
Supplementary Material

This document contains supplementary material for the article “A Bayes–Sard Cubature Method”.

A Proof of Results in the Main Text

The prior model (Def. 2.1) used in the main text is

f(x) | γ ∼ GP
(
s(x), k(x, x′)

)
, s(x) =

Q∑
j=1

γjpj(x), γ ∼ N (0,Σ).

It is straightforward to consider the generalisation γ ∼ N (η,Σ) for potentially non-zero vector
η ∈ RQ; we do this in this supplement.

A.1 Results on the Regression Model

Theorem 2.2 (Posterior). In the posterior, f(x) | DX ∼ GP(sX,Σ(f†)(x), kX,Σ(x, x′)) where

sX,Σ(f†)(x) = kX(x)α+ p(x)β

= [kX(x) + p(x)ΣP>X ][KX + PXΣP>X ]−1f†X ,
(A1)

kX,Σ(x, x′) = k(x, x′) + p(x)Σp(x′)>

− [kX(x) + p(x)ΣP>X ][KX + PXΣP>X ]−1[kX(x′) + p(x′)ΣP>X ]>
(A2)

and the coefficients α and β are defined via the invertible linear system[
KX PX
P>X −Σ−1

] [
α
β

]
=

[
f†X
−η

]
. (A3)

Proof. Under the hierarchical prior we have the marginal

f(x) ∼ GP
(
p(x)η, k(x, x′) + p(x)Σp(x′)>

)
.

Thus standard formulae for the conditioning of a Gaussian process [17, Eqns. 2.25, 2.26] can be used:

sX,Σ(f†)(x) = p(x)η + [kX(x) + p(x)ΣP>X ][KX + PXΣP>X ]−1[f†X − PXη],

kX,Σ(x, x′) = k(x, x′) + p(x)Σp(x′)>

− [kX(x) + p(x)ΣP>X ][KX + PXΣP>X ]−1[kX(x′) + p(x′)ΣP>X ]>.
(A4)

The coefficients α and β are therefore

α = [KX + PXΣP>X ]−1[f†X − PXΣη],

β = Ση + ΣP>X [KX + PXΣP>X ]−1[f†X − PXΣη].

It can be verified by substitution that P>Xα − Σ−1β = −η and that the interpolation equations
KXα+ PXβ = f†X hold. This allows us to provide the equivalent characterisation of α and β in
terms of the linear system in Eqn. A3. To see that this linear system is invertible, we can use the
block matrix determinant formula

det

([
KX PX
P>X −Σ−1

])
= det(−Σ−1) det(KX + PXΣP>X ).

That is, since Σ is a positive definite covariance matrix, the block matrix is invertible if and only
if KX + PXΣP>X is invertible. This is indeed true because, for instance, KX + PXΣP>X is the
covariance matrix for the random vector fX under the prior, which is non-singular as k is positive
definite and the elements of X are distinct.
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The following Lagrange form [23, Sec. 11.1] of the posterior will be useful:
Theorem A.1 (Lagrange form for the posterior). The posterior mean and covariance functions in
Eqns. A1 and A2 can be written in the Lagrange form

sX,Σ(f†)(x) = uX,Σ(x)>f†X − vX,Σ(x)>η,

kX,Σ(x, x′) = k(x, x′) + p(x)Σp(x′)> − [kX(x) + p(x)ΣP>X ]uX,Σ(x′), (A5)

where
uX,Σ(x) := [KX + PXΣP>X ]−1[kX(x) + p(x)ΣP>X ]> (A6)

is a vector of Lagrange cardinal functions and vX,Σ(x) := Σ[P>XuX,Σ(x)− p(x)>]. These functions
are obtained from the invertible linear system[

KX PX
P>X −Σ−1

] [
uX,Σ(x)
vX,Σ(x)

]
=

[
kX(x)>

p(x)>

]
(A7)

and satisfy the cardinality property [uX,Σ(xj)]i = δij and [vX,Σ(xj)]i = 0 for every i, j ∈
{1, . . . , n}.

Proof. From Eqns. A1 and A3, the posterior mean is

sX,Σ(f†)(x) = [ kX(x) p(x) ]

[
α
β

]
= [ kX(x) p(x) ]

[
KX PX
P>X −Σ−1

]−1 [
f†X
−η

]
,

and this can be written as sX,Σ(f†)(x) = uX,Σ(x)>f†X − vX,Σ(x)>η where uX,Σ(x) and vX,Σ(x)
are obtained from the linear system in Eqn. A7. The expression for the posterior covariance follows
by inserting uX,Σ(x′), as given in Eqn. A6, into Eqn. A2. The cardinality property follows after we
recognise that, setting x = xj , Eqn. A7 is solved by uX,Σ(xj) = ej (the jth unit coordinate vector)
and vX,Σ(xj) = 0.

Theorem 2.5 (Flat prior limit). Assume that X is a π-unisolvent set. For the prior in Def. 2.1 we
have that sX,Σ(f†)→ sX(f†) and kX,Σ → kX pointwise as Σ−1 → 0, where

sX(f†)(x) = kX(x)α+ p(x)β, (A8)

kX(x, x′) = k(x, x′)− kX(x)K−1
X kX(x′)>

+
[
kX(x)K−1

X PX − p(x)
]
[P>XK

−1
X PX ]−1

[
kX(x′)K−1

X PX − p(x′)
]>
,

(A9)

and the coefficients α and β are defined via the invertible linear system[
KX PX
P>X 0

] [
α
β

]
=

[
f†X
−η

]
. (A10)

Proof. For the mean function, the limit can just be taken in the linear system of Eqn. A3 and
it is required is to verify that this system can be inverted. From an application of the formula
for a block matrix determinant we have that the determinant of the matrix in Eqn. A10 equals
det(−P>XK

−1
X PX)det(KX), where det(KX) > 0. Because X is π-unisolvent, PX is of full rank

and consequently det(−P>XK
−1
X PX) 6= 0. Thus the block matrix can be inverted.

To obtain the covariance function an additional argument is needed. To this end, the Woodbury matrix
identity yields

[KX + PXΣP>X ]−1 = K−1
X −K

−1
X PX [Σ−1 + P>XK

−1
X PX ]−1P>XK

−1
X .

Denoting LX := P>XK
−1
X PX and inserting the above into Eqn. A4 produces

kX,Σ(x, x′) = k(x, x′)− kX(x)K−1
X kX(x′)> + p(x)Σp(x′)> − p(x)ΣLXΣp(x′)>

− kX(x)K−1
X PXΣp(x′)> − p(x)ΣP>XK

−1
X kX(x′)>

+ kX(x)K−1
X PX [Σ−1 + LX ]−1P>XK

−1
X kX(x′)>

+ kX(x)K−1
X PX [Σ−1 + LX ]−1LXΣp(x′)>

+ p(x)ΣLX [Σ−1 + LX ]−1P>XK
−1
X kX(x′)>

+ p(x)ΣLX [Σ−1 + LX ]−1LXΣp(x′)>.

(A11)
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For small enough Σ−1 we can write the Neumann series

[Σ−1 + LX ]−1 = L−1
X

[
I − (LXΣ)−1 + (LXΣ)−2 − · · ·

]
.

Therefore we have the trio of results
K−1
X PX [Σ−1 + LX ]−1P>XK

−1
X = K−1

X PXL
−1
X P>XK

−1
X +O(Σ−1),

K−1
X PX [Σ−1 + LX ]−1LXΣ = K−1

X PXΣ−K−1
X PXL

−1
X +O(Σ−1),

ΣLX [Σ−1 + LX ]−1LXΣ = ΣLXΣ− Σ + L−1
X +O(Σ−1).

Inserting these into Eqn. A11 yields, after cancellation and taking the limit Σ−1 → 0,

kX(x, x′) = k(x, x′)− kX(x)K−1
X kX(x′)>

+
[
kX(x)K−1

X PX − p(x)
]
[P>XK

−1
X PX ]−1

[
kX(x′)K−1

X PX − p(x′)
]>
,

as claimed.

The flat prior limit of the posterior also admits a Lagrange representation:
Theorem A.2 (Lagrange form in the flat prior limit). Assume that X is a π-unisolvent set. The
posterior mean and covariance in Eqns. A8 and A9 can be written as

sX(f†)(x) = uX(x)>f†X − vX(x)>η,

kX(x, x′) = k(x, x′)− kX(x)K−1
X kX(x′)> +

[
kX(x)K−1

X PX − p(x)
]
vX(x′) (A12)

where
vX(x) := [P>XK

−1
X PX ]−1[kX(x)K−1

X PX − p(x)]>,

uX(x) := K−1
X [kX(x)> − PXvX(x)]

are obtained from the solution of the invertible linear system[
KX PX
P>X 0

] [
uX(x)
vX(x)

]
=

[
kX(x)>

p(x)>

]
and have the cardinality properties [uX(xj)]i = δij and [vX(xj)]i = 0 for every i, j ∈ {1, . . . , n}.

The proof is similar to that of Thm. A.1 and is therefore omitted. Note the reversal in the roles of
uX,Σ and vX in Eqns. A5 and A12 for the posterior covariance.

A.2 Results on Cubature

Theorem 2.7 (Bayes–Sard cubature; BSC). Consider the Gaussian process

f(x) | DX ∼ GP
(
sX,Σ(f†)(x), kX,Σ(x, x′)

)
defined in Thm. 2.2 and suppose that X is a π-unisolvent point set. Then, as Σ−1 → 0, the mean and
variance of I(f) | DX converge to

µX(f†) = w>k f
†
X − w

>
π η and σ2

X = kν,ν − kν,XK−1
X k>ν,X +

(
kν,XK

−1
X PX − pν

)
wπ,

respectively, where the weight vectors wk ∈ Rn and wπ ∈ RQ are obtained from the solution of the
invertible linear system [

KX PX
P>X 0

] [
wk
wπ

]
=

[
k>ν,X
p>ν

]
. (A13)

Equivalently, wk = I(uX) and wπ = I(vX) for the Lagrange functions of Thm. A.2.

Proof. As we have only established that sX,Σ(f†) → sX(f†) and kX,Σ → kX pointwise in Thm.
2.5, we cannot directly deduce that

µX,Σ(f†)→ µX(f†) =

∫
D

sX(f†)(x)dν(x),

σ2
X,Σ → σ2

X =

∫
D

∫
D

kX(x, x′)dν(x)dν(x′).

However, that this is indeed the case can be confirmed by carrying out analysis analogous to that
in the proof Thm. 2.5, based on Neumann series, for µX,Σ(f†) and σ2

X,Σ at the limit Σ−1 → 0. To
avoid repetition, the details are omitted.
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Theorem 2.10. Suppose that dim(π) = n and let X be a π-unisolvent set. If η = 0, then

µX(f†) = w>k f
†
X , w>k = pνP

−1
X , µX(p) = I(p) for every p ∈ π

and
σ2
X = ek(X,wk)2 = kν,ν − 2kX,νwk + w>k KXwk.

That is, the BSC weights wk are the unique weights for a cubature rule with the points X such that
every function in π is integrated exactly and the posterior standard deviation σX coincides with the
WCE in the RKHS H(k).

Proof. Due to dim(π) = n and X being a π-unisolvent set, the Vandermonde matrix PX is an
invertible square matrix. From Eqn. A13 we have

wk =
(
K−1
X −K

−1
X PX [P>XK

−1
X PX ]−1P>XK

−1
X

)
k>ν,X +K−1

X PX [P>XK
−1
X PX ]−1p>ν

= P−>X p>ν .

These are the unique weights satisfying
∑n
j=1 wk,jpi(xj) = I(pi) for each basis function pi of π.

Similarly, the weights wπ take the form

wπ = [P>XK
−1
X PX ]−1P>XK

−1
X k>ν,X − [P>XK

−1
X PX ]−1p>ν = P−1

X k>ν,X − [P>XK
−1
X PX ]−1p>ν ,

so that

σ2
X = kν,ν − kν,XK−1

X k>ν,X +
(
P>XK

−1
X k>ν,X − p>ν

)>
wπ

= kν,ν − kν,XK−1
X k>ν,X +

(
P>XK

−1
X k>ν,X − p>ν

)>(
P−1
X k>ν,X − [P>XK

−1
X PX ]−1p>ν

)
= kν,ν − 2kν,Xwk + w>k KXwk.

We recognise this final expression as the squared worst-case error from Eqn. D16.

Corollary 2.11. Consider an n-point cubature rule with points X and non-zero weights w ∈ Rn
and assume that ν admits a positive density function (w.r.t. the Lebesgue measure) and that η = 0.
Then there is a function space π of dimension n, such that the BSC method recovers wk = w and
σ2
X = ek(X,w)2, as defined in Thm. 2.7.

Proof. From the assumption that ν has a positive density function with respect to the Lebesgue
measure it follows that ν({x}) = 0 for every x ∈ D and that for any distinct points x1, . . . , xn ∈ D
there exist disjoint sets Di of positive measure such that xi ∈ Di. Select then the n functions

pi = 1Di\{xi} +
ν(Di)

wi
1{xi}.

It holds that I(pi) = ν(Di). The associated Vandermonde matrix is diagonal and has the elements
[PX ]ii = ν(Di)/wi. Hence it can be trivially inverted. It follows that the BSC method with basis
{p1, . . . , pn} has a posterior mean µX(f†) = w>f†X .

The construction is more appealing if the weights are positive and their sum does not exceed one,
since then we can use pi = 1Di for disjoint sets such that ν(Di) = wi and xi ∈ Di, or if the weights
are naturally given by exactness conditions on π and X is π-unisolvent. Examples of such more
natural constructions include uniformly weighted (quasi) Monte Carlo rules, that arise from using a
partition D = ∪ni=1Di with ν(Di) = 1/n, and Gaussian tensor product rules.

B Unisolvent Point Sets

This section contains more details and examples about unisolvent point sets.
Definition 2.4 (Unisolvency). Let π denote a finite-dimensional linear subspace of real-valued
functions on D. A point set X = {x1, . . . , xn} ⊂ D with n ≥ dim(π) is called π-unisolvent if the
zero function is the only element in π that vanishes on X .

The following proposition provides an equivalent operational characterisation of unisolvency:
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Proposition B.1. Let {p1, . . . , pQ} denote a basis of π, so that Q = dim(π). Then a point set X is
π-unisolvent if and only if the n×Q Vandermonde matrix PX is of full rank.

Example B.2 (Cartesian product of a unisolvent set). As a simple example of how one can generate
a unisolvent set in Rd, consider the Cartesian grid X = Zd for a set Z = {z1, . . . , zm} ⊂ R of
distinct points. Then for any d-variate polynomial

p ∈ Π := span{xα : α ∈ Nd0, α1, . . . , αd ≤ m− 1},

the univariate polynomial

pj(z) = p(zα1 , . . . , zαj−1 , z, zαj+1 , . . . , zαd)

is of degree at most m − 1 and, for any indices j ∈ {1, . . . , d} and α1, . . . , αd ∈ {1, . . . ,m − 1},
the polynomial pj cannot vanish on Z unless it is the zero polynomial. It follows that p cannot vanish
on X unless p ≡ 0. Therefore X is Π-unisolvent. Note that #X = dim(Π) = md.

Example B.3 (Not all sets are unisolvent). As a counterexample, consider six points
X = {(xi, yi), i = 1, . . . , 6} on a unit circle in R2. These points are not Π2(Rd)-unisolvent (polyno-
mials of degree at most two; see Eqn. C14): the associated Vandermonde matrix

PX =


1 x1 y1 x1y1 x2

1 y2
1

1 x2 y2 x2y2 x2
2 y2

2

1 x3 y3 x3y3 x2
3 y2

3

1 x4 y4 x4y4 x2
4 y2

4

1 x5 y5 x5y5 x2
5 y2

5

1 x6 y6 x6y6 x2
6 y2

6


for the canonical polynomial basis is not of full rank as the first column is the sum of the last two
columns.

Intuitively, “almost all” point sets are unisolvent, but to actually verify that an arbitrary point set X is
unisolvent, from Proposition B.1 it is required to compute the rank of the Vandermonde matrix PX ,
which entails a super-linear computational cost [21]. However, certain point sets are guaranteed to be
unisolvent:

• When π is a Chebyshev system (so that its basis functions are so-called generalised polyno-
mials) in one dimension, any set X ⊂ R of distinct points is π-unisolvent [10].

• For π spanned by the indicator functions 1A1
, . . . ,1An of disjoint sets Ai ⊂ D such that

xi ∈ Ai, the set X is π-unisolvent and PX is the n× n identity matrix.

• Padua points on [−1, 1]2 are known to be unisolvent with respect to polynomial spaces [4].

• Recent algorithms for generating moderate number of points for polynomial interpolation,
with a unisolvency guarantee on the output, can be used [21, 7].

C Convergence Results

This section contains fundamental convergence results for the cubature rule µX associated with the
mean of the BSC output.

C.1 Rates of Convergence for Gaussian and Sobolev Kernels

For standard BC, the analogous convergence results can be found in [3, 9]. Our attention is restricted
to the case when π is the space Πm(Rd) of d-variate polynomials of degree at most m ≥ 0:

Πm(R) := span{xα : α ∈ Nd0, α1 + · · ·+ αd ≤ m}, (C14)

where α is a multi-index and xα = xα1
1 · · ·x

αd
d . It is noteworthy that Thm. C.4 has been derived,

essentially in the form we present it, in non-probabilistic setting already in [2]. However, we go
beyond [2] and provide convergence results for both the Gaussian kernel, as well as kernels of the
Matérn class.
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To establish convergence, we observe that the posterior mean sX(f†) defined in Eqn. A8 coincides
with the interpolant defined in [23, Sec. 8.5] for a conditionally positive definite kernel1. The extensive
convergence theory outlined in [23, Ch. 11] can be therefore brought to bear. For a set X ⊂ D and D
bounded, define the fill distance hX,D := supx∈D mini=1,...,n ‖x− xi‖. Considered as a sequence
of sets indexed by n ∈ N, we say X is quasi-uniform in D if hX,D . n−1/d, where an . bn is used
to signify that the ratio an/bn is bounded above for sufficiently large n ∈ N. Recall also that ‖·‖k is
the norm of the RKHS H(k) induced by the kernel k.

Theorem C.1 (Spectral convergence for Gaussian kernels). Let D be a hypercube in Rd, let ν admit
a density which is bounded, let X be a Πm(Rd)-unisolvent set for some m ≥ 0, and let k be a
Gaussian kernel: k(x, x′) = exp(−‖x − x′‖2/(2`2)) for some ` > 0. Then there is a c > 0 such
that, for a quasi-uniform point set,

|µX(f†)− I(f†)| . e−(c/d)n1/d logn‖f†‖k.

Proof. That there is a h0 > 0 such that ‖sX(f†) − f†‖∞ ≤ ec log(hX,D)/hX,D‖f†‖k whenever
hX,D < h0 was established in [23, Thm. 11.22]. The remainder of the proof is transparent.

The next result extends [9, Prop. 4] for the standard BC method. Its proof follows that of Thm. C.1
and is an application of [23, Cor. 11.33]. The following two notions are needed for stating this result.

Definition C.2 (Interior cone condition). A bounded domain D ⊂ Rd is said to satisfy an interior
cone condition if there exists an angle θ ∈ (0, π2 ) and a radius r > 0 such that for each x ∈ D a unit
vector ξ(x) exists such that the cone {x + λy : y ∈ Rd, ‖y‖2 = 1, y>ξ(x) ≥ cos θ, λ ∈ [0, r]} is
contained in D.

The interior cone condition rules out domains that contain “pinch points” on their boundary. This
means that the domains we use in the numerical examples, Rd and hypercubes, satisfy an interior
cone condition.

Definition C.3 (Norm-equivalence). Two norms ‖·‖1 and ‖·‖2 on a space V are said to be equivalent
if there exist finite positive constants C1 and C2 such that C1‖v‖1 ≤ ‖v‖2 ≤ C2‖v‖1 for every
v ∈ V .

Furthermore, in what follows the boundary of the domainD is required to be Lipschitz; see [9, Sec. 3].
This essentially means that the boundary cannot be “too irregular”. Indeed, most domains of interest
to us, such as convex sets, have a boundary that is Lipschitz.

Theorem C.4 (Polynomial convergence for Sobolev kernels). Let X be a Πm(Rd)-unisolvent set
for some m ≥ 0. Suppose that (i) D is a bounded open set that satisfies an interior cone condition
and whose boundary is Lipschitz; (ii) for α > d/2, the RKHS of the kernel k is norm-equivalent to
the standard Sobolev space Hα(D) and (iii) ν admits a density function that is bounded. Then, for a
quasi-uniform point set,

|µX(f†)− I(f†)| . n−α/d‖f†‖Hα(D).

Remark C.5. The Matérn kernel

k(x, x′) =
21−ρ

Γ(ρ)

(√
2ρ ‖x− x′‖

`

)ρ
Kρ

(√
2ρ ‖x− x′‖

`

)
, (C15)

where Kν is the modified Bessel function of the second kind, with length-scale ` > 0 and smoothness
parameter ρ > 0 satisfies Assumption (ii) of the above theorem with α = ρ+ d/2.

C.2 Explicit Rates of Convergence (for the case Q = n)

As pointed out in Cor. 2.11, the mean µX(f†) of the Bayes–Sard output can be arranged to coincide
with any given cubature rule through judicious choice of the function space π, provided that its
dimension matches the number of nodes xi that are used. In this case, convergence rates are trivially
inherited. For example, and for simplicity letting ν be uniform on D = [0, 1]d,

1Note that a positive definite kernel is also a conditionally positive definite kernel.
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• nodes drawn randomly (or through utilisation of a Markov chain) from ν and uniform
weights yield the standard (probabilistic) Monte Carlo rate

E
(∣∣µMC

X (f†)− I(f†)
∣∣2) 1

2 . n−1/2‖f†‖L2(D);

• certain quasi-Monte Carlo methods can attain polynomial rates for functions in the space
Hα

mix(D) of dominating mixed smoothness:∣∣µQMC
X (f†)− I(f†)

∣∣ . n−α+ε‖f†‖Hαmix(D)

for any ε > 0. See [6, Ch. 15] for these results and for the formal definition of the norm;
• certain sparse grid methods on hypercubes have the rates∣∣µSG

X (f†)− I(f†)
∣∣ . n−α/d(log n)(d−1)(α/d+1) ‖f†‖Cα(D),∣∣µSG

X (f†)− I(f†)
∣∣ . n−α(log n)(d−1)(α+1) ‖f†‖Fα(D)

for function having bounded derivatives or bounded mixed derivatives up to order α, respec-
tively. See [13, 14, 15] for these results and for formal definitions of the norms.

D An Equivalent Kernel Perspective

In this section we interpret the output of the BSC method from the perspective of the reproducing
kernel, in order to provide additional insight that complements the main text. The formulation of
cubature rules in reproducing kernel Hilbert spaces dates back to [11, 18, 20, 19, 12] and in particular
the integrated kernel interpolant was studied in [2] and [22].

D.1 Interpolation

There is a well-understood equivalence between Gaussian process regression and optimal interpolation
in reproducing kernel Hilbert spaces: Let {p1, . . . , pQ} be a basis for π and define the kernel
kπ(x, x′) =

∑Q
i=1 pi(x)pi(x

′). Consider the kernel

kσ(x, x′) = k(x, x′) + σ2kπ(x, x′)

for σ > 0. Then the reproducing kernel Hilbert space induced by kσ corresponds to the set

H(kσ) =
{
f + p : f ∈ H(k), p ∈ π

}
equipped with a particular σ-dependent inner product. It can be shown that the interpolant of DX
with minimal norm in H(kσ) is unique and given by

sX,σ(f†)(x) = [kX(x) + σ2kπ,X(x)][KX + σ2PXP
>
X ]−1f†X ,

where the row vector kπ,X(x) has the elements kπ(x, xj). When η = 0, it is straightforward to show
that sX,σ(f†) = sX,Σ(f†) for Σ = σ2I and thus sX,σ(f†) → sX(f†) pointwise as σ → ∞. The
kernel interpolation operator sX is well-studied and the reader is referred to, for example, Sec. 8.5
of [23].

D.2 Cubature

The worst-case error ek(X,w) of a cubature rule described by the points X = {x1, . . . , xn} ⊂ D
and weights w = (w1, . . . , wn) ∈ Rn has the explicit form

ek(X,w) := sup
‖h‖k≤1

∣∣∣∣ n∑
i=1

wih(xi)−
∫
D

hdν

∣∣∣∣ =
(
kν,ν − 2kν,Xw + w>KXw

)1/2
. (D16)

See for example [16, Cor. 3.6].

Recall from Sec. 2.4 that the weights wBC of the standard BC method are worst-case optimal in the
reproducing kernel Hilbert space H(k) induced by the kernel k:

wBC = arg min
w∈Rn

ek(X,w).
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Conveniently, the minimum corresponds to the integration error for the kernel mean function kν
which acts as the representer of integration (i.e., 〈h, kν〉k = I(h) for h ∈ H(k)):

ek(X,wBC) =
(
kν,ν − kν,XwBC

)1/2
.

Now, turning to BSC, we have from Sec. D.1 that the BSC rule µX(f†) can be cast as an optimal
cubature method based on the kernel

kσ(x, x′) = k(x, x′) + σ2kπ(x, x′)

in the σ →∞ limit. The following therefore holds for the weights wk and variance σ2
X of the BSC

method:
wk = lim

σ→∞
arg min
w∈Rn

ekσ (X,w), σ2
X = lim

σ→∞
min
w∈Rn

ekσ (X,w)2.

Recall that H(kσ) consists of functions which can be expressed as sums of elements of H(k) and π.
To simplify the following argument, assume f† ∈ H(kσ). That the elements of π are exactly
integrated can be clearly understood in this context. Indeed, the norm of a function h ∈ H(kσ)
is [1, Sec. 4.1]

‖h‖2kσ = min
g∈H(k), p∈π

{
‖g‖2k + σ−2‖p‖2kπ : g + p = h

}
,

where we have used the fact that scaling a kernel by σ2 results in scaling the RKHS inner product
by σ−2. Thus ‖σ2p‖2kσ ≤ 1 for any p ∈ π such that ‖p‖2kπ ≤ 1. Consequently, the worst-case
error (D16) is dominated by the integration error for functions in π:

ekσ (X,w) = sup
‖h‖kσ≤1

∣∣∣∣ n∑
i=1

wih(xi)−
∫
D

hdν

∣∣∣∣ ≥ σ2 sup
‖p‖kπ≤1

∣∣∣∣ n∑
i=1

wip(xi)−
∫
D

p dν

∣∣∣∣.
It follows that the BSC rule must be the unique cubature rule that integrates exactly functions from
π, existence of which is guaranteed by the π-unisolvency assumption on X . In particular, when
dim(π) = n, the weights wk are fully-determined by the requirement of exactness for functions in
π and nothing is done to integrate functions in H(k) well. Consequently, the limiting variance σ2

X
must coincide with the (squared) worst-case error ek(X,wk)2 in the RKHS H(k).
Remark D.1. Alternatively, the limiting weights wk can be seen as a solution to the constrained
convex optimisation problem of minimising the RKHS approximation error to the kernel mean
function kν under exactness conditions for functions in π:

wk = arg min
w∈Rn

‖kν − kXw‖k subject to P>Xw = p>ν .

This can be verified in a straightforward manner based on [5, Sec. 5.2].

E Further Details for Numerical Experiments

This section contains further details about the zero coupon bonds example of Sec. 3.3. See [8, Sec. 6.1]
for a complete account.

The dT -step Euler–Maruyama discretisation with uniform step-size ∆t = T/dT of the Vasicek model

dr(t) = κ
(
θ − r(t)

)
dt+ σdW (t), (E17)

where W (t) is the standard Brownian motion and κ, θ, and σ are positive parameters, is

rti = rti−1
+ κ
(
θ − rti−1

)
∆t+ σ

√
∆txti , i = 1, . . . , d,

for independent standard Gaussian random variables xti and some deterministic initial value rt0 . The
quantity of interest is the Gaussian expectation

P (0, T ) := E

[
exp

(
−∆t

dT−1∑
i=0

rti

)]
= exp(−∆trt0)E

[
exp

(
−∆t

dT−1∑
i=1

rti

)]
of dimension d = dT − 1. This expectation admits the closed-form solution

P (0, T ) = exp

(
− (γ + βdT rt0)T

d

)
for certain constants γ and βdT . In the experiment, we used the same parameter values as in [8] for
the model in Eqn. E17:

κ = 0.1817303, θ = 0.0825398957, σ = 0.0125901, rt0 = 0.021673, T = 5.
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