC; and (iv) the important observation that, when the
dimension of the function space π matches the number of cubature nodes, the BSC method can be
used to endow any cubature rule with a meaningful probabilistic output.

2 Methods

This section contains our novel methodological development, which begins with specifying a Bayesian
regression model for the integrand.

2.1 A Bayesian Regression Model

This section serves to set up a generic Bayesian regression framework, which is essentially identical
to that described in [33, 48] and [44, Sec. 4.1.2]. See also [42, Sec. 2.7] and [30]. This will act as the
stochastic model f : D × Ω→ R for our subsequent development.

2.1.1 Gaussian Process Prior

Recall that a Gaussian process is a function-valued random variable ω 7→ f(·, ω) such that
f(·, ω) ∈ C0(D) and ω 7→ Lf(·, ω) is a (univariate) Gaussian for all continuous linear functionals
L on C0(D). Here ω denotes a generic element of an underlying probability space Ω. See [4]

1Our terminology is motivated by resemblance to the (non-probabilistic) method of Sard [45] for selecting
weights for given n nodes by fixing a polynomial space of degree m < n on which the integration rule must
be exact and disposing of the remaining n − m − 1 degrees of freedom by minimising an appropriate error
functional. See also [47] and [26].
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for further background. Following the notational convention in [42], we suppress the argument ω
and denote by f(x) ∼ GP(s(x), k(x, x′)) a Gaussian process with mean function s ∈ C0(D) and
positive definite covariance kernel k ∈ C0(D ×D). The characterising property of this Gaussian
process is that f(x1), . . . , f(xn) are jointly Gaussian with the mean vector [s(x1), . . . , s(xn)] and
covariance matrix [KX ]ij = k(xi, xj) for all sets X = {x1, . . . , xn} ⊂ D.

Our starting point in this paper will be to endow a hypothetical Bayesian agent with the following
prior model for the integrand:
Definition 2.1 (Prior). Let π be a finite-dimensional linear subspace of real-valued functions on D
and {p1, . . . , pQ} a basis of π, so that Q = dim(π). Then, for some positive definite covariance
matrix Σ ∈ RQ×Q, we consider the following hierarchical prior model:

f(x) | γ ∼ GP
(
s(x), k(x, x′)

)
, s(x) =

Q∑
j=1

γjpj(x), γ ∼ N (0,Σ).

The mean function s ∈ π is parametrised by γ1, . . . , γQ ∈ R. Such a prior could arise, for example,
when a parametric linear regression model is assumed and a non-parametric discrepancy term added
to allow for misspecification of the parametric part [25]. Note that a non-zero mean η ∈ RQ could be
specified for γ; this is done in the derivations contained in supplementary material. For the proposed
method to be implementable, the functions p1, . . . , pQ must be known and their integrals available.

2.1.2 Gaussian Process Posterior

In a regression context, the data consist of input-output pairs DX = {(xi, f†(xi))}ni=1, based on a
finite point set X that, in this paper, is considered fixed. The elements of X are assumed to be distinct.
Our interest is in the Bayesian agent’s belief, after the data DX are observed. The posterior is defined
as the law of the stochastic process which is obtained by conditioning the prior stochastic process
on DX . That the posterior, denoted f | DX , is again a Gaussian stochastic process is a well-known
result (for technical details, see e.g. [38]).

Let fX (resp. f†X ) denote the column vector with entries f(xi) (resp. f†(xi)). Let p(x) be the row
vector with entries pj(x) and let PX denote the n×Q Vandermonde matrix with [PX ]i,j = pj(xi).
Let kX(x) denote the row vector with entries k(x, xj) and let KX denote the kernel matrix with
[KX ]i,j = k(xi, xj). For the prior in Def. 2.1 we have the following result:

Theorem 2.2 (Posterior). In the posterior, f(x) | DX ∼ GP(sX,Σ(f†)(x), kX,Σ(x, x′)) where

sX,Σ(f†)(x) = kX(x)α+ p(x)β

= [kX(x) + p(x)ΣP>X ][KX + PXΣP>X ]−1f†X ,
(1)

kX,Σ(x, x′) = k(x, x′) + p(x)Σp(x′)>

− [kX(x) + p(x)ΣP>X ][KX + PXΣP>X ]−1[kX(x′) + p(x′)ΣP>X ]>
(2)

and the coefficients α and β are defined via the invertible linear system[
KX PX
P>X −Σ−1

] [
α
β

]
=

[
f†X
0

]
. (3)

The proofs for all results are contained in the supplementary material, unless otherwise stated. Note
that the posterior is consistent with the data DX , in the sense that the posterior mean sX,Σ(f†)(x)
coincides with the value f†(x) at the locations x ∈ X and, moreover, the posterior variance vanishes
at each x ∈ X . These facts imply that sample paths from f | DX almost surely satisfy fX = f†X .
Remark 2.3 (Standard Bayesian cubature; BC). Based on Eqns. 1 and 2, it is apparent that if we set
π = ∅, then the posterior reduces to a Gaussian process with mean and covariance

sX,0(f†)(x) = kX(x)K−1
X f†X , kX,0(x, x′) = k(x, x′)− kX(x)K−1

X kX(x′)>.

This is precisely the stochastic process used in the standard BC method [29, 5].

The need for the Bayesian agent to elicit a covariance matrix Σ appears to prevent automatic use of
this prior model. For this reason, we consider the flat prior limit as Σ−1 → 0, which corresponds to a
particular encoding of an absence of prior information about the value of the parameter γ in Def. 2.1.
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Σ−1 = 10 I Σ−1 = I Σ−1 = 0.1 I

Figure 1: Posterior mean (blue) and 95% credible intervals (gray) given four data points (red) for
the prior model of Def. 2.1, with the linear space π taken as the set of polynomials with degree ≤ 3.
The Gaussian kernel with length-scale ` = 0.8 was used. The unique polynomial interpolant of
degree 3 to the data (dashed) is plotted for comparison. Note convergence of the posterior mean to
the polynomial interpolant as Σ−1 → 0.

2.1.3 Flat Prior Limit

In this section we ask whether the Gaussian process posterior is well-defined in the flat prior limit
Σ−1 → 0. For this, we need the concept of unisolvency [49, Sec. 2.2]:

Definition 2.4 (Unisolvency). Let π be a finite-dimensional linear subspace of real-valued functions
on D. A set X = {x1, . . . , xn} ⊂ D with n ≥ dim(π) is called π-unisolvent if the zero function is
the only element in π that vanishes on X . (Examples are provided in Sec. B of the supplement.)

Theorem 2.5 (Flat prior limit). Assume that X is a π-unisolvent set. For the prior in Def. 2.1 we
have that sX,Σ(f†)→ sX(f†) and kX,Σ → kX pointwise as Σ−1 → 0, where

sX(f†)(x) = kX(x)α+ p(x)β, (4)

kX(x, x′) = k(x, x′)− kX(x)K−1
X kX(x′)>

+
[
kX(x)K−1

X PX − p(x)
]
[P>XK

−1
X PX ]−1

[
kX(x′)K−1

X PX − p(x′)
]>
,

(5)

and the coefficients α and β are defined via the invertible linear system[
KX PX
P>X 0

] [
α
β

]
=

[
f†X
0

]
. (6)

The following observation, illustrated in Fig. 1, will be important:

Proposition 2.6. Assume that X is a π-unisolvent set. Then sX(p) = p whenever p ∈ π.

Proof. If p ∈ π, there exist coefficients β′1, . . . , β
′
Q such that p =

∑Q
i=1 β

′
jpj . That is, a particular

solution of Eqn. 6 is α = 0 and β = β′. The linear system being invertible, this must be the only
solution. We deduce that sX(p) = p.

In particular, if dim(π) = n, the posterior mean reduces to the unique interpolant in π to the data DX
while the posterior covariance is non-zero. This observation will enable us to endow any classical
cubature rule with a non-degenerate probabilistic output in Sec. 2.4. Next we turn our attention to
estimation of the unknown value of the integral.

2.2 The Bayes–Sard Framework

Recall that the output of a generalised BC method is the push-forward ω 7→
∫
D
f(·, ω)dν of the

stochastic process f | DX through the integration operator I . This random variable will be denoted
I(f) | DX . In this section we present the BSC method, which is based on the prior model with
Σ−1 → 0 studied in Sec. 2.1.3. It will be demonstrated that BSC differs, at a fundamental level, from
the standard BC method in that the elements of π are exactly integrated.

Let kν(x) = I(k(·, x)) denote the kernel mean function and kν,ν = I(kν) its integral. Define the
row vectors pν and kν,X to have respective entries [pν ]j = I(pj) and [kν,X ]j = kν(xj).
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Theorem 2.7 (Bayes–Sard cubature; BSC). Consider the Gaussian process

f(x) | DX ∼ GP
(
sX,Σ(f†)(x), kX,Σ(x, x′)

)
defined in Thm. 2.2 and suppose that X is a π-unisolvent point set. Then, as Σ−1 → 0, the mean and
variance of I(f) | DX converge to

µX(f†) = w>k f
†
X and σ2

X = kν,ν − kν,XK−1
X k>ν,X +

(
kν,XK

−1
X PX − pν

)
wπ,

respectively, where the weight vectors wk ∈ Rn and wπ ∈ RQ are obtained from the solution of the
invertible linear system [

KX PX
P>X 0

] [
wk
wπ

]
=

[
k>ν,X
p>ν

]
. (7)

The posterior mean indeed takes the form of a cubature rule, with weights wk,i and points xi ∈ X .
This provides a point estimator for the integral I(f†), while the posterior variance enables uncertainty
to be assessed. The Bayes–Sard nomenclature derives from the fact that the associated cubature rule
µX is exact on the space π (recall Prop. 2.6; the proof is also similar):
Proposition 2.8. Assume that X is a π-unisolvent set. Then µX(p) = I(p) whenever p ∈ π.

Thus we have a probabilistic framework that combines the flexibility of BC with the robustness of
classical numerical integration techniques, for instance based on a polynomial exactness criteria
being satisfied.
Remark 2.9. Rates of convergence identical to those appearing in [5, 20] for the BC can be derived
for the BSC method by using results in [49]. Details are contained in Sec. C of the supplement.

2.3 Normalised Bayesian Cubature

The difference between BSC and BC is perhaps best illustrated in the case π = {1}, also considered
in [24, 41, 18], where constant functions are exactly integrated in BSC but not in BC. Indeed, PX = 1,
the n-vector of ones, and

wk =

(
I−

K−1
X 11

>

1>K−1
X 1

)
K−1
X k>ν,X +

K−1
X 1

1>K−1
X 1

.

These weights have the desirable property of summing up to one; we might therefore call this a
normalised Bayesian cubature method. Furthermore, if the kernel is parametrised by a length-scale
parameter and this parameter is too small, then wk,i ≈ 1/n, which is a reasonable default. This
should be contrasted with BC, for which the weights wk,i ≈ 0 become degenerate instead.

2.4 Reproduction of Classical Cubature Rules

In this section we indicate how any cubature rule can be endowed with a probabilistic interpretation
under the Bayes–Sard framework. Recall that every continuous positive definite kernel k induces a
unique reproducing kernel Hilbert space (RKHS) H(k) ⊂ C0(D) with norm denoted ‖·‖k [2]. It is
well-known that the weights wBC := K−1

X k>ν,X ∈ Rn of the standard BC method (recall Rmk. 2.3)
are worst-case optimal in H(k):

wBC = arg min
w∈Rn

ek(X,w), ek(X,w) := sup
‖h‖k≤1

∣∣∣∣∫
D

hdν −
n∑
i=1

wih(xi)

∣∣∣∣,
where ek(X,w) is the worst-case error (WCE) of the cubature rule specified by the points X and
weights w. Furthermore, the posterior standard deviation coincides with ek(X,wBC). See [26, 43, 32]
for details on optimal cubature rules in RKHS. It is now shown that, when dim(π) = n, the BSC
weights in Thm. 2.7 do not depend on the kernel and the standard deviation coincides with the WCE:
Theorem 2.10. Suppose that dim(π) = n and let X be a π-unisolvent set. Then

µX(f†) = w>k f
†
X , w>k = pνP

−1
X and µX(p) = I(p) for every p ∈ π

and
σ2
X = ek(X,wk)2 = kν,ν − 2kX,νwk + w>k KXwk.
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That is, the BSC weights wk are the unique weights for a cubature rule with the points X such that
every function in π is integrated exactly and the posterior standard deviation σX coincides with the
WCE in the RKHS H(k).
Corollary 2.11. Consider an n-point cubature rule with points X and non-zero weights w ∈ Rn
and assume that ν admits a positive density function (w.r.t. the Lebesgue measure). Then there is a
function space π of dimension n, such that the BSC method recovers wk = w and σ2

X = ek(X,w)2,
as defined in Thm. 2.7.

Thus any cubature rule can be recovered as a posterior mean for some prior (briefly alluded to
in [35, Sec. 2.3] in a more limited setting and lacking RKHS machinery). Our result goes beyond
earlier work in [46, 21], in the sense that the associated posterior is non-degenerate (i.e. has non-zero
variance) in the Bayes–Sard framework. Further discussion is provided in Sec. D of the supplement.
From a practical perspective, this enables us to simultaneously achieve the same reliable integration
performance as popular non-probabilistic rules (see Sec. C.2 in the supplement) and to perform
formal uncertainty quantification for the integral.
Remark 2.12. The function space alluded to in Cor. 2.11 can be constructed explicitly. The general
construction is somewhat artificial, but can be made more appealing if the weights arise from, for
example, a natural polynomial exactness criterion. See Sec. A.2 of the supplement for details.

2.5 On Weakly-Informative Priors

As mentioned earlier, methods similar to ours were proposed by O’Hagan [35]. See also [28, 36, 24]
and, in particular, [34, Sec. 3.6]. Following [35], let k(x, x′) = λk0(x, x′) for some base kernel k0

and consider the improper prior p(γ, λ) ∝ 1/λ. It can then be shown that the marginal posterior for
I(f) is Student-t, with n−Q degrees of freedom and mean equal to µX(f†) in our work, but whose
variance is instead

1

n−Q− 2
(f†X)>

(
K−1
X −K

−1
X PX [P>XK

−1
X PX ]−1P>XK

−1
X

)
f†X × σ

2
X .

That is, when n − 2 < Q ≤ n, this posterior is not well-defined. As a consequence of this prior
specification one cannot, as opposed to Cor. 2.11 that requires Q = n, associate every cubature rule
with a non-degenerate posterior. Thus one of the principal advantages of using the weakly-informative
informative prior, obtained as a limit of Gaussians, considered in this paper is that the worst-case
error can be reinterpreted as a posterior standard deviation. However, to ensure this variance provides
meaningful quantification of uncertainty can be challenging. This is discussed in Secs. 3.1 and 3.4.

3 Experimental Results

This section contains three numerical experiments, which investigate the empirical performance of the
BSC method and the associated uncertainty quantification that is provided. The examples demonstrate
that BSC is typically at least as accurate as BC whilst being less sensitive to misspecification of the
kernel length-scale parameter.

3.1 On Choosing the Kernel Parameters

The stationary kernels often used in Gaussian process regression are parametrised by positive length-
scale2 ` and amplitude λ:

k(x, x′) = k(x− x′) = λk0

(
(x− x′)/`

)
for, in a slight abuse of notation, some base kernel k0. Adapting these parameters in a data-dependent
way is an essential prerequisite for meaningful quantification of uncertainty for the integral. After
taking the limit Σ−1 → 0, that yields the BSC, we proceed to set these parameters independently,
following the approach suggested in [5, Sec. 4.1], but as if the prior model were

f(x) | `, λ ∼ GP
(
0, λk0((x− x′)/`)

)
.

This procedure, though admittedly somewhat unsound, appears to work well in the examples of Secs.
3.2 and 3.4. That is, we (i) assign λ the improper prior p(λ) ∝ 1/λ and marginalise over it so that the

2In general, a distinct length-scale parameter for each dimension could be used.
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Figure 2: Approximation of the integral in Eqn. 8 using BC and BSC with π = Πm(R) for
m = 1, 3, 5, both based on the Gaussian kernel. The n nodes were placed uniformly on [−

√
n,
√
n ].

Left: Uncertainty quantification (UQ) provided by BSC with m = 3 and BC when kernel parameters
were selected as outlined in Sec. 3.1. Middle & right: Effect of ` on approximation accuracy. The
upper row presents the relative integration error |I(f†)− In(f†)|/I(f†) for each cubature rule In
as a function of `. The “optimal” length-scales `EB, as computed by EB, are also shown. The lower
row contains the corresponding posterior means when an inappropriate value, ` = 0.3, is used. Since
dim(Π5(R)) = 6, that BSC for m = 5 and n = 6 is independent of ` is a consequence of Thm. 2.10.

BSC posterior becomes Student-t with the mean µX(f†), variance (n− 2)−1(f†X)>K−1
X f†X × σ2

X
and n degrees of freedom [35, Sec. 2.2] and (ii) set ` using empirical Bayes (EB) based on the
Gaussian log-marginal likelihood [42, Sec. 5.4.1]

`EB = arg max
`>0

[
− 1

2
(f†X)>K−1

X f†X −
1

2
log det(KX)

]
.

There are of course other possibilities that could be explored, such as cross-validation or, when
Q < n, using the likelihood of the regression model set up in Sec. 2.1 (see [42, Eqn. 2.45]).

3.2 A One-Dimensional Toy Example

Our first example is one-dimensional. The test function and its integral that we considered were

f†(x) = exp

(
sin(2x)− x2

5

)
+
x2

2
and I(f†) =

1√
2π

∫
R
f†(x)e−x

2/2dx ≈ 2.0693. (8)

The effect of the length-scale ` of the Gaussian kernel k(x, x′) = exp(−(x − x′)2/(2`2)) on the
performance of standard BC and BSC of Sec. 2.2, with

π = Πm(R) := span{xα : α ∈ Nd0, α1 + · · ·+ αd ≤ m}, where xα = xα1
1 × · · ·x

αd

d ,

for different m, was investigated and the quality of the uncertainty quantification was assessed.

Results are depicted in Fig. 2. It can be observed that the BSC is more robust compared to BC when
the length-scale is misspecified (in particular, when it is too small). This is because the polynomial
part mitigates the tendency of the posterior mean to revert quickly back to zero. For reasonable values
of the length-scale, the accuracy of the different methods is comparable. The BSC and BC provide
qualitatively similar quantification of uncertainty and both exhibit a degree of over-confidence, as
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Figure 3: Approximation of the d-dimensional integral (9) using BC and BSC with π = Π1(Rd),
both based on product Matérn kernel with ρ = 5/2 (see Eqn. C15 in the supplement) and length-scale
`. Figures contain relative integration errors for each cubature rule for a given dimension and different
length-scales as a function of the number of nodes n, drawn randomly from the uniform distribution.
Non-monotonicity of the BSC errors is caused by higher accuracy of this method; small fluctuations
in error are magnified on the logarithmic scale. Note that the point set is almost surely unisolvent.
For comparison, the standard Monte Carlo approximation (MC) is also plotted.

observed already in [5, Sec. 5.1] for the BC and attributed to the manner in which the length-scale is
selected. However, BSC is less over-confident. The reason for this is that the BSC variance in Thm.
2.7 is a sum of the BC variance and a positive term.

3.3 Zero Coupon Bonds

This section experiments with a high-dimensional zero coupon bond example that has been used
previously in numerical experiments for kernel cubature in [22, Sec. 5.5]. See [17, Sec. 6.1] and
Sec. E of the supplement for a more detailed account of this experiment. The integral of interest is

P (0, T ) := E

[
exp

(
−∆t

dT−1∑
i=0

rti

)]
= exp(−∆trt0)E

[
exp

(
−∆t

dT−1∑
i=1

rti

)]
, (9)

where rti , i > 0, are Gaussian random variables and rt0 is a constant. This d = dT − 1 dimensional
integral represents the price at time t = 0 of a zero coupon bond with maturity time T and arises
from dT -step uniform Euler–Maruyama discretisation of the Vasicek model. Existence of a closed-
form solution for P (0, T ) makes numerical approximation of Eqn. 9 an attractive high-dimensional
benchmark problem.

We transformed the integral (9) onto the hypercube [0, 1]d and compared the accuracy of BC to BSC
with π = Π1(Rd). Different dimensions d and length-scales ` were considered and the product
Matérn kernel with smoothness parameter ρ = 5/2 (see Eqn. C15 in the supplement) was used. As
in Sec. 3.2, it is apparent from Fig. 3 that the BSC is less sensitive to length-scale misspecification
compared to the standard BC method. In this misspecified case a two order of magnitude reduction
in integration error was observed. This is attributed to the improved extrapolation performance
conferred through the polynomial component.

3.4 Uncertainty Quantification for Gauss–Patterson Quadrature

In this section we assess the uncertainty quantification provided by Cor. 2.11 for Gauss–Patterson
quadrature rules [39], a sequence of nested classical quadrature rules. These rules are nested
extensions of the familiar Gaussian quadratures: to an n-point quadrature rule n+ 1 points are added
so as to maximise the polynomial degree of the resulting (2n + 1)-point quadrature rule and the
process is then repeated iteratively. For the uniform measure, these rules have been computed3 for
the sequence n = (1, 3, 7, 15, 31, 63, 127, 255, 511); see [12] for a Gaussian version.

3https://people.sc.fsu.edu/~jburkardt/m_src/patterson_rule/patterson_rule.html
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Figure 4: Uncertainty quantification by the BSC for Gauss–Patterson quadrature applied to the
integration problem in Eqn. 10. The number of nodes ranges from 3 to 511. The lower row presents
the absolute integration error |I(f†C) − In(f†C)| of the n-point Gauss–Patterson rule for the three
integrals. The plotted credible bound exceeding the integration error indicates that the true integral
value is contained within the 95% highest posterior density credible interval.

Our final experiment considered computation of the integrals

I(f†C) =
1

8

∫ 8

0

f†C(x)dx for f†C(x) = exp
(

sin(Cx)2 − 0.5x
)

+
C

10
, C ∈ {10, 15, 20}, (10)

which are expected to be more difficult to compute the larger the constant C is (see [5, Sec. 5.1]
for a similar example for the standard BC). We again used the Matérn kernel with the smoothness
parameter ρ = 5/2 and set its length-scale and magnitude parameters for each n as described in Sec.
3.1 The results appear in Fig. 4, where we clearly observe that a larger integral variance is assigned
for more difficult integrals and that the true integral value is always contained within the 95% credible
interval. In particular, for small n that do not produce useful integral estimates (n = 3 yields relative
errors between 0.46 and 0.69 and n = 7 between 0.31 and 0.44) the posterior variance is large,
correctly reflecting significant uncertainty in these estimates. This suggests that the BSC appears to
provide sensible uncertainty quantification for Gauss–Patterson rules, at least in this experiment.

4 Conclusion

This paper proposed a Bayes–Sard cubature method, which provides an explicit connection between
classical cubatures and the Bayesian inferential framework. In particular, we obtained polynomially
exact generalisations of standard BC in Thm. 2.7 and demonstrated in Cor. 2.11 how any cubature
rule, including widely-used cubature methods, can be recovered as the output of a probabilistic model.

The main practical drawback of standard BC is its acute sensitivity to the choice of kernel. As
demonstrated in Sec. 3, the Bayes–Sard point estimator performance is more robust to the choice
of kernel and this suggests that fast Gaussian process methods (e.g., [15, 51]) could be used for
efficient automatic selection of kernel parameters with little adverse effect on accuracy of the point
estimator. On the other hand, further work is required to assess the quality of the uncertainty
quantification provided by the BSC method. This will require careful analysis that accounts for how
kernel parameters are estimated, and is expected to be technically more challenging (see, e.g., [50]).
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Supplementary Material

This document contains supplementary material for the article “A Bayes–Sard Cubature Method”.

A Proof of Results in the Main Text

The prior model (Def. 2.1) used in the main text is

f(x) | γ ∼ GP
(
s(x), k(x, x′)

)
, s(x) =

Q∑
j=1

γjpj(x), γ ∼ N (0,Σ).

It is straightforward to consider the generalisation γ ∼ N (η,Σ) for potentially non-zero vector
η ∈ RQ; we do this in this supplement.

A.1 Results on the Regression Model

Theorem 2.2 (Posterior). In the posterior, f(x) | DX ∼ GP(sX,Σ(f†)(x), kX,Σ(x, x′)) where

sX,Σ(f†)(x) = kX(x)α+ p(x)β

= [kX(x) + p(x)ΣP>X ][KX + PXΣP>X ]−1f†X ,
(A1)

kX,Σ(x, x′) = k(x, x′) + p(x)Σp(x′)>

− [kX(x) + p(x)ΣP>X ][KX + PXΣP>X ]−1[kX(x′) + p(x′)ΣP>X ]>
(A2)

and the coefficients α and β are defined via the invertible linear system[
KX PX
P>X −Σ−1

] [
α
β

]
=

[
f†X
−η

]
. (A3)

Proof. Under the hierarchical prior we have the marginal

f(x) ∼ GP
(
p(x)η, k(x, x′) + p(x)Σp(x′)>

)
.

Thus standard formulae for the conditioning of a Gaussian process [17, Eqns. 2.25, 2.26] can be used:

sX,Σ(f†)(x) = p(x)η + [kX(x) + p(x)ΣP>X ][KX + PXΣP>X ]−1[f†X − PXη],

kX,Σ(x, x′) = k(x, x′) + p(x)Σp(x′)>

− [kX(x) + p(x)ΣP>X ][KX + PXΣP>X ]−1[kX(x′) + p(x′)ΣP>X ]>.
(A4)

The coefficients α and β are therefore

α = [KX + PXΣP>X ]−1[f†X − PXΣη],

β = Ση + ΣP>X [KX + PXΣP>X ]−1[f†X − PXΣη].

It can be verified by substitution that P>Xα − Σ−1β = −η and that the interpolation equations
KXα+ PXβ = f†X hold. This allows us to provide the equivalent characterisation of α and β in
terms of the linear system in Eqn. A3. To see that this linear system is invertible, we can use the
block matrix determinant formula

det

([
KX PX
P>X −Σ−1

])
= det(−Σ−1) det(KX + PXΣP>X ).

That is, since Σ is a positive definite covariance matrix, the block matrix is invertible if and only
if KX + PXΣP>X is invertible. This is indeed true because, for instance, KX + PXΣP>X is the
covariance matrix for the random vector fX under the prior, which is non-singular as k is positive
definite and the elements of X are distinct.
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The following Lagrange form [23, Sec. 11.1] of the posterior will be useful:
Theorem A.1 (Lagrange form for the posterior). The posterior mean and covariance functions in
Eqns. A1 and A2 can be written in the Lagrange form

sX,Σ(f†)(x) = uX,Σ(x)>f†X − vX,Σ(x)>η,

kX,Σ(x, x′) = k(x, x′) + p(x)Σp(x′)> − [kX(x) + p(x)ΣP>X ]uX,Σ(x′), (A5)

where
uX,Σ(x) := [KX + PXΣP>X ]−1[kX(x) + p(x)ΣP>X ]> (A6)

is a vector of Lagrange cardinal functions and vX,Σ(x) := Σ[P>XuX,Σ(x)− p(x)>]. These functions
are obtained from the invertible linear system[

KX PX
P>X −Σ−1

] [
uX,Σ(x)
vX,Σ(x)

]
=

[
kX(x)>

p(x)>

]
(A7)

and satisfy the cardinality property [uX,Σ(xj)]i = δij and [vX,Σ(xj)]i = 0 for every i, j ∈
{1, . . . , n}.

Proof. From Eqns. A1 and A3, the posterior mean is

sX,Σ(f†)(x) = [ kX(x) p(x) ]

[
α
β

]
= [ kX(x) p(x) ]

[
KX PX
P>X −Σ−1

]−1 [
f†X
−η

]
,

and this can be written as sX,Σ(f†)(x) = uX,Σ(x)>f†X − vX,Σ(x)>η where uX,Σ(x) and vX,Σ(x)
are obtained from the linear system in Eqn. A7. The expression for the posterior covariance follows
by inserting uX,Σ(x′), as given in Eqn. A6, into Eqn. A2. The cardinality property follows after we
recognise that, setting x = xj , Eqn. A7 is solved by uX,Σ(xj) = ej (the jth unit coordinate vector)
and vX,Σ(xj) = 0.

Theorem 2.5 (Flat prior limit). Assume that X is a π-unisolvent set. For the prior in Def. 2.1 we
have that sX,Σ(f†)→ sX(f†) and kX,Σ → kX pointwise as Σ−1 → 0, where

sX(f†)(x) = kX(x)α+ p(x)β, (A8)

kX(x, x′) = k(x, x′)− kX(x)K−1
X kX(x′)>

+
[
kX(x)K−1

X PX − p(x)
]
[P>XK

−1
X PX ]−1

[
kX(x′)K−1

X PX − p(x′)
]>
,

(A9)

and the coefficients α and β are defined via the invertible linear system[
KX PX
P>X 0

] [
α
β

]
=

[
f†X
−η

]
. (A10)

Proof. For the mean function, the limit can just be taken in the linear system of Eqn. A3 and
it is required is to verify that this system can be inverted. From an application of the formula
for a block matrix determinant we have that the determinant of the matrix in Eqn. A10 equals
det(−P>XK

−1
X PX)det(KX), where det(KX) > 0. Because X is π-unisolvent, PX is of full rank

and consequently det(−P>XK
−1
X PX) 6= 0. Thus the block matrix can be inverted.

To obtain the covariance function an additional argument is needed. To this end, the Woodbury matrix
identity yields

[KX + PXΣP>X ]−1 = K−1
X −K

−1
X PX [Σ−1 + P>XK

−1
X PX ]−1P>XK

−1
X .

Denoting LX := P>XK
−1
X PX and inserting the above into Eqn. A4 produces

kX,Σ(x, x′) = k(x, x′)− kX(x)K−1
X kX(x′)> + p(x)Σp(x′)> − p(x)ΣLXΣp(x′)>

− kX(x)K−1
X PXΣp(x′)> − p(x)ΣP>XK

−1
X kX(x′)>

+ kX(x)K−1
X PX [Σ−1 + LX ]−1P>XK

−1
X kX(x′)>

+ kX(x)K−1
X PX [Σ−1 + LX ]−1LXΣp(x′)>

+ p(x)ΣLX [Σ−1 + LX ]−1P>XK
−1
X kX(x′)>

+ p(x)ΣLX [Σ−1 + LX ]−1LXΣp(x′)>.

(A11)
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For small enough Σ−1 we can write the Neumann series

[Σ−1 + LX ]−1 = L−1
X

[
I − (LXΣ)−1 + (LXΣ)−2 − · · ·

]
.

Therefore we have the trio of results
K−1
X PX [Σ−1 + LX ]−1P>XK

−1
X = K−1

X PXL
−1
X P>XK

−1
X +O(Σ−1),

K−1
X PX [Σ−1 + LX ]−1LXΣ = K−1

X PXΣ−K−1
X PXL

−1
X +O(Σ−1),

ΣLX [Σ−1 + LX ]−1LXΣ = ΣLXΣ− Σ + L−1
X +O(Σ−1).

Inserting these into Eqn. A11 yields, after cancellation and taking the limit Σ−1 → 0,

kX(x, x′) = k(x, x′)− kX(x)K−1
X kX(x′)>

+
[
kX(x)K−1

X PX − p(x)
]
[P>XK

−1
X PX ]−1

[
kX(x′)K−1

X PX − p(x′)
]>
,

as claimed.

The flat prior limit of the posterior also admits a Lagrange representation:
Theorem A.2 (Lagrange form in the flat prior limit). Assume that X is a π-unisolvent set. The
posterior mean and covariance in Eqns. A8 and A9 can be written as

sX(f†)(x) = uX(x)>f†X − vX(x)>η,

kX(x, x′) = k(x, x′)− kX(x)K−1
X kX(x′)> +

[
kX(x)K−1

X PX − p(x)
]
vX(x′) (A12)

where
vX(x) := [P>XK

−1
X PX ]−1[kX(x)K−1

X PX − p(x)]>,

uX(x) := K−1
X [kX(x)> − PXvX(x)]

are obtained from the solution of the invertible linear system[
KX PX
P>X 0

] [
uX(x)
vX(x)

]
=

[
kX(x)>

p(x)>

]
and have the cardinality properties [uX(xj)]i = δij and [vX(xj)]i = 0 for every i, j ∈ {1, . . . , n}.

The proof is similar to that of Thm. A.1 and is therefore omitted. Note the reversal in the roles of
uX,Σ and vX in Eqns. A5 and A12 for the posterior covariance.

A.2 Results on Cubature

Theorem 2.7 (Bayes–Sard cubature; BSC). Consider the Gaussian process

f(x) | DX ∼ GP
(
sX,Σ(f†)(x), kX,Σ(x, x′)

)
defined in Thm. 2.2 and suppose that X is a π-unisolvent point set. Then, as Σ−1 → 0, the mean and
variance of I(f) | DX converge to

µX(f†) = w>k f
†
X − w

>
π η and σ2

X = kν,ν − kν,XK−1
X k>ν,X +

(
kν,XK

−1
X PX − pν

)
wπ,

respectively, where the weight vectors wk ∈ Rn and wπ ∈ RQ are obtained from the solution of the
invertible linear system [

KX PX
P>X 0

] [
wk
wπ

]
=

[
k>ν,X
p>ν

]
. (A13)

Equivalently, wk = I(uX) and wπ = I(vX) for the Lagrange functions of Thm. A.2.

Proof. As we have only established that sX,Σ(f†) → sX(f†) and kX,Σ → kX pointwise in Thm.
2.5, we cannot directly deduce that

µX,Σ(f†)→ µX(f†) =

∫
D

sX(f†)(x)dν(x),

σ2
X,Σ → σ2

X =

∫
D

∫
D

kX(x, x′)dν(x)dν(x′).

However, that this is indeed the case can be confirmed by carrying out analysis analogous to that
in the proof Thm. 2.5, based on Neumann series, for µX,Σ(f†) and σ2

X,Σ at the limit Σ−1 → 0. To
avoid repetition, the details are omitted.
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Theorem 2.10. Suppose that dim(π) = n and let X be a π-unisolvent set. If η = 0, then

µX(f†) = w>k f
†
X , w>k = pνP

−1
X , µX(p) = I(p) for every p ∈ π

and
σ2
X = ek(X,wk)2 = kν,ν − 2kX,νwk + w>k KXwk.

That is, the BSC weights wk are the unique weights for a cubature rule with the points X such that
every function in π is integrated exactly and the posterior standard deviation σX coincides with the
WCE in the RKHS H(k).

Proof. Due to dim(π) = n and X being a π-unisolvent set, the Vandermonde matrix PX is an
invertible square matrix. From Eqn. A13 we have

wk =
(
K−1
X −K

−1
X PX [P>XK

−1
X PX ]−1P>XK

−1
X

)
k>ν,X +K−1

X PX [P>XK
−1
X PX ]−1p>ν

= P−>X p>ν .

These are the unique weights satisfying
∑n
j=1 wk,jpi(xj) = I(pi) for each basis function pi of π.

Similarly, the weights wπ take the form

wπ = [P>XK
−1
X PX ]−1P>XK

−1
X k>ν,X − [P>XK

−1
X PX ]−1p>ν = P−1

X k>ν,X − [P>XK
−1
X PX ]−1p>ν ,

so that

σ2
X = kν,ν − kν,XK−1

X k>ν,X +
(
P>XK

−1
X k>ν,X − p>ν

)>
wπ

= kν,ν − kν,XK−1
X k>ν,X +

(
P>XK

−1
X k>ν,X − p>ν

)>(
P−1
X k>ν,X − [P>XK

−1
X PX ]−1p>ν

)
= kν,ν − 2kν,Xwk + w>k KXwk.

We recognise this final expression as the squared worst-case error from Eqn. D16.

Corollary 2.11. Consider an n-point cubature rule with points X and non-zero weights w ∈ Rn
and assume that ν admits a positive density function (w.r.t. the Lebesgue measure) and that η = 0.
Then there is a function space π of dimension n, such that the BSC method recovers wk = w and
σ2
X = ek(X,w)2, as defined in Thm. 2.7.

Proof. From the assumption that ν has a positive density function with respect to the Lebesgue
measure it follows that ν({x}) = 0 for every x ∈ D and that for any distinct points x1, . . . , xn ∈ D
there exist disjoint sets Di of positive measure such that xi ∈ Di. Select then the n functions

pi = 1Di\{xi} +
ν(Di)

wi
1{xi}.

It holds that I(pi) = ν(Di). The associated Vandermonde matrix is diagonal and has the elements
[PX ]ii = ν(Di)/wi. Hence it can be trivially inverted. It follows that the BSC method with basis
{p1, . . . , pn} has a posterior mean µX(f†) = w>f†X .

The construction is more appealing if the weights are positive and their sum does not exceed one,
since then we can use pi = 1Di for disjoint sets such that ν(Di) = wi and xi ∈ Di, or if the weights
are naturally given by exactness conditions on π and X is π-unisolvent. Examples of such more
natural constructions include uniformly weighted (quasi) Monte Carlo rules, that arise from using a
partition D = ∪ni=1Di with ν(Di) = 1/n, and Gaussian tensor product rules.

B Unisolvent Point Sets

This section contains more details and examples about unisolvent point sets.
Definition 2.4 (Unisolvency). Let π denote a finite-dimensional linear subspace of real-valued
functions on D. A point set X = {x1, . . . , xn} ⊂ D with n ≥ dim(π) is called π-unisolvent if the
zero function is the only element in π that vanishes on X .

The following proposition provides an equivalent operational characterisation of unisolvency:
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Proposition B.1. Let {p1, . . . , pQ} denote a basis of π, so that Q = dim(π). Then a point set X is
π-unisolvent if and only if the n×Q Vandermonde matrix PX is of full rank.

Example B.2 (Cartesian product of a unisolvent set). As a simple example of how one can generate
a unisolvent set in Rd, consider the Cartesian grid X = Zd for a set Z = {z1, . . . , zm} ⊂ R of
distinct points. Then for any d-variate polynomial

p ∈ Π := span{xα : α ∈ Nd0, α1, . . . , αd ≤ m− 1},

the univariate polynomial

pj(z) = p(zα1 , . . . , zαj−1 , z, zαj+1 , . . . , zαd)

is of degree at most m − 1 and, for any indices j ∈ {1, . . . , d} and α1, . . . , αd ∈ {1, . . . ,m − 1},
the polynomial pj cannot vanish on Z unless it is the zero polynomial. It follows that p cannot vanish
on X unless p ≡ 0. Therefore X is Π-unisolvent. Note that #X = dim(Π) = md.

Example B.3 (Not all sets are unisolvent). As a counterexample, consider six points
X = {(xi, yi), i = 1, . . . , 6} on a unit circle in R2. These points are not Π2(Rd)-unisolvent (polyno-
mials of degree at most two; see Eqn. C14): the associated Vandermonde matrix

PX =


1 x1 y1 x1y1 x2

1 y2
1

1 x2 y2 x2y2 x2
2 y2

2

1 x3 y3 x3y3 x2
3 y2

3

1 x4 y4 x4y4 x2
4 y2

4

1 x5 y5 x5y5 x2
5 y2

5

1 x6 y6 x6y6 x2
6 y2

6


for the canonical polynomial basis is not of full rank as the first column is the sum of the last two
columns.

Intuitively, “almost all” point sets are unisolvent, but to actually verify that an arbitrary point set X is
unisolvent, from Proposition B.1 it is required to compute the rank of the Vandermonde matrix PX ,
which entails a super-linear computational cost [21]. However, certain point sets are guaranteed to be
unisolvent:

• When π is a Chebyshev system (so that its basis functions are so-called generalised polyno-
mials) in one dimension, any set X ⊂ R of distinct points is π-unisolvent [10].

• For π spanned by the indicator functions 1A1
, . . . ,1An of disjoint sets Ai ⊂ D such that

xi ∈ Ai, the set X is π-unisolvent and PX is the n× n identity matrix.

• Padua points on [−1, 1]2 are known to be unisolvent with respect to polynomial spaces [4].

• Recent algorithms for generating moderate number of points for polynomial interpolation,
with a unisolvency guarantee on the output, can be used [21, 7].

C Convergence Results

This section contains fundamental convergence results for the cubature rule µX associated with the
mean of the BSC output.

C.1 Rates of Convergence for Gaussian and Sobolev Kernels

For standard BC, the analogous convergence results can be found in [3, 9]. Our attention is restricted
to the case when π is the space Πm(Rd) of d-variate polynomials of degree at most m ≥ 0:

Πm(R) := span{xα : α ∈ Nd0, α1 + · · ·+ αd ≤ m}, (C14)

where α is a multi-index and xα = xα1
1 · · ·x

αd
d . It is noteworthy that Thm. C.4 has been derived,

essentially in the form we present it, in non-probabilistic setting already in [2]. However, we go
beyond [2] and provide convergence results for both the Gaussian kernel, as well as kernels of the
Matérn class.
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To establish convergence, we observe that the posterior mean sX(f†) defined in Eqn. A8 coincides
with the interpolant defined in [23, Sec. 8.5] for a conditionally positive definite kernel1. The extensive
convergence theory outlined in [23, Ch. 11] can be therefore brought to bear. For a set X ⊂ D and D
bounded, define the fill distance hX,D := supx∈D mini=1,...,n ‖x− xi‖. Considered as a sequence
of sets indexed by n ∈ N, we say X is quasi-uniform in D if hX,D . n−1/d, where an . bn is used
to signify that the ratio an/bn is bounded above for sufficiently large n ∈ N. Recall also that ‖·‖k is
the norm of the RKHS H(k) induced by the kernel k.

Theorem C.1 (Spectral convergence for Gaussian kernels). Let D be a hypercube in Rd, let ν admit
a density which is bounded, let X be a Πm(Rd)-unisolvent set for some m ≥ 0, and let k be a
Gaussian kernel: k(x, x′) = exp(−‖x − x′‖2/(2`2)) for some ` > 0. Then there is a c > 0 such
that, for a quasi-uniform point set,

|µX(f†)− I(f†)| . e−(c/d)n1/d logn‖f†‖k.

Proof. That there is a h0 > 0 such that ‖sX(f†) − f†‖∞ ≤ ec log(hX,D)/hX,D‖f†‖k whenever
hX,D < h0 was established in [23, Thm. 11.22]. The remainder of the proof is transparent.

The next result extends [9, Prop. 4] for the standard BC method. Its proof follows that of Thm. C.1
and is an application of [23, Cor. 11.33]. The following two notions are needed for stating this result.

Definition C.2 (Interior cone condition). A bounded domain D ⊂ Rd is said to satisfy an interior
cone condition if there exists an angle θ ∈ (0, π2 ) and a radius r > 0 such that for each x ∈ D a unit
vector ξ(x) exists such that the cone {x + λy : y ∈ Rd, ‖y‖2 = 1, y>ξ(x) ≥ cos θ, λ ∈ [0, r]} is
contained in D.

The interior cone condition rules out domains that contain “pinch points” on their boundary. This
means that the domains we use in the numerical examples, Rd and hypercubes, satisfy an interior
cone condition.

Definition C.3 (Norm-equivalence). Two norms ‖·‖1 and ‖·‖2 on a space V are said to be equivalent
if there exist finite positive constants C1 and C2 such that C1‖v‖1 ≤ ‖v‖2 ≤ C2‖v‖1 for every
v ∈ V .

Furthermore, in what follows the boundary of the domainD is required to be Lipschitz; see [9, Sec. 3].
This essentially means that the boundary cannot be “too irregular”. Indeed, most domains of interest
to us, such as convex sets, have a boundary that is Lipschitz.

Theorem C.4 (Polynomial convergence for Sobolev kernels). Let X be a Πm(Rd)-unisolvent set
for some m ≥ 0. Suppose that (i) D is a bounded open set that satisfies an interior cone condition
and whose boundary is Lipschitz; (ii) for α > d/2, the RKHS of the kernel k is norm-equivalent to
the standard Sobolev space Hα(D) and (iii) ν admits a density function that is bounded. Then, for a
quasi-uniform point set,

|µX(f†)− I(f†)| . n−α/d‖f†‖Hα(D).

Remark C.5. The Matérn kernel

k(x, x′) =
21−ρ

Γ(ρ)

(√
2ρ ‖x− x′‖

`

)ρ
Kρ

(√
2ρ ‖x− x′‖

`

)
, (C15)

where Kν is the modified Bessel function of the second kind, with length-scale ` > 0 and smoothness
parameter ρ > 0 satisfies Assumption (ii) of the above theorem with α = ρ+ d/2.

C.2 Explicit Rates of Convergence (for the case Q = n)

As pointed out in Cor. 2.11, the mean µX(f†) of the Bayes–Sard output can be arranged to coincide
with any given cubature rule through judicious choice of the function space π, provided that its
dimension matches the number of nodes xi that are used. In this case, convergence rates are trivially
inherited. For example, and for simplicity letting ν be uniform on D = [0, 1]d,

1Note that a positive definite kernel is also a conditionally positive definite kernel.
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• nodes drawn randomly (or through utilisation of a Markov chain) from ν and uniform
weights yield the standard (probabilistic) Monte Carlo rate

E
(∣∣µMC

X (f†)− I(f†)
∣∣2) 1

2 . n−1/2‖f†‖L2(D);

• certain quasi-Monte Carlo methods can attain polynomial rates for functions in the space
Hα

mix(D) of dominating mixed smoothness:∣∣µQMC
X (f†)− I(f†)

∣∣ . n−α+ε‖f†‖Hαmix(D)

for any ε > 0. See [6, Ch. 15] for these results and for the formal definition of the norm;
• certain sparse grid methods on hypercubes have the rates∣∣µSG

X (f†)− I(f†)
∣∣ . n−α/d(log n)(d−1)(α/d+1) ‖f†‖Cα(D),∣∣µSG

X (f†)− I(f†)
∣∣ . n−α(log n)(d−1)(α+1) ‖f†‖Fα(D)

for function having bounded derivatives or bounded mixed derivatives up to order α, respec-
tively. See [13, 14, 15] for these results and for formal definitions of the norms.

D An Equivalent Kernel Perspective

In this section we interpret the output of the BSC method from the perspective of the reproducing
kernel, in order to provide additional insight that complements the main text. The formulation of
cubature rules in reproducing kernel Hilbert spaces dates back to [11, 18, 20, 19, 12] and in particular
the integrated kernel interpolant was studied in [2] and [22].

D.1 Interpolation

There is a well-understood equivalence between Gaussian process regression and optimal interpolation
in reproducing kernel Hilbert spaces: Let {p1, . . . , pQ} be a basis for π and define the kernel
kπ(x, x′) =

∑Q
i=1 pi(x)pi(x

′). Consider the kernel

kσ(x, x′) = k(x, x′) + σ2kπ(x, x′)

for σ > 0. Then the reproducing kernel Hilbert space induced by kσ corresponds to the set

H(kσ) =
{
f + p : f ∈ H(k), p ∈ π

}
equipped with a particular σ-dependent inner product. It can be shown that the interpolant of DX
with minimal norm in H(kσ) is unique and given by

sX,σ(f†)(x) = [kX(x) + σ2kπ,X(x)][KX + σ2PXP
>
X ]−1f†X ,

where the row vector kπ,X(x) has the elements kπ(x, xj). When η = 0, it is straightforward to show
that sX,σ(f†) = sX,Σ(f†) for Σ = σ2I and thus sX,σ(f†) → sX(f†) pointwise as σ → ∞. The
kernel interpolation operator sX is well-studied and the reader is referred to, for example, Sec. 8.5
of [23].

D.2 Cubature

The worst-case error ek(X,w) of a cubature rule described by the points X = {x1, . . . , xn} ⊂ D
and weights w = (w1, . . . , wn) ∈ Rn has the explicit form

ek(X,w) := sup
‖h‖k≤1

∣∣∣∣ n∑
i=1

wih(xi)−
∫
D

hdν

∣∣∣∣ =
(
kν,ν − 2kν,Xw + w>KXw

)1/2
. (D16)

See for example [16, Cor. 3.6].

Recall from Sec. 2.4 that the weights wBC of the standard BC method are worst-case optimal in the
reproducing kernel Hilbert space H(k) induced by the kernel k:

wBC = arg min
w∈Rn

ek(X,w).
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Conveniently, the minimum corresponds to the integration error for the kernel mean function kν
which acts as the representer of integration (i.e., 〈h, kν〉k = I(h) for h ∈ H(k)):

ek(X,wBC) =
(
kν,ν − kν,XwBC

)1/2
.

Now, turning to BSC, we have from Sec. D.1 that the BSC rule µX(f†) can be cast as an optimal
cubature method based on the kernel

kσ(x, x′) = k(x, x′) + σ2kπ(x, x′)

in the σ →∞ limit. The following therefore holds for the weights wk and variance σ2
X of the BSC

method:
wk = lim

σ→∞
arg min
w∈Rn

ekσ (X,w), σ2
X = lim

σ→∞
min
w∈Rn

ekσ (X,w)2.

Recall that H(kσ) consists of functions which can be expressed as sums of elements of H(k) and π.
To simplify the following argument, assume f† ∈ H(kσ). That the elements of π are exactly
integrated can be clearly understood in this context. Indeed, the norm of a function h ∈ H(kσ)
is [1, Sec. 4.1]

‖h‖2kσ = min
g∈H(k), p∈π

{
‖g‖2k + σ−2‖p‖2kπ : g + p = h

}
,

where we have used the fact that scaling a kernel by σ2 results in scaling the RKHS inner product
by σ−2. Thus ‖σ2p‖2kσ ≤ 1 for any p ∈ π such that ‖p‖2kπ ≤ 1. Consequently, the worst-case
error (D16) is dominated by the integration error for functions in π:

ekσ (X,w) = sup
‖h‖kσ≤1

∣∣∣∣ n∑
i=1

wih(xi)−
∫
D

hdν

∣∣∣∣ ≥ σ2 sup
‖p‖kπ≤1

∣∣∣∣ n∑
i=1

wip(xi)−
∫
D

p dν

∣∣∣∣.
It follows that the BSC rule must be the unique cubature rule that integrates exactly functions from
π, existence of which is guaranteed by the π-unisolvency assumption on X . In particular, when
dim(π) = n, the weights wk are fully-determined by the requirement of exactness for functions in
π and nothing is done to integrate functions in H(k) well. Consequently, the limiting variance σ2

X
must coincide with the (squared) worst-case error ek(X,wk)2 in the RKHS H(k).
Remark D.1. Alternatively, the limiting weights wk can be seen as a solution to the constrained
convex optimisation problem of minimising the RKHS approximation error to the kernel mean
function kν under exactness conditions for functions in π:

wk = arg min
w∈Rn

‖kν − kXw‖k subject to P>Xw = p>ν .

This can be verified in a straightforward manner based on [5, Sec. 5.2].

E Further Details for Numerical Experiments

This section contains further details about the zero coupon bonds example of Sec. 3.3. See [8, Sec. 6.1]
for a complete account.

The dT -step Euler–Maruyama discretisation with uniform step-size ∆t = T/dT of the Vasicek model

dr(t) = κ
(
θ − r(t)

)
dt+ σdW (t), (E17)

where W (t) is the standard Brownian motion and κ, θ, and σ are positive parameters, is

rti = rti−1
+ κ
(
θ − rti−1

)
∆t+ σ

√
∆txti , i = 1, . . . , d,

for independent standard Gaussian random variables xti and some deterministic initial value rt0 . The
quantity of interest is the Gaussian expectation

P (0, T ) := E

[
exp

(
−∆t

dT−1∑
i=0

rti

)]
= exp(−∆trt0)E

[
exp

(
−∆t

dT−1∑
i=1

rti

)]
of dimension d = dT − 1. This expectation admits the closed-form solution

P (0, T ) = exp

(
− (γ + βdT rt0)T

d

)
for certain constants γ and βdT . In the experiment, we used the same parameter values as in [8] for
the model in Eqn. E17:

κ = 0.1817303, θ = 0.0825398957, σ = 0.0125901, rt0 = 0.021673, T = 5.
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