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Abstract

Kernel-based methods provide a flexible toolkit for approximation of linear functionals.
Importantly, these methods carry a probabilistic interpretation: a worst-case optimal method in
the reproducing kernel Hilbert space induced by the kernel being used can be equivalently
formulated as the posterior mean of a Gaussian process (GP) with the same covariance kernel; the
worst-case error corresponds to the GP posterior standard deviation. This connection makes it
possible to speak of and quantify, in a statistically principled way, uncertainty in the approximation
provided by a kernel method. Consequently, these methods can be viewed as probabilistic
numerical methods that interpret numerical approximation as a statistical inference problem and
attempt to endow the solution of a numerical problem with a full non-degenerate posterior
probability distribution. Unfortunately, both the kernel and GP formulations suffer from cubic
computational and quadratic memory cost in the number of data points. Furthermore, because
standard versions of kernel-based methods do not typically coincide with any "classical" method
of numerical analysis in a way that would give rise to a corresponding non-degenerate GP posterior
(with the exception of spline methods), there has been no straightforward way to interpret classical
methods as useful statistical inference procedures within the GP framework.

This thesis studies numerical approximation of analytically intractable integrals by the means of
kernel and Bayesian cubature rules, the former worst-case optimal cubature methods and the latter
posteriors of GPs. The first contribution is the development of algorithms that significantly reduce
the computational cost of these cubature methods by employing point sets that can be expressed
as unions of fully symmetric sets. The resulting algorithm is non-approximate, computationally
competitive and scalable, flexible, and algorithmically simple, enabling application of kernel and
Bayesian cubature rules to integration problems involving up to millions of points. Additionally, a
closed-form approximation linked to the Gauss—Hermite quadrature is proposed for the special
case of one-dimensional integration against the standard Gaussian measure. The second main
contribution is the study of different kernels and GP modelling choices that yield Bayesian cubature
rules corresponding to classical cubature methods, such as Gaussian cubatures and uniformly
weighted Monte Carlo rules. The proposed Bayes—Sard framework is general and capable of
probabilistic reproduction of virtually any cubature rule.

Keywords Numerical integration, reproducing kernel Hilbert spaces, Gaussian processes,
probabilistic numerics

ISBN (printed) 978-952-60-8703-0 ISBN (pdf) 978-952-60-8704-7

ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942

Location of publisher Helsinki Location of printing Helsinki Year 2019
Pages 186 urn http://urn.fi/URN:ISBN:978-952-60-8704-7







A' Aalto-yliopisto Tiivistelma

u Aalto-yliopisto, PL 11000, 00076 Aalto

Tekija
Toni Karvonen

Vaitoskirjan nimi
Ydinperusteiset ja bayesilaiset menetelmét numeerisessa integroinnissa

Julkaisija Sahkotekniikan korkeakoulu

Yksikk6 Sidhkotekniikan ja automaation laitos
Sarja Aalto University publication series DOCTORAL DISSERTATIONS 160/2019
Tutkimusala Automaatio, systeemit ja sddtotekniikka

Kasikirjoituksen pvm 06.05.2019 Vaitospaiva 08.11.2019
Viittelyluvan mydntamispédiva 20.08.2019 Kieli Englanti
[ Monografia X Artikkelivaitoskirja [ ] Esseeviitdskirja
Tiivistelma

Ydinperusteiset menetelmét ovat joustava joukko lineaarifunktioiden approksimointia varten
kehitettyja algoritmeja. Miké tarkeintd, nailla menetelmilld on todennékoisyysteoreettinen tulkinta:
menetelm4, joka on pahimmassa tapauksessa optimaalinen reproduktiivisen ytimen Hilbertin
avaruudessa, on mahdollista ilmaista tdysin ekvivalentista gaussisen prosessin
posteriorikeskiarvona ja sen pahimman tapauksen virhe vastaavana posteriorikeskihajontana.
Tama yhteys mahdollistaa ydinmenetelmén tuottaman approksimaation epavarmuudesta
puhumisen ja mallintamisen tilastollisesti merkityksellisesti. Taten ydinmenetelmét voi nahda
probabilistisina numeerisina menetelmina, jotka késittelevat numeerista approksimaatiota
tilastollisena paattelyna ja pyrkivét varustamaan ongelman ratkaisun epidegeneroituneella
posterioritodennikoisyysjakaumalla. Seka ytimiin ettd gaussisiin prosesseihin perustuvat
approksimaatiomenetelmat karsivat kuutiollisesta aika- ja neliollisesta tilavaativuaudesta.
Ydinperusteiset menetelmat eivit myoskdan tavanomaisessa muodossaan tyypillisesti
samanaikaisesti vastaa "klassisia" numeerisen analyysin menetelmis ja epddegeneroituneita
gaussisten prosessien posteriorijakaumia (splinimenetelmia lukuunottamatta), joten klassisia
menetelmii ei ole ollut mahdollista tulkita hyodyllisina tilastollisen paattelyn menetelmina
gaussisia prosesseja kiyttien.

Tama vaitoskirja tutkii suljettua muotoa vailla olevien integraalien approksimointia kayttden
ydinperusteisia ja bayesilaisia kubatuurisdéntja, joista edelliset ovat pahimmassa tapauksessa
optimaalisia ja jalkimmaiset gaussisten prosessien posteriorijakaumia. Vaitoskirjan ensimméinen
kontribuutio on laskennallisesti tehokkaiden algoritmien kehittdminen néitd kubatuurimenetelmia
varten kdyttden pistejoukkoja, jotka ovat tdysin symmetristen pistejoukkojen yhdisteitd. Nédin
kehitetty algoritmi ei hyédynné approksimaatioita, on laskennallisesti kilpailukykyinen,
skaalautuva, joustava ja toteutukseltaan yksinkertainen, mahdollistaen ydinperusteisten ja
bayesilaisten kubatuurimenetelmien soveltamisen integrointiongelmiin, joissa on kaytettava jopa
miljoonia datapisteitd. Lisaki yksiulotteiseen integrointiin gaussisen mitan suhteen kehitetdan
erilainen suljetussa muodossa ilmaistavissa oleva approksimaatio, joka perustuu
Gaussin—Hermiten kvadratuuriin. Vaitoskirjan toinen paakontribuutio liittyy erilaisten ydinten
ja gaussisten prosessimallien kayttoon klassisten kubatuurisdantéjen, kuten Gaussin kubatuurien
ja Monte Carlo -sdantgjen, tulkitsemisessa bayesilaisina kubatuurisdant6ina. Vaitoskirjassa tata
varten kehitetylld Bayesin—Sardin menetelmalld voi tulkita probabilistisesti ldhes minka tahansa
kubatuurisaannon.
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Preface
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by now, this was not to be. This I would attribute to the mathematics involved
being tedious and uninspiring, the results one can expect to obtain somewhat
unimpressive, to me not being skillful enough a mathematician, and, most
importantly, to my emerging interest, origins of which can be dated to Friday,
May 29, 2015, in numerical integration and probabilistic numerics. Throughout
this time, I have been supported and encouraged by my supervisor, Prof. Simo
Sarkkéi, and I wish to express my gratitude to him for this. This thesis would
not have been possible—or perhaps the process would have merely been much
more agonising—without his constant support and latitude given to me to freely
work on topics of my own choosing. I also thank Prof. Dino Sejdinovic and Prof.
Emtiyaz Khan for pre-examining this thesis.

There are a number of people who have, at different times, made Rakenta-
janaukio 2C an enjoyable and inspiring environment to work at. These people
include Prof. Arno Solin, Dr. Juho Kokkala, Filip Tronarp, Marko Mikkonen,
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Dr. Roland Hostettler, Kimmo Suotsalo, Rui Gao, Zheng Zhao, Marco Soldati,
Juha Sarmavuori, Dr. Zenith Purisha, Prof. Angel Garcia-Fernandez, Prof. Ilkka
Laakso, Dr. Lauri Palva, Dr. Sara Sommariva, Prof. Ivan Vujaklija, and Dennis
Yeung.

Of my collaborators special thanks are due to Prof. Chris Oates, Jakub Priiher,
Dr. Motonobu Kanagawa, Prof. Eric Moulines, and Prof. Silvere Bonnabel, all of
whom have been kind enough to host me at their home institutions, some of them
several times, during the past four years. The probabilistic numerics research
community is still compact enough for one to meet almost everybody during the
short span of a few years. The various conferences, workshops, and visits have
been made much more enjoyable and productive by the presence, often recurring,
of in particular Dr. Jon Cockayne and Dr. Frangois-Xavier Briol from Warwick
and London and Hans Kersting, Alexandra Gessner, Simon Bartels, Dr. Maren
Mabhsereci, Dr. Michael Schober, and Prof. Philipp Hennig from Tiibingen. Other
people with whom it has been a pleasure to work and interact with include
George Wynne, Leah South, Tui Nolan, Matthew Fisher, Prof. Mark Girolami,
Prof. Fred Hickernell, Prof. Takeru Matsuda, Prof. Ken’ichiro Tanaka, Prof. Yuto
Miyatake, Dr. Sho Sonoda, Prof. Elodie Vernet, Prof. Tim Sullivan, Dr. Jordan
Franks, and Dr. Jana de Wiljes.

Finally, it was only at Laura’s suggestion that I successfully applied for a
summer research assistant position at BECS in the spring of 2014 and so began
the journey culminating in this thesis.
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Symbols

B, Bernoulli polynomial of degree r € Ny

C™(Q) space of m € Ny times continuously differentiable functions on domain Q
C set of complex numbers; covariance of random variables

D™ mth weak derivative

d space dimension

0ij delta function (6;; =0if i # jand §;; =1if i = j)

}/”\ Fourier transform of function f

0Q boundary of set Q

0y, partial derivative with respect to ith coordinate

0% multiple partial derivative

E expectation of a random variable

e exponential constant

ex(X,w) worst-case error of cubature rule Q(X,w) in #x

ey (X, w) average-case error of cubature rule Q(X,w)

&; Gaussian noise variable

£,0,0 constants in the Mercer eigendecomposition of the Gaussian kernel
f function of interest or integrand

fer Gaussian process

fx vector of function evaluations at points X

®x alternant matrix at points X
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Symbols

¢p Mercer eigenfunction of a kernel
@r x interpolant to function f at points X based on a set of functions {¢p;}_;
@ vector function formed by stacking {(,oi}?:1

@, vector of integrals of ¢,

GP(m,K) distribution of Gaussian process with mean function m and covariance
kernel K

gla restriction of function g on set A

I' Gamma function

A generic reproducing kernel Hilbert space

A% reproducing kernel Hilbert space of kernel K

Jk o pre-Hilbert space of kernel K

H, Hardy space on the disk of radius r >0

H, pthunnormalised probabilists’ Hermite polynomial
hx o fill-distance of point set X

ho maximal fill-distance for error estimates

I integration functional

I,, n-dimensional identity matrix

1, n-vector of ones

J number of fully symmetric sets

K positive-definite kernel

K, kernel translate function K(x,-)

K, Matérn kernel of order v >0

K, modified Bessel function of the second kind of order v >0

Ky Brownian motion kernel; Stein kernel; unparametrised stationary basis
kernel

K,, meNjy times integrated Brownian motion kernel

K!

. released m € Ng times integrated Brownian motion kernel

K, Hardy kernel with parameter r >0

K}, polyharmonic spline kernel with parameter 2 € N
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Symbols

K, Wendland kernel of dimension d with parameter 2 € N

K,, kernel mean function for measure p

Kx Gaussian process posterior covariance function

K, ¢ kernel parametrised by magnitude and length-scale parameters o and ¢

K% 5 posterior covariance of a Gaussian process with a parametric prior mean
function

K% Gaussian process posterior covariance at the flat prior limit
K" polynomial kernel of degree m
Kx kernel matrix

K, ¢ x kernel matrix at points X of a kernel parametrised by magnitude and
length-scale parameters o and ¢

I};’,f‘ standard polynomial kernel of degree m € Ny
ky x vector of kernel mean evaluations
kx vector of kernel translates at points X

L, point evaluation functional

LP(Q) space of p-integrable functions with respect to the Lebesgue measure on
domain Q

LP(Q,u) space of p-integrable functions with respect to measure y on domain Q
Lk kernel integral operator

l(0,¢) marginal likelihood as a function of kernel parameters ¢ and ¢

A non-negative smoothing parameter

Ap Mercer eigenvalue of a kernel

A generator vector

[A] fully symmetric set generated by A

A diagonal matrix containing Mercer eigenvalues of the Gaussian kernel
¢ kernel length-scale

M2 dimension of 1,

myx Gaussian process posterior mean function

myx vector of Gaussian process mean function evaluations
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Symbols

m% 5 posterior mean of a Gaussian process with a parametric prior mean
function

m% Gaussian process posterior mean at the flat prior limit
1 integration measure

N set of positive integers

No set of non-negative integers

Ng set of d-dimensional non-negative multi-indices

N set of d-dimensional positive multi-indices

N(@m,K) Gaussian distribution with mean vector m and covariance matrix K
n number of points

v smoothness parameter of a Matérn kernel

V, gradient with respect to x

@ big O notation (growth rate of a function)

Q domain of interest

® direct product

Px power function for points X

Z; collection of d x d permutation and sign-change matrices
P permutation and sign-change matrix

P, i pushforward of measure y by matrix P

pr,x polynomial interpolant to function f at points X

py density function of measure u

Py vector of integrals of polynomials

I1; collection of permutations of the first d positive integers
an space of d-variate polynomials of degree at most m

7 pi; a linear space of real-valued functions

Q(X,w) generic cubature rule with points X and weights w
Q(f;X,w) generic cubature approximation of function f

®Rx(X) kernel cubature rule with points X
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Symbols

Qk 1(X) smoothed kernel cubature rule with points X

Qx 1(f;X) smoothed kernel cubature approximation of function f
® number of functions in parametric prior mean function

Q.. trapezoidal rule

gx separation radius of point set X

Rx error representer of cubature rule Q(X,w)

R space of reals

r,s orders of Sobolev spaces

srx kernel interpolant to function f at points X

sf x,2 smoothed kernel interpolant

Som+1 natural spline interpolant of degree 2m + 1

Sgq collection d-vectors with each element 1 or —1

S J x J matrix formed out of partial row sums of the kernel matrix
S¢ d-dimensional unit sphere

2 variance of random coefficients in a parametric prior mean function
o kernel magnitude parameter

oy, maximum likelihood estimate of the kernel magnitude parameter
T,x operator used to define Stein kernels

T transpose of vector or matrix

0, random coefficient in a parametric prior mean function

0 random coefficient vector in a parametric prior mean function
ux, Lagrange cardinal function

ux vector of Lagrange cardinal functions

Vx Vandermonde matrix at points X

w generic cubature weight vector

w; generic cubature weight

wg,; kernel cubature weight

A

Wk, j

weight of a fully symmetric kernel cubature rule
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w weight of the Gauss—Hermite quadrature rule

wg,; approximate kernel quadrature weight

wy kernel cubature weight vector

w2 smoothed kernel cubature weights for points X

wpC Bayes—Sard weights

wis¢ Bayes—Sard weights for the basis functions in 7

w,@ vector of distinct weights of a fully symmetric kernel cubature rule
wy vector of approximate kernel quadrature weights

wGH

vector of Gauss—Hermite quadrature weights
w, weight vector of a polynomial quadrature rule
X evaluation point set

X, evaluation point set with n € N points

x3™ point of the Gauss—Hermite quadrature rule
x; evaluation point

x4 characteristic function of set A

(x); max{0,x}

y; data value

y vector of data values

# number of elements in a set

-] floor function, the largest integer not exceeding the argument
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1. Introduction

This thesis concerns numerical approximation of intractable integrals using
positive-definite kernels. Even though kernel-based methods for numerical
integration have been around since the 1970s (Larkin, 1970), it has been only
during the past 30 years or so that they have begun to attract considerable
interest, chiefly because kernel cubature rules, worst-case optimal numerical
integration methods in the reproducing kernel Hilbert space induced by the
chosen kernel, can be interpreted as Bayesian cubature rules, perhaps the most
prominent examples of probabilistic numerical methods (Hennig et al., 2015).
The probabilistic interpretation, and in particular its use in modelling epistemic
uncertainty inherent to numerical approximations with partial information of
continuous objects, is the main motivator behind this thesis. The most com-
pelling applications of these methods are in complicated and computationally
intensive computer models that can benefit from prior information afforded
by a probabilistic model and where, due to the limited computational budget,
numerical uncertainties remain significant—and need to be accounted for. Re-
cent application areas of this type include industrial (Briol et al., 2019) and
cardiac (Oates et al., 2017b) models and electrical impedance tomography (Oates
et al., 2019a).

Our principal aim is to present an overview of both kernel and Bayesian
cubature from a kernel-centric point of view that is dominant in scattered data
approximation (Wendland, 2005) and Gaussian process regression (Rasmussen
and Williams, 2006) communities. This is in some contrast to how kernels are
used in fields such as information-based complexity (Traub et al., 1988) and parts
of approximation theory concerned with error analysis. In these fields kernels
are often seen merely as convenient fools due to them inducing many classical
function spaces of interest. We also make use of the opportunity and include a
comprehensive list of references on the theory, methodology, and applications
of kernel and Bayesian cubature rules in approximation theory, scattered data
approximation, statistics, and machine learning literature.

The thesis consists of five publications and this overview. The publications are
grouped thematically into two categories: Publications I-IIT mainly develop non-
approximate computational strategies to alleviate the cubic computational cost
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Introduction

in the number of data points associated to kernel and Bayesian cubature while
Publications IV and V discuss, among some other things, how to interpret many
classical methods of numerical integration as Bayesian cubature rules. As such,
the novel contributions are overwhelmingly methodological. Chapters 2 and 3
consists of a concise but fairly comprehensive overview of kernel and Bayesian
cubature. Chapter 4 reviews the fully symmetric fast kernel cubature algorithms
developed in Publications I and IT and the Mercer expansion based explicit
and numerically stable weight approximation introduced in Publication III.
Chapter 5 reviews the technical contributions of Publications IV and V as well
as two other approaches to reproducing classical methods as Bayesian cubatures.
One of these is the well-known connection between splines and finitely smooth
Gaussian processes (Kimeldorf and Wahba, 1970a; Lee and Wasilkowski, 1986)
and the other a more recent, less well-known, and less interesting approach
based on increasingly flat isotropic kernels (Driscoll and Fornberg, 2002). The
publications are summarised and their significance evaluated in Chapter 6. The
last chapter also briefly discusses some issues that we believe currently present
the main obstacle to widespread adoption of kernel and Bayesian cubature
methods.

Finally, it is a pleasure to acknowledge the influence the superb thesis of Jens
Oettershagen (Oettershagen, 2017) and the recent review article by Kanagawa
et al. (2018) have had on the selection for presentation and organisation of much
of the material in Chapters 2 and 3.

18



2. Kernel Cubature

This chapter begins with a review of the theory and basic properties of positive-
definite kernels and reproducing kernel Hilbert spaces they induce. Then we
characterise kernel cubature rules by their worst-case optimality among all
cubature rules with fixed points, discuss connections to kernel interpolation
and smoothing, and review a number of important convergence results. The
equivalent probabilistic interpretation via Gaussian processes of kernel cubature
rules is the topic of Chapter 3. We also make an attempt at providing an
exhaustive list of references to works wherein kernel cubature rules are analysed,
discussed, or applied.

2.1 Reproducing Kernel Hilbert Spaces

Let Q be a subset of R? (more general domains are possible but not considered
here). A kernel is any symmetric bivariate function K : O x 3 — R. Unless stated
otherwise, kernels in this thesis are always positive-definite, which means that
for any n € N and any distinct points X = {x1,...,x,} € Q the inequality

ZZziz]-K(xi,xj)>0 (2.1

i=1 j=1

is satisfied for every non-zero vector z € R”. Equivalently, the kernel matrix
[Kx]; ;= K(x;,x;) is positive-definite. When the kernel matrix is allowed to be
merely positive-semidefinite (i.e., the inequality in (2.1) is not necessarily strict),
we call the kernel positive-semidefinite.

A Hilbert space # that consists of functions f: Q2 — R and is equipped with
an inner product (-,-) 7 and a norm ||-|| s is a reproducing kernel Hilbert space
(RKHS) on Q if the point evaluation functional L,(f) := f(x) is bounded for any
x € Q. That is, for every x € Q there exists C, = 0 such that [Ly(f)| < CxllIf |l »
for every f € #. The Riesz representation theorem then implies that for every
x € Q) there is a reproducing kernel K, := K(x,-) € A, a representer of the linear
functional L, such that the reproducing property f(x) = Lx(f)={f,Ky) 7 holds
for every f € #. As perhaps suggested by our notation, there is one-to-one corre-
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spondence between reproducing kernel Hilbert spaces and positive-semidefinite
kernels, summarised in the following theorem; see Aronszajn (1950, pp. 342—-343)
or Berlinet and Thomas-Agnan (2004, Sec. 1.3).

Theorem 2.1 (Moore—Aronszajn). If # is a reproducing kernel Hilbert space,
then its reproducing kernel is positive-semidefinite. Conversely, every positive-
semidefinite kernel K: R% x R? — R is the reproducing kernel of a unique repro-
ducing kernel Hilbert space on Q c R, henceforth denoted #x.

As mentioned earlier, we take a kernel-centric approach and accordingly
always identify a reproducing kernel Hilbert space with its positive-semidefinite
reproducing kernel and say that a given positive-semidefinite kernel K induces
the space #%. A different perspective, common in, for example, the study of
information-based complexity (Traub et al., 1988; Novak and WozZniakowski,
2008), is to start with a classical function space of interest, such as a Sobolev
space, verify that it is an RKHS and find out its reproducing kernel. The origins
of this approach appear to be in the work of Sard (1949).

Some basic arithmetic operations between kernels yield new kernels and
RKHSs (Berlinet and Thomas-Agnan, 2004, Sec. 1.4).

Proposition 2.2 (Sums of kernels). If K1 and Kq are two positive-semidefinite
kernels with RKHSs Fx, and Fk,, then also K = K1+Kj is positive-semidefinite
and its RKHS is the direct sum

Tk ={f1+Ff2: f1€ Hx,, [2€ Hxk, }.

The norm is
2 _ . 2 2
15 = min (110, +1f2l 2%, )-
freHk,, f2€Hy,
Proposition 2.3 (Products of kernels). If K1 and K are two positive-
semidefinite kernels on domains Q1 < R and Qs c R% with RKHSs Jk, and

JCk,, then the kernel
K ((x1,%2),(x,x5)) = K1(x1,%7)Ka(x2,x5)

is positive-semidefinite on Q = Q1 x Qg < R%1%92_ Jts RKHS on Q is the completion
of the space
Fgo={f1®fs: fL€ Hx,, fo€ Hk,},

where (1 ® fo)(x1,x2) = f1(x1)f2(x2), equipped with the inner product

(frefo.f1813) g, = 1. [, (Foo f2) i,

It is often helpful to know which functions are contained in the RKHS induced
by a given positive-semidefinite kernel and how the RKHS norm behaves. In
principle, there is a simple and universal characterisation (typically used to
prove Theorem 2.1): the RKHS is the completion of the pre-Hilbert space

n
Jfg,oz{Zaini ‘neN, q; €R, xiEQ} (2.2)
i=1
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with respect to the inner product

n m n m
(ke > 0k ) =3 aib k).
i=1 =

0 =1 j=1

Unfortunately, this characterisation is typically of little help in actually deter-
mining if a given function—even a simple one, such as a polynomial—lives in the
RKHS. However, from (2.2) one would expect that many properties of the kernel
be inherited by the functions in its RKHS. The following inheritance results can
be found in Steinwart and Christmann (2008, Sec. 4.3).

Proposition 2.4 (Boundedness and continuity). If K is positive-semidefinite,
every [ € #¥x is bounded if and only if K is bounded on Q. Moreover, if K, = K(x,-)
is in addition continuous for every x € Q, then every [ € #k is continuous.

For the following definition, recall that a multi-index a € Ng is a non-negative
integer vector. Recall also the following standard notational conventions: (i)
a,fe Ng, @ < f means that a; < §; for every 0<i <d, (ii) [@| = a1 +---+ a4, and
(i) a! = ay! x--- x agl.

Definition 2.5. A positive-semidefinite kernel K on an open subset Q of R? is
m times continuously differentiable if

2la|

0
a,a ! — !
0“%K(x,x'): rzaaz,K(z,z) i
z2=x

exists and is continuous for every multi-index & € I\Ig such that |@| < m. The
kernel is infinitely differentiable (or infinitely smooth) if 9%*K exists for every
aenNg.

Proposition 2.6 (Differentiability). If Q is an open subset of R% and the positive-
semidefinite kernel K is m-times differentiable on Q, then every f € #x is m
times continuously differentiable. Furthermore, 3%*K, € #x and

la|

0
0% f (x)] := A b [, 0%K ) 7| < If Nl g /0%9K (%, %)

0%1xq -
for every @l <m and x € Q.

Proposition 2.7 (Measurability and integrability). If (Q,<f,u) is a measure
space and K is positive-semidefinite, every [ € #x is measurable if and only if
K, is measurable for every x € Q. Moreover, if ‘['QK(.‘)c,x)p/2 dux) <ocofor p=1,
then every f € #x is p-integrable.

Analyticity is also inherited (Sun and Zhou, 2008, Thm. 1).

Proposition 2.8 (Analyticity). If a positive-semidefinite kernel is of the form
K(x,x") = ¢(||x —x’llz) for a real analytic function @, then every function in ¥k is
real analytic.
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The following result is a consequence of Theorem 12 in Section 4.5 of Berlinet
and Thomas-Agnan (2004). Its particular implication is that constant func-
tions are in #k if and only if K — ¢ is a positive-semidefinite kernel for some
constant ¢ > 0.

Proposition 2.9. If K is positive-semidefinite, a function [ is in Ak if and only
if there exists ¢ > 0 such that K(x,x') — cf(x)f (x) is a positive-semidefinite kernel.

By the Riesz representation theorem, representers of positive linear function-
als are in the RKHS (e.g., Muandet et al., 2017, Lem. 3.1).

Proposition 2.10. Let K be positive-semidefinite and L: #x — R a positive
linear functional. The representer K, (x) = L(K(x,-)) of L is in #x and L(f) =
(f,K.) 7 for any f € #k if L(g) < oo for the function g(x)=K(x,x).

Unfortunately, these properties alone are rarely enough to completely charac-
terise the functions lying in an RKHS or to provide sufficient insight into the
structure of the RKHS norm and inner product. Next we review characterisa-
tions of RKHSs induced by a variety of popular kernels.

2.2 Examples of Kernels and RKHSs

This section introduces most of the kernels that appear in the remainder of this
thesis and characterises the RKHSs they induce. It is useful to introduce some
standard terminology: a kernel is stationary if K(x,x') depends only on x —x’
and isotropic1 if the dependency is on ||x —x’||. Translates of some of the kernels
reviewed in this section are depicted in Figure 2.1. We occasionally engage in
slight notational abuse and use K(x —x') or K(]x —x'||) in the place of K(x,x') if
K is stationary or isotropic, respectively.

2.2.1 Matérn and Sobolev Kernels

A Matérn kernel with smoothness parameter v > 0 and length-scale ¢ >0 is

1 (\/ﬂllx—x’H)VKv(\/ﬂllx—x’ll)’

Ky(x,a) =
V8D = 0T ¢ ;

(2.3)

where I is the Gamma function and K, the modified Bessel function of the
second kind of order v.2 These kernels originate in Matérn (1960, Sec. 2.4)
and have been extensively covered by Stein (1999). For half-integers values of
the smoothness parameter, v = m + 1/2 for m € Ny, the Matérn kernel has the

1In which case it is often called a radial basis function.

2Note that dependence of the kernel on ¢ is suppressed in the notation. In general, here
and later on only dependencies on parameters relevant to the immediate discussion
and results are made explicit. For example, dependence on ¢ is explicitly denoted in
Sections 3.3 and 5.4.
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Gaussian Matérn, v=1/2
g -
Brownian motion,m =1 Hardy

e

Figure 2.1. Four translates on the interval [0, 1] of the (i) Gaussian kernel (2.4) with ¢ = 0.2, (ii)
Matérn kernel (2.3) with v =1/2 and ¢ = 0.2, (iii) Brownian motion kernel (2.7) with
m =1, and (iv) Hardy kernel (2.11) with r = 1. The Brownian motion kernel and the
Hardy kernel are non-stationary.

expression

K, (x,x')=

m( Vevie-d| z"‘:zm-l’<m+p)z Vv iz -/ \"”
2m)! P l purd plim—-p)! 0

in terms of elementary functions. Most commonly used special cases are

o
Kl/z(x,x’) = exp (_ [l —2 ||)’

¢
— 5! o
Kagxy= (14 V312 o VBlz=2l
¢ ¢
VBlx—'|  5lx-a')? NATEY
K N=1{1 _VBlx-«|
o) (+ EYZ )exp( ¢ )

the first of which often goes by the name exponential kernel.

From the asymptotic behaviour of the modified Bessel function K, at the origin
it can be concluded that a Matérn kernel of order v > m for m € Ny is m times
continuously differentiable (Stein, 1999, p. 32) in the sense of Definition 2.5. The
corresponding RKHS thus consists of m times differentiable functions. A more
complete characterisation of the RKHS is that it is norm-equivalent to a Sobolev
space (Wendland, 2005, Ch. 10).

Definition 2.11 (Norm-equivalence). Two normed vector spaces %; and % are
norm-equivalent if they are identical as sets and there exist constants C1,C2 >0
such that

Cilfllz <Iflz <Calflz

for every f € 1 = Fo.
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Theorem 2.12 (RKHSs of Matérns). If v =r—d/2 for r > d/2, the RKHS #x,
induced by the Matérn kernel (2.3) of order v is norm-equivalent to the Sobolev
space H"(Q).

For a concise treatment of Sobolev spaces in this context, see for example Kana-
gawa et al. (2019, Sec. 2.2). In short, H"(Q) is the restriction onto Q of the space

H'(RY) = {f e L2®%): / (1+1€12)" 1F @)1 de <oo}
i
equipped with the inner product

(.8 rrme) = /IRZ ) (1+1€1%) F&5E@) dé.

Here

£&):= / flx)e 2m=E gy
Rd

is the Fourier transform of f € LYR?). If reNg and Q has a Lipschitz boundary,
then H"(Q2) can be (up to equivalent norms) defined as the collection of functions
whose weak derivatives up to order r exist and are in L%(Q); the inner product
takes the form of a sum of L%(Q) inner products between weak derivatives.
That the boundary 0Q of Q is Lipschitz essentially means that the boundary
is sufficiently regular. For example, there being a continuously differentiable
embedding of Q) in R? suffices; see Stein (1970, Sec. 3.3) for a formal definition
and a larger collection of examples. Every domain discussed in this thesis has a
Lipschitz boundary. For later purposes, it is convenient to define a general class
of kernels akin to Matérns in that their RKHSs are Sobolev spaces.

Definition 2.13 (Sobolev kernel). A stationary kernel is a Sobolev kernel® of
order r > 0 if its RKHS is norm-equivalent to the Sobolev space H"(Q).

2.2.2 Gaussian Kernel

For a length-scale parameter ¢ > 0, the famous Gaussian kernel* is

m2
K(x,x') = exp (- %) . (2.4)

The particular parametrisation of the Matérn kernels (2.3) implies that
the Gaussian kernel can be obtained as “an infinitely differentiable limit”:
lim, .o K, (x,x") = K(x,x") (Stein, 1999, p. 50). The properties listed in Sec-
tion 2.1 tell us only that the induced RKHS consists of bounded and infinitely
smooth analytic functions. A more illustrative characterisation is due to Stein-
wart et al. (2006) and Minh (2010, Thm. 1); see also Steinwart and Christmann
(2008, Sec. 4.4) and De Marchi and Schaback (2009, Ex. 3).

3This term is occasionally attached to certain specific kernels (Fasshauer and McCourt,
2015, p. 43).

4The kernel also goes under the names squared exponential, exponentiated quadratic
and radial basis function kernel.
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Theorem 2.14 (RKHSs of Gaussians). Suppose that Q) has a non-empty interior.
Then the RKHS #¥ induced by the Gaussian kernel (2.4) consists of the functions

fx) = e 11720 D fax® suchthat |fl%, =Y *"alfi<co. (25)

d d
aeNg aeNg

The inner product is
<f>g><7£[{ = Z [Z‘ala!fagay
aeNg

where g is defined via a series analogous to that defining f.

This RKHS is not a large one; the coefficients f, essentially have to decay
at least like (l'a‘\/E)*W. For example, no polynomial (besides f = 0) or a
function f(x) = e PIEIPA20%) g4 p =2 belongs to #x (Minh, 2010, Thms. 2 and 3).
Naturally, every exponentially damped polynomial e~ 1%/2¢%) Y aeg fax® defined
by a finite multi-index set .# c Ng is in % because the sum in (2.5) terminates.
As a slightly more complicated example, consider the univariate function

_ . —x220?) . _ %2202 — (-1 2a+1
fx)=e sin(x) = e 207(206+1)!x )
This function has coefficients f22a 1= (Qa+ 1D~2. Thus

oo o [2(2a+1)

2 22a+1) =
= V4 2a+1)! =
115, QZ:O (2a+1) (2a+D?  “=(2a+1)!

= sinh(¢?) < co.

The Gaussian RKHS can also be characterised as a space of functions with
Fourier transforms that decay sufficiently fast (Kanagawa et al., 2018, Ex. 2.7).

2.2.3 Brownian Motion Kernels

Let d =1 and Q =[0,1] cR. The Brownian motion kernel is
Ko(x,x") = minfx,x'}. (2.6)

For m € N, the m times integrated Brownian motion kernel is

m(xx)—/ / Kp-1(z,2))dzdz’ = / Gl A PR
(m!)

where (x); = max{0,x} and the last expression is valid also for m = 0 if the
convention 0° = 0 is used. The kernel K describes the covariance structure of
the standard Brownian motion and K,,, for m = 1 that of the m times integrated
Brownian motion (Wahba, 1990, Sec. 1.5). For example, explicit expressions for
K, and K3 are (e.g., Schober et al., 2014, Secs. 3.2 & 3.3)

1 1
Ki(x,x") = 3 minfx,x'}° + 3 lx — 2’| min{x, x'}2,

1 1 1
Ko(x,x") = 20 min{x,x’}5 + I lx— | ((x + x')min{x,x’}3 -3 min{x,x'}4> .
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The RKHSs induced by Brownian motion kernels are characterised in Theo-
rem 2.15. Derivation of this result can be found in Adler and Taylor (2007,
Sec. 3.1) for m = 0 and in van der Vaart and van Zanten (2008, Sec. 10) for
general m € N. See also Wahba (1990, Sec. 1.2).

Theorem 2.15 (RKHSs of Brownian motion kernels). The RKHS #x,, of the
m € Ny times integrated Brownian motion kernel (2.7) consists of functions
F e C™([0,1]) such that (i) F90)=0 for ¢ =0,...,m, (ii) f™ is absolutely con-
tinuous, and (iii) the weak derivative D™ *1f is in L%([0,1]). The RKHS inner
product is

(f.8) 7, = (D™ F.D™ 1 g) oo 11

The restriction that the functions and their first m derivatives vanish at the
origin can be relaxed and the RKHS made into the full Sobolev space H "”1([0, 1D
by using the released Brownian motion kernel

m

(xx)?
K, (x,x)=> QP + K (1), (2.8)
q=0
The inner product then becomes
m
@0 = > FOOEDPO) + (D™D ) o1y (2.9)
q=0

All these results on Brownian motion kernels are related to the integral form
m . .q 1 —_pm
f@ =32 r D0+ / G gy s
por q! o m!

of Taylor’s theorem, from which the identity (for x # x')

_h\m
o Ky = (2.10)

can be derived by selecting f(x) = K,,(x,x'). Inserting (2.10) into the inner
product (2.9) gives

/ 27 ) Y@ —0F i)
(FEp) 0, =3 S D0+ D) dt = £ ),
Ky, 7=0 q: 0 m.:
which is the reproducing property.

2.2.4 Other Kernels

There is a large number of kernels other than the ones reviewed above that
are used in kernel and Bayesian cubature. Note that some of the kernels listed
below are only conditionally positive-definite (of order m € Ny), which is to say
that (2.1) needs to hold only for all z € R" such that >} ; z;p(z;) = 0 for every
polynomial p of degree less than m (Wendland, 2005, Ch. 8). This relaxation
introduces some complications in the RKHS construction for which we refer the
reader to Wendland (2005, Sec. 10.3).
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Hardy Kernel
The RKHS of the Hardy kernel

2 o0
N " _ ~2P (5.0 /\P
Ky(x,x')= oS —Zr (xx") (2.11)
p=0
consists of functions whose complex extensions are in the Hardy space H,, a
Hilbert space of functions analytic on the disc {z € C : |z| < r} equipped with the

inner product
1 21 Yy —_—
(f.&mn, = 7/ fre9)g(rei®)do.
27 0

See Zwicknagl and Schaback (2013, Sec. 5.1) and Oettershagen (2017, Sec. 3.6.2)
for more details. This kernel has been used in kernel quadrature by Larkin
(1970, Sec. 3), Minka (2000, Sec. 4), and Oettershagen (2017, Sec. 6.2), who has
undertaken an extensive numerical study on optimal and greedy selection of the
integration points. Other related kernels have been analysed in the context of
quadrature in Richter (1970) and Richter-Dyn (1971b,a). The Hardy kernel is a
member of the general class of Taylor space kernels (Dick, 2006; Zwicknagl and
Schaback, 2013).

Multiquadrics and Inverse Multiquadrics

Multiquadric and inverse multiquadric kernels, popular in scattered data ap-
proximation literature, have been used by Sommariva and Vianello (2006b) for
integration on [0,1]% c R2. These infinitely smooth kernels are given by

) llx — a2\ 2 , e a2\ V2
K(x,x): (1+T> and K(x,x): ].'f'[i2 ,

respectively, where ¢ > 0 is a length-scale parameter. Multiquadrics are only
conditionally positive-definite.

Polyharmonic Splines
Numerical integration with conditionally positive-definite polyharmonic spline
kernels

le -2/ \* . .
if k € N is odd,

(W) log ( llx [x ”) if 2 €N is even

has been analysed by Bezhaev (1991). Numerical results for the special

case k =2, called thin plate spline kernel, appear in Sommariva and Vianello
(2006b,a); Punzi et al. (2008) and Fuselier et al. (2014) for different domains, in-
cluding the sphere. The RKHS of a thin plate spline is a Beppo-Levi space (Wend-
land, 2005, Thm. 10.43).
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Wendland Kernels
The Wendland kernel

Ky pxx) = le=al - e (r):¥/lt(1—t)l(t2—r2)k*1dt
d.rx, ©d Pk = ,

l
l= {g+kJ+1,

and the convention ¢q ;(r) = 0 if r > 1 is used, has been applied to numerical
integration by Sommariva and Vianello (2006b) with (%,7) = (1,3). These kernels
are similar to Matérn kernels (2.3) in that K;;, is a Sobolev kernel of order
d/2+k +1/2 (Wendland, 2005, Thm. 10.35) and that when appropriate scaling of
the variables is used, it can be shown that the Wendland kernel converges to

where & is such that 2k e N,

the Gaussian as &, a smoothness parameter, is increased (Chernih et al., 2014).

Distance Kernels on the Sphere

The distance kernel K(x,x') = 8/3 - |x —x'|| induces the Sobolev space H¥2(S$2) of
functions defined on the unit sphere $% c R® and is a member of a larger class of
kernels that have Sobolev spaces on spheres as their RKHSs (Brauchart and
Dick, 2012; Brauchart et al., 2014). This kernel has been used in an application
of Bayesian cubature to a computer graphics problem in Briol et al. (2019) and
Xi et al. (2018) and in Publication II.

Shift-Invariant Kernels
Shift-invariant kernels of the form

d
K@2)=[[[1- 10 yBarlxi-xiD],  x,x'€l0,11%

i=1
where r € N and y > 0 are parameters and By, are the even-degree Bernoulli
polynomials, have been exploited by Rathinavel and Hickernell (2018) to reduce
the computational complexity in n, the number of evaluation points, of Bayesian
cubature and associated kernel scale parameter selection from G(n®) to G(nlogn).
Kernels of this type are useful in the error analysis of quasi Monte Carlo
rules (Hickernell, 1998).

Stein Kernels

A recurring challenge in kernel cubature is that integrals fQ K(x,x")du(x"), with
1 a potentially complicated measure, need to be computed. Stein kernels are
a particular solution to this problem. One way to define a Stein kernel is as
follows. First, suppose that u is probability measure that admits a Lebesgue
density function p, and define the operator

T.x =
waf (@) Pa@)
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acting on twice differentiable functions /. Here V. f(x) = (0, f(x)---0,f(x)) € RY.
Given a twice differentiable positive-definite kernel K, a Stein kernel is then

Ko(x,2') =TTy Kx,x").

If the density p, vanishes sufficiently fast at the boundary of (2, the divergence
theorem ensures that fQKo(x,x’)p,,(x’)dx' =0 for every x € Q (Oates et al.,
2017a). Barp et al. (2018) construct kernel cubature rules using Stein kernels.

2.3 Optimal Cubature Rules in RKHSs

Let O < R? be Borel measurable, y a finite Borel measure on Q, and f: Q — R,
the integrand, a py-integrable function. A cubature rule (or, in one dimension,
quadrature rule) Q(X,w) approximates the integral of f using a weighted sum
of function evaluations:

n
QU X w)=> wif@)=~I(f) ::/Qfdp (2.12)
i=1

for some points (or nodes) X = {x1,...,x,} € Q, assumed distinct throughout this
thesis, and weights w = (wy,...,w,) € R*. The challenge is to design the points
and weights such that the approximation (2.12) is, by some relevant criterion,
“good”, “best”, or “optimal”. This section defines and reviews the most important
properties of kernel cubature rules that are worst-case optimal in reproduc-
ing kernel Hilbert spaces. For a more complete and general modern review
that includes proofs, see Oettershagen (2017, Ch. 3). A Bayesian probabilistic
interpretation of kernel cubature rules is introduced in Chapter 3.

2.3.1 Worst-Case Error

The worst-case error (WCE) in an RKHS #% of a cubature rule with points X
and weights w is

ex(X,w):= sup [I(f)-Q(;X,w)l.
1l <1
Such a quantity could be of course defined in any normed function space, but
computing it is typically possible only if the space is an RKHS. For this purpose,
define the kernel mean function

K, = / K(,x)du(x).
Q

That is, kernel mean at x is the integral of the corresponding point representer:
K, (x) = I(K,). Practical computation of kernel means is an issue that will be
discussed more in Section 6.2.2. If fQK(x,x)du(x) < 00, then Proposition 2.10
implies that K, € #k and I(f) = (f,K;) 7. Note that this condition is sat-
isfied by all stationary kernels since for them K(x,x) does not depend on x
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and consequently fQ K(x,x)dp(x) = K(0)u(Q2). The following result provides a
closed-form expression for the worst-case error in an RKHS. For its proof, see for
instance Oettershagen (2017, Sec. 3.2).

Proposition 2.16. The worst-case error (2.14) can be expressed as

2

n
ex(X,w)? = HKH =D _wikx,
i=1 Tk

= / K, dp) dux) -2 wiKux)+ Y wiw,;K(x;,x))
Q i=1 ij=1

=I(K,) - 2wk, x +w Kxw,

where [Kxl;j = K(x;,x;) is the n x n positive-definite kernel matrix and
[k x]1; = Ku(x;) is an n-vector.

The first expression in Proposition 2.16 gives the worst-case error in terms of
the RKHS norm of the error representer Rx y = K — Z?zl w;Ky,. This terminol-
ogy derives from the fact that the reproducing property gives

() - Q(f; X, w)l = f ,Rx w) e |-
The Cauchy—Schwarz inequality then yields
H(F) = QU Xw = I fll s IRx wll 75, = 1f 1l (X, w). (2.13)

Inequalities of this form are fundamental tools in error and convergence analysis,
including that presented in Section 2.3.4, of many types of cubature rules
since they effectively decouple the properties of the integrand from those of the
cubature rule.?

Alternatively, one could consider the average-case error by placing a probability
distribution P over some separable Banach space & of functions:

. 1/2
e (X, w) = < / [I(f)—Q(f;X,w)]zdP(f)> .
F

The standard reference on average-case analysis is the monograph of Ritter
(2000). Crucially, if the distribution P is zero-mean Gaussian with the covariance
kernel

K[p:(x,x')=/ f@f@HdP(f),
F

then the notions of worst-case error in the RKHS of Kp and average-case error
coincide (Novak and Wozniakowski, 2010, Sec. 13.4):

e (X, w) = e (X, w).

5For instance, in quasi Monte Carlo literature a similar inequality is termed the
Koksma—Hlawka inequality (Dick et al., 2013, Sec. 3.4).
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2.3.2 Kernel Cubature and Interpolation

The kernel cubature rule (or kernel-based cubature rule) with points X, denoted
Rk (X) = Q(X,wg), is the cubature rule with minimal worst-case error among
all possible cubature rules using these points. That is,

ex(X,wy) = in[é' ex(X,w)= inf sup [I(f)-Q(;X,w)|. (2.14)
weR” 1

weR? <
£l 7 =

From Proposition 2.16 it easy to see that the kernel cubature weights wy are
unique and given by wy :K)}lk wx - Consequently, the kernel cubature approxi-
mation of I(f) is

n
Qk(fiX)=Q(f i X, w) =Y weif@)=fxwe=fxKx'kyux, (2.15)
i=1
where fx =(f(x1),...,f(x,)) € R" is the vector of integrand evaluations. It also
follows from the expression for the weights that

exX,wi)? =Ky -wikyx = 1K) - Qr (K X),

which means that the squared worst-case error of the kernel cubature rule is
equal to the cubature approximation error for the kernel mean function. Because
the kernel cubature weights solve the linear system of equations Kxwy =k, x,
ith row of which is

Qr(Ke;X) =Y w;K(xi,x)) = Kux) = I(Ky,),
j=1

we see that the kernel cubature rule is completely determined by the fact that it
integrates exactly each of the n kernel translates K, at the cubature points.

It is often instructive to think of kernel cubature rules in terms of interpolation.
The kernel interpolant® s £,x is the unique function in the span of the kernel
translates {Ky;}"_; that interpolates f at points X:

i=
n

SfX ZZCini’ (2.16)
i=1

for coefficients ¢ = (c1,...,c,) selected so that the interpolation condition
sfx|x = flx is satisfied. Here g|4 denotes the restriction on set A of a function g,
so that s x|x = flx means that sy x(x) = f(x) for all x € X. The interpolation
property implies that ¢ =K )}1 f x. Defining the vector function kx = (Ky,,...,Kx,),
the kernel interpolant is thus

srx=c kx=fxKx'kx =fxux, (2.17)

6 Also known as spline interpolant (Oettershagen, 2017, Def. 3.9) and, if the kernel is
isotropic, radial basis function interpolant (Fasshauer, 2007, Ch. 2).
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where ux = (ux1,...,ux,) = K)}lkx are called Lagrange cardinal functions.
They satisfy the cardinality property ux ;(x;) =6;;. An equivalent definition of
the kernel interpolant is that its RKHS norm is minimal among all functions
g € #k such that g|x = f|x (Fasshauer and McCourt, 2015, Sec. 9.1):

Sf,X=argmin{||g||ng g eHx andglxzflx}. (2.18)

Since I(kx) =k, x, comparison to (2.15) reveals that the kernel cubature ap-
proximation is obtained by integrating the kernel interpolant:

Rk (f;X)=1(sf x). (2.19)

Moreover, the weights are integrals of the Lagrange cardinal functions,
wg,; = I(ux ;). In Section 2.3.4, the relation (2.19) makes it possible to leverage
results on convergence of kernel interpolants in error analysis of kernel cubature
rules.

In interpolation, a concept roughly analogous to the worst-case error (2.14) is
that of the power function Px (Schaback, 1993). At point x € Q, this function
is defined as the RKHS norm of the error in interpolating K, with the kernel
interpolant based on points X:

Pt@) = e sty = [K(e, )R KO,

(2.20)
= (K(x,%) — kx@) "Kxkx(x) "%,

The Lagrange form (2.17), the reproducing property, and the Cauchy—Schwarz
inequality then yield the error formula

@) =57 x@)| =|(f, K~ kx@) Kx'kx) 5, | <11 | 25, Px(),
which is analogous to (2.13).

2.3.3 Smoothing

One can also consider smoothed kernel interpolants and cubature rules (Rieger
and Zwicknagl, 2010, Sec. 6). A smoothed kernel interpolant (that is actually
not an interpolant), s¢ x ;, solves the regularised least-squares problem

n
sf.xA =argmin [Z(g(xi) @)+ ANl | @2.21)
geHk i=1

for a smoothing parameter A > 0. This is a generalisation of (2.18). The unique
solution to (2.21) is
spxa=fxKx +AL,) 'k, (2.22)

where I, is the n-dimensional identity matrix. This approximant is exactly of
the same form as the kernel interpolant (2.17) and interpolation is recovered
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(i.e., sy x,0 = sf x) by setting 1 =0 in (2.22). The corresponding smoothed kernel
cubature rule is the integral of the smoothed interpolant:

QrA(f;X)=Q(f; X, wxk 1) =I(sf x 1) = fyEx+ /Ud)_lku,x. (2.23)

Its weights are wy ) = (Kx + Al 4) 1k wx- Non-zero values of A are often useful
for improving the condition number of the matrix that defines the weights.

2.3.4 Convergence Results

It is often useful to know how accurate kernel cubature rules are. This is
typically addressed using convergence analysis that seeks to quantify the rate
of decay of the integration error when more points are added. For this purpose,
define the fill-distance

hx q:=sup min [x—x;|
xeQ i=1,...,n

and the separation radius

gx = %I?#l,n lx; —x;ll<hxq.
Fill-distance is the radius of the largest ball in Q that does not contain any of
the points in X while separation radius is half the minimal distance between
points in X. When Ay q is small, X covers the domain Q well and it is to be
expected that the integration error |I(f)— Qk(f;X)| is also small. By saying that
a statement is true for sufficiently dense X we mean that there is 2y > 0 such
that the claim holds for all point sets with Ax o < k. If the number of points
needs to be emphasised, we denote an n-point set by X,,. A sequence {X,}72;
of such sets is said to be quasi-uniform if hx, o and gx, remain roughly equal.
Formally,
ax, <hx,0=<79x,

for some constant y = 1 and every n € N. Quasi-uniformity implies that
hx, o= G(n~Yd) (Wendland, 2005, Prop. 14.1). For example, a simple calcu-
lation shows that uniform Cartesian grids of n = N¢ points (with the end-points
included) on the hyper-cube Q =[0,11¢ have hx, o = Vd/4(N - 1)1 =6 (n~1?).

With these preliminaries we are ready to present convergence results for
(smoothed) kernel cubature rules based on Sobolev kernels and the Gaussian
kernel. For the most part, these results follow from the bounds on

”f_sf,X,/l”Ll(Q)=L|f(x)_sf,X,A(x)|M

in Wendland and Rieger (2005) and Rieger and Zwicknagl (2010) by using the
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following argument: if u has a bounded Lebesgue density p, on (2, then

(F) - QrA(f; Xl = ‘/ [f(x) —Sf,x,a(x)]py(x)dx’
Q

= ”p“"L‘xm)/Q If (@) —s¢ x () dx (224

= ”py"Loo(Q) ”f _sf,X,/l”Ll(Q)~

Theorems 2.18 and 2.20 apply to smoothed kernel cubature rules of Section 2.3.3.
As such, when the smoothing parameter A is positive, hx o — 0 does not guar-
antee convergence. However, convergence rates of the interpolation case (i.e.,
A =0) can be achieved by specifying that A should be a function of 2x o that
decays sufficiently fast; see Wendland and Rieger (2005, Prop. 3.6) and Rieger
and Zwicknagl (2010, Cor. 6.3). All the results require that the domain satisfy
an interior cone condition. In short, this condition prohibits presence of “pinch
points” on the boundary of Q.

Definition 2.17 (Interior cone condition). A domain Q c R? satisfies an interior
cone condition if there exists an angle 6 € (0,27) and a radius r > 0 such that for
every x € Q) there is a unit vector £(x) such that the cone

{x+/1y 1y eRY Iyl =1,y &x) = cosh, A€ [O,r]}
is contained in Q.

The first result, for Sobolev kernels, is a consequence of Proposition 3.6
in Wendland and Rieger (2005), a more conventional version of which for A =0
is given in Wendland (2005, Cor. 11.33). This theorem appears explicitly in a
slightly less general form in Kanagawa et al. (2019, Sec. 3).

Theorem 2.18. Consider the smoothed kernel cubature rule (2.23) and let the
domain Q be bounded, have a Lipschitz boundary, and satisfy an interior cone
condition. Suppose that the measure p admits a bounded Lebesgue density
function and K is a Sobolev kernel of order r € R, such that |r] > d/2. Then there
is a constant C > 0, independent of f and X, such that

II(F) - Qra(f;X) = C(Rx o+ VA) If Il (2.25)

for any f € #x = H (Q) and all sufficiently dense X. If X,, are quasi-uniform,
this becomes

II(F) = Qr ;X < C (0™ + VA) I f s,
for a potentially different constant C and all sufficiently large n € N.
Proof. Equation (2.24) gives
|I(f) - QK,/l(fyX)l = ||pu||Loo(Q) ”f —SfX,A ”Ll(Q) .

The bound (2.25) for [|f —sf x 1 Iz follows from setting t=r,g=1,and j=0
in Proposition 3.6 of Wendland and Rieger (2005). O
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The rate n~"/? that is attained in the non-smoothed case with quasi-uniform
point sets is the optimal rate of convergence of a deterministic cubature rule on
a hypercube (Novak, 1988, Sec. 1.3.12). Similar rates of convergence in different
spaces of finitely smooth functions are attained by, for instance, quasi Monte
Carlo rules (Dick and Pillichshammer, 2010, Ch. 15) and certain sparse grid
rules (Novak and Ritter, 1996, 1997).

Kanagawa et al. (2019, Secs. 4 and 5) have used results by Narcowich and
Ward (2004) to show that Sobolev kernels are adaptive to misspecification of
Sobolev smoothness. That is, even if the integrand lives in a Sobolev space
rougher than the one induced by the kernel, the kernel cubature method attains
the optimal rate of convergence. For similar results for randomly selected points,
see Kanagawa et al. (2016). The following theorem is a generalisation based on
Narcowich et al. (2006) of the results in Kanagawa et al. (2019).

Theorem 2.19. Consider the kernel cubature rule (2.15) and let the domain () be
bounded, have a Lipschitz boundary, and satisfy an interior cone condition. Let
0 <s <r be such that |s| > d/2. Suppose that the measure | admits a bounded
Lebesgue density function and K is a Sobolev kernel of order r. If X,, are quasi-
uniform and f € H(Q), then there is a constant C > 0, independent of f and X,
such that

()= Q(f;Xa) < Clif lgsyn ™

for all sufficiently large n € N.

Proof. By setting 7 =r, B=s,and p =0 in Theorem 4.2 of Narcowich et al. (2006)
we obtain
If =sf.xlp2) < ClIFlsoyn™ (2.26)

for some constant C > 0 because the mesh ratio px o = hx o/qx is bounded
under the quasi-uniformity assumption. Because (2 is bounded, f —sf x € LY(Q)
and Holder’s inequality produces the standard bound

”f_sf,X”Ll(Q) = V ﬂ(Q) ”f_Sf,X”LZ(Q)o
The claim now follows by combining (2.24) and (2.26). O

The RKHS of the Gaussian kernel, a subset of analytic functions (recall The-
orem 2.14), is much smaller than any Sobolev space. As such, it is perhaps
unsurprising that exponential rates of convergence can be attained. The follow-
ing theorem is an amalgamation of the results in Rieger and Zwicknagl (2010,
Sec. 6); a non-smoothed version can be found in Wendland (2005, Thm. 11.22).
The results can be improved if the point set is denser near the boundary of Q
than in its interior (Rieger and Zwicknagl, 2014).

Theorem 2.20. Suppose that the measure p admits a bounded Lebesgue density
function and K is the Gaussian kernel (2.4). Then there are constants c1,cg > 0,
independent of f and X, such that, for all sufficiently dense X,

I(f) - Qg A(f;X)| < (2ec 108 xalhxa 4 gexlhxa /3 ) | )| 4
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if Qis a hypercube and
I(F) - QrA(f;X)] < (2ec110ghx,n/h¥,2n +02\/Z) ||f||]£K

if Qis bounded, has a Lipschitz boundary, and satisfies an interior cone condition.
If X,, are quasi-uniform, these bounds become

I(F) = Qra(F: X )l < (267187 12 /A) | Fll 15

and
() - Qu (Xl < (267 187 L oo/ AV 11l gy

respectively, for potentially different constants ci and cg and all sufficiently large
neN.

As opposed to Sobolev spaces induced by Sobolev kernels, the Gaussian RKHS
characterised in Theorem 2.14 does not correspond to any classical function space.
Consequently convergence of other cubature rules in this space has attracted
little attention besides recent work by Kuo and Wozniakowski (2012) and Kuo
et al. (2017) on the Gauss—Hermite rule and its tensor-product extensions.

Some final remarks are in order:

* The convergence results in Wendland (2005, Ch. 11) and Rieger and Zwick-
nagl (2010) apply to many other infinitely smooth kernels besides Gaus-
sians, such as inverse multiquadrics. Zwicknagl and Schaback (2013)
provide rates of convergence for Taylor space kernels, including the Hardy
kernel.

* The assumption that the integrand lives in the RKHS of the kernel is
problematic, particularly so for the Gaussian kernel whose RKHS is rather
restricted (recall Section 2.2.2). Results like Theorem 2.19 that are valid
also for functions outside the RKHS are therefore valuable. Unfortunately,
we are not aware of any analogue of Theorem 2.19 that would hold for the
Gaussian kernel.

e All error estimates contain the ominous stipulation that the estimates
are valid only for sufficiently dense point sets. This can be problematic in
high dimensions where an ever-increasing number of points is required
for adequate coverage of the space.

* Even though exponential rates of convergence are obtained for quasi-
uniform point sets with the Gaussian kernel, some care should be taken
in selecting the points because uniformly placed points induce the famous
Runge phenomenon (Platte and Driscoll, 2005; Platte et al., 2011) and
consequent impairment of stability of the approximation process. Finitely
smooth kernels do not exhibit this problem (De Marchi and Schaback,
2010). See Oettershagen (2017, Sec. 4.3) and Karvonen et al. (2019, Sec. 4)
for further discussion on this in the context of cubature.
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2.3.5 Historical Notes

It seems that kernel cubature rules were first defined in a form recognisable to
a modern practitioner by Larkin (1970), though his interest was still mainly in
kernels that induce classical function spaces. Properties of these rules were then
studied in a number of articles during the 1970s (Richter, 1970; Richter-Dyn,
1971b,a; Larkin, 1972, 1974; Barrar et al., 1974; Barrar and Loeb, 1975; Bojanov,
1979). The early research was mostly concerned with optimal placement of the
points of kernel cubature rules for totally positive kernels (Karlin, 1968) in one
dimension; for more modern reviews of the topic, still incompletely understood,
see Bojanov (1994), Karvonen et al. (2019), and in particular Oettershagen (2017,
Sec. 5.1). As far as we are aware of, the only related results on the multivariate
case appear in Gavrilov (1998, 2007).

First convergence results were obtained by Bezhaev (1991) for polyharmonic
spline kernels. He used essentially the same argument that was outlined in
Section 2.3.4. He also appears to have been the first to consider kernel cubature
from a completely kernel-centric point of view, an approach that was later
revitalised by Sommariva and Vianello (2006a,b). Since then, the work on error
estimates has been largely inspired by applications in statistics and machine
learning and the interpretation of kernel cubature as a probabilistic numerical
algorithm (Kanagawa et al., 2016, 2019; Briol et al., 2019).
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3. Bayesian Cubature

This chapter reviews Gaussian process regression and Bayesian cubature that
provide an equivalent probabilistic perspective to kernel interpolation and cuba-
ture introduced in Chapter 2. The equivalences are well-known and frequently
discussed, see for instance Schaback and Wendland (2006); Fasshauer (2011);
Scheuerer et al. (2013); and Kanagawa et al. (2018) for recent surveys.

3.1 Gaussian Process Regression

In Gaussian process (GP) regression (or kriging) (O’'Hagan, 1978; Rasmussen
and Williams, 2006) the function f: Q — R of interest—in a sense unknown until
evaluated—is modelled as a Gaussian process fgp ~ GP(m,K) with a mean func-
tion m: Q — R and a covariance kernel K: Q x Q — R. That is, fqp is a stochastic
process characterised by the fact that for any n € N and any distinct points
X1,...,%, € Q the joint distribution of the random variables fgp(x1),..., fop(%y,) is
Gaussian with mean and covariance specified by m and K:

for(21) mx1)| |[K@i,x1) - Kx1,%,)
) N s : .

fGP(xn) m(xn) K(xnyxl) K(xnyxn)

A number of sample paths of four different Gaussian processes are depicted in
Figure 3.1. For a comprehensive technical review, see Bogachev (1998). Suppose
then that we obtain noisy “data” y = (y1,...,¥,) € R” of the function of interest f:

yi= f(xz) +&; for i.i.d. E; ~ N(O, /1)

The conditional process fsp | ¥ is a Gaussian process with the mean and covari-
ance functions

mx(x) = E[fe®) | y] = mx) +kx®) (Kx +AL,) (y—mx), 3.1)

Kx(x,x) = C|for), forx) | y] = K(x,x") —kx(x)" (Kx + AI,) 'kx(x), (3.2)

39



Bayesian Cubature
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Figure 3.1. Sample paths on [0, 1] of zero-mean Gaussian processes with the covariance kernels
plotted in Figure 2.1.

where the vector function kx : R — R" and the kernel matrix Kx € R**" have
been defined in Section 2.3 and [mx]; = m(x;) is an n-vector. Observe that the
posterior mean (3.3) coincides with the smoothed kernel interpolant (2.22) if
m=0.

As we are interested in approximating deterministic functions, evaluations of
which can be performed exactly, in the following we consider only the noise-free
setting where A = 0 and consequently y = fx.! The posterior equations (3.1)
and (3.2) become

mx (%) =E[for(x) | f x| = mx) +kx(®) Kx'(fx —mx), (3.3)

Kx(x,x')=C[fer(®), forx) | fx| = K(x,x) —kx(x) Kx'kx(x),  (3.4)

If m = 0, the posterior mean matches the kernel interpolant (2.17) and the
posterior variance Kx(x,x) is equal to the square of the power function (2.20).
This shows that the power function does not have to be merely an abstract
error indicator but can be interpreted as measure of uncertainty associated to
interpolation.

3.2 Bayesian Cubature

In (standard) Bayesian cubature (O’Hagan, 1991; Minka, 2000; Briol et al., 2019)
the deterministic integrand f: Q — R is modelled with a zero-mean Gaussian
process fep ~ GP(0,K) and the data y consists of noise-free integrand evaluations,
y = fx. Because the integration operator I(f) = fQ fdu is a linear functional,
the posterior I(fgp) | f x is a Gaussian random variable. From the equivalence

11n this case, there are certain technicalities, related to the likelihood of the noise-free
observations y = f x being degenerate, that need to be taken care of; see Cockayne et al.
(2019a, Sec. 2.5) and Kanagawa et al. (2018, Sec. 3.1) for more details.
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between Gaussian process regression and kernel interpolation as well as the
interpretation of kernel cubature rules as integrated kernel interpolants it
follows that the mean of this random variable is equal to the kernel cubature
rule,

E[I(fer) | fx] = /Q mx dp = Q(f;X), (3.5)

and its variance coincides with the squared worst-case error,
V[I(fe) I fx] = / Kx(x,x)dp(x) du(x’) = e (X, ). (3.6)
Q

The use of (3.6) in probabilistic quantification of the numerical uncertainty asso-
ciated to using @k (f;X) to approximate I(f) can be seen as the main difference
between kernel and Bayesian cubature. Central challenge—absent in kernel
cubature—of Bayesian cubature is then to make sure that this posterior variance
actually is a meaningful indicator of the uncertainty; problems can arise if the
Gaussian process, defined through its covariance kernel K, is not a good model of
the true integrand or if the posterior variance is not scaled properly. Such issues
of prior specification and uncertainty calibration are discussed in Section 3.3.

3.2.1 Probabilistic Numerics

Bayesian cubature is an example of a probabilistic numerical method. The
central idea in probabilistic numerics (Hennig et al., 2015; Cockayne et al.,
2019a) is that numerical approximation of an analytically intractable quantity
can be viewed as a statistical inference problem. The function of interest can
only be evaluated at a finite number of points and hence its value elsewhere is
effectively unknown; it thus makes sense to exploit prior knowledge about the
function by placing a prior on it, for example in the form of a Gaussian process.
This allows for computing a full-fledged posterior distribution of the quantity of
interest, such as an integral, that contains more information than is available
in a single point estimate. The most famous exposition of this idea is perhaps
due to Diaconis (1988, p. 163):

Consider a given function f: [0,1] — R such as

2
f(x):exp{cosh (M)} (1)

3 +sina3

If you require fol f(x)dx, a formula such as (1) isn’t of much use and leads to questions
like “What does it mean to ‘know’ a function?” The formula says some things (e.g. f is
smooth, positive, and bounded by 20 on [0, 1]) but there are many other facts about f
that we don’t know (e.g., is f monotone, unimodal, or convex?).

Once we allow that we don’t know f, but do know some things, it becomes natural

to take a Bayesian approach to the quadrature problem:

* Put a prior on continuous functions C[0,1]
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e (Calculate f at x1,x9,...,x,
* Compute a posterior

¢ Estimate ﬁ)l f by a Bayes rule

Although the origins of probabilistic numerics can be traced back to the work
of Larkin (1972), it was not until a reintroduction by Diaconis (1988)2 and
O’Hagan (1991, 1992) that the field began slowly gaining traction. Important
recent expository articles are the review and a “call to arms” of Hennig et al.
(2015) and the historical account by Oates et al. (2019b). Much foundational work
on the rigorous definition of a Bayesian probabilistic numerical method has been
done by Cockayne et al. (2019a). Besides numerical integration, probabilistic
methods have been developed for solving of ordinary (Skilling, 1992; Schober
et al., 2018; Tronarp et al., 2019) and partial (Cockayne et al., 2017) differential
equations and for numerical linear algebra (Hennig, 2015; Bartels et al., 2018;
Cockayne et al., 2019b).

3.2.2 Literature Review

This section consists of a short historical account of Bayesian cubature and a
comprehensive collection of references to all aspects and applications of Bayesian
cubature. Included here are only references that explicitly adopt or contain the
Gaussian process based probabilistic point of view (though not necessarily the
term “Bayesian cubature”). Literature on the equivalent reproducing kernel
Hilbert space characterisation has been reviewed in Chapter 2.

A probabilistic formulation for kernel cubature and the consequent ramifica-
tions for statistical quantification of uncertainty in numerical approximation
make their first appearance in the seminal works of Larkin (1972, 1974),3
but it is only in the independent work of O’Hagan (1988, 1991, 1992) where
the Gaussian process formulation used here and the name “Bayesian quadra-
ture” explicitly appear for the first time. The contributions by O’Hagan and
Diaconis (1988) triggered further research during the next decade or so on in
statistics (Kennedy and O’Hagan, 1996; Cook and Clayton, 1998; Kennedy, 1998,
2000) and, more influentially, machine learning (Minka, 2000; Rasmussen and
Ghahramani, 2002) communities. For a relatively early application, see Kumar
et al. (2008). In particular, Cook and Clayton (1998) develop methods for sequen-
tial selection of the evaluation points x;, Kennedy (1998) essentially deals with
computation of kernel means, and Rasmussen and Ghahramani (2002) coin the

2S0ome earlier commentary, including appearance of the term “Bayesian numerical
analysis”, can be found already in Diaconis and Freedman (1983, p. 110).

3Suldin (1959, 1960) has done some earlier work in a more limited setting of Wiener
measures. He does not view the Gaussian process as a prior for the integrand nor
the output of the numerical approximation as a probability distribution, being rather
a precursor to average-case analysis (Ritter, 2000). See Oates and Sullivan (2019,
Sec. 2.2) for more details. A different early probabilistic idea appears in Ajne and
Dalenius (1960).
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term “Bayesian Monte Carlo” for Bayesian cubature based on Monte Carlo sam-
ples. Although he does not generally provide rigorous proofs, Minka (2000) has
numerous interesting results and insights on the relationship between Bayesian
quadrature and polynomial and spline based quadrature rules, discussed in
detail in Chapter 5. A short contemporary review and some discussion can be
found in Evans and Swartz (2000, Sec. 5.7). However, it was not until during
the 2010s that a true outpouring of contributions began, and the rest of this
section reviews work published during the past ten years in machine learning,
statistics, and signal processing literature.

In Machine Learning. It seems that the beginning of renewed interest in
Bayesian cubature can be dated to 2012, a year that witnessed the publi-
cation of a number of articles (Huszar and Duvenaud, 2012; Osborne et al.,
2012b,a). The outpouring of work that soon followed contained contributions,
to name a few, on selection of the integration points by numerical optimi-
sation (Briol et al., 2015), convergence results in the misspecified setting
when [ ¢ #x (Kanagawa et al., 2016), selection of the sampling distribution
in Bayesian Monte Carlo (Briol et al., 2017), relationship between Bayesian
cubature and random feature expansions (Bach, 2017), and generalisations
where also the measure p is considered unknown (Oates et al., 2017b), deriva-
tive evaluations are employed (Prither and Sérkks, 2016; Wu et al., 2018),%
and the integrand is allowed to be vector-valued (Xi et al., 2018). Other recent
works are Hamrick and Griffiths (2013); Ma et al. (2014); Kersting and Hennig
(2016); Fitzsimons et al. (2017); Paul et al. (2018); Acerbi (2018b,a); Tronarp
et al. (2018); Chai et al. (2019); Sonoda (2019); and Gessner et al. (2019).

A topic that has seen a fair amount of activity is modelling of positivity of the
integrand (Osborne et al., 2012a; Gunter et al., 2014; Chai and Garnett, 2018;
Wagstaff et al., 2018). Positivity cannot be encoded by the standard Gaussian
process model and it can easily happen that the posterior mean function and
some of the cubature weights become negative even if the true integrand is
positive everywhere. However, one can introduce (for instance) the function
g(x) = f(x)2 and place a GP prior with kernel K on g instead of directly on f.
The posterior of f becomes a non-central Chi-squared process whose mean
and covariance functions can be computed in closed form in some cases. This
particular approach was introduced by Gunter et al. (2014) under the name
warped sequential active Bayesian integration (WSABI) and has the potential
advantage of having its posterior variance data-dependent so that selecting
new integration points by minimising the variance provides an adaptive point
selection scheme. The most general framework is due to Chai and Garnett (2018).
It is worth noting that a square-root transform for enforcing positivity appears
already in the early work of Larkin, see Larkin (1969, Sec. 7) and Larkin (1972,
Sec. 2.7).

4Already O’Hagan (1992, Sec. 3.4) shortly discusses the use of derivative evaluations in
Bayesian cubature.
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In Statistics. Even though majority of work on Bayesian cubature since 2000
has been published in machine learning literature, there are some recent excep-
tions. In addition to some results on convergence for random and quasi-random
point sets, Briol et al. (2019) provide the most comprehensive modern overview
and discussion on Bayesian cubature. An expanded version appears in the
the doctoral dissertation Briol (2018). The cubic computational cost in the
number of integration points, due to the need to solve a linear system, is al-
leviated by Rathinavel and Hickernell (2018). Karvonen et al. (2019) discuss
qualitative properties, such as positivity, of the Bayesian cubature weights and
Ehler et al. (2019) are concerned with integration on general closed manifolds.

In Signal Processing. Bayesian cubature has been extensively applied to
computation of Gaussian integrals arising in certain extensions to non-linear
dynamical systems of the classical Kalman filter (Sarkka, 2013). Deisenroth et al.
(2009, 2012) were first to propose the use of Gaussian process based numerical
integration in this context. Since then, different versions and extensions of
the idea have been studied in Sarkké et al. (2014); Priither and Simandl (2016);
Sarkki et al. (2016); Priiher et al. (2017); Priither and Straka (2018); and Priiher
et al. (2018). An interesting connection is that a part of this approach, perhaps
most clearly outlined by Priiher and Straka (2018, Sec. IV) (who use the term
Gaussian process moment transform), closely resembles WSABI in that Gaussian
integrals of /2 are essentially approximated by placing a GP prior on f.

Other. Brouillat et al. (2009) and Marques et al. (2013, 2015) have applied
Bayesian cubature to the global illumination problem, a numerical integration
task arising in generation of computer graphics. Pronzato and Zhigljavsky (2018)
study greedy selection of the integration points.

3.3 Uncertainty Quantification

In Bayesian cubature the prior model is specified via selection of the covariance
kernel K. Its role was clearly articulated already by Larkin (1972, p. 406):

Typically, we shall assume general properties, such as continuity or nonnegativity of
the solution and/or its derivatives, and use the given specific properties in order to
assist in making a selection from the class [...] of all functions possessing the assumed
general properties. We shall choose [this class] either to be a Hilbert space or to be

simply related to one.

In our setting, this class will obviously be the RKHS #%. However, one needs
to proceed carefully, for, if the RKHS is infinite-dimensional, the sample paths
of the GP do not live in the RKHS (Lukié¢ and Beder, 2001; Steinwart, 2017;
Kanagawa et al., 2018). This caution ought to be kept in mind when Bayesian
cubature is used for the purpose of uncertainty quantification.
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Stationary kernels are commonly used as a default choice, although more accu-
rate estimates and more reliable uncertainty quantification could likely be often
obtained with carefully designed non-stationary kernels (Stein and Hung, 2019).
Stationary kernels are typically parametrised by a smoothness (or regularity)
parameter and a collection of scale parameters. The smoothness parameter deter-
mines the degree of differentiability of the kernel and consequently how smooth
the integrand is assumed to be. Because the number of continuous derivatives
a function possesses cannot be accurately determined from a finite number of
function evaluations, the smoothness parameter is usually fixed beforehand
based on a vague notion of expected smoothness of the integrand.? An example
is of course the parameter v of the Matérn kernel (2.3) that for v = co yields
also the infinitely smooth Gaussian kernel (2.4). Stein (1999, Secs. 1.6 & 1.7)
strongly advocates the use of Matérn kernels.

There are typically two scale parameters, the magnitude parameter o >0 and
the length-scale parameter ¢ > 0 that parametrise the kernel as

!
Ky o@,x) = 0K (x ; )

where K is now a stationary “basis” kernel. The single length-scale parameter

can also be replaced with a full length-scale matrix but as it is even more
difficult to select this matrix than a single parameter, we do not consider this
extension here. When computationally feasible, the scale parameters are usually
determined from data—for meaningful uncertainty quantification this is crucial
since the posterior variance as such does not depend on the function evaluations
and a procedure that outputs the same uncertainty estimates for two wildly
different functions is clearly of dubious utility. In Gaussian process regression
these parameters are typically selected using either marginalisation or empirical
Bayes (i.e., maximum likelihood). Cross-validation, which we do not discuss,
is popular in scattered data approximation literature. Unfortunately, little
is known on behaviour of the parameter estimates. The only results we are
aware of concern empirical Bayes for the Gaussian kernel and points placed
uniformly on the unit interval (Xu and Stein, 2017) and the Gaussian white
noise model (Hadji and Szabé, 2019). As the convergence results reviewed in
Section 2.3.4 apply to a fixed kernel (and, accordingly, fixed RKHS), little can
be said about convergence of the Bayesian cubature posterior mean when the
length-scale parameter is updated as new function evaluations are obtained
unless it is assumed that the length-scale estimate converges to a finite non-zero

value as n — oo.

3.3.1 Marginalisation of Kernel Parameters (Full Bayes)

A fully Bayesian approach is to place a prior on the scale parameters and
marginalise them out. Unsurprisingly, for all but some special cases this ap-

5For maximum likelihood based selection of the smoothness parameter, see Szabé et al.
(2015).
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proach is intractable because it involves computation of a challenging integral.
One of the most important special cases is that the magnitude parameter o
can be marginalised out in closed form if it is given the non-informative prior
p(02) x 1/02 and ¢ is fixed. If this is done, the integral posterior I(fep) | fx
becomes Student’s ¢ distribution with n degrees of freedom and the mean and
variance

(fx —mX)TKZ}((fX -my)

n—2

where K/(x,x') = K([x —x']/¢) and K, x is the kernel matrix of this kernel; see
O’Hagan (1991, Sec. 2.2) or Santner et al. (2003, Sec. 4.1.3). The differences to
the unmarginalised version in Section 3.2 are that there is an additional factor

Qk,(f;X) and ex, (X, wi, )%,

in the posterior variance and that the posterior has heavier tails. However, as n
increases, the posterior converges to a Gaussian.

3.3.2 Maximum Likelihood for Kernel Parameters (Empirical Bayes)

In empirical Bayes one selects values of ¢ and ¢ that maximise the marginal
likelihood of the “data” f x that has been obtained so far. The marginal likelihood
in the noise-free Gaussian process model described in Section 3.1 is (Rasmussen
and Williams, 2006, Eq. (2.30))

_ 1 _
I(0,0)=det (21K, 0 x) "2 exp (— 5Fx- mx) K, x(fx - mx)) ,
maximisation of which as a function of o and ¢ is equivalent to maximisation of

1 _ 1 n
logl(g,0) = —E(fX—mX)TKU,l&X(fX—mX)—Qlog det(KJ,g,X)—g log(27). (3.7)
The maximum likelihood estimate of ¢ is available in closed form. To derive an
expression for it, note that

1 1
logl(0,0)= = 5 (fx ~mx) K x(fx —mx) -~ log det(K x)

—nlogo — glog(2n).

Differentiation with respect to o gives
0 1 n
—Ilogl(o,0)=— -mx)'K;} -mx)——.
35 108 U ) Us(fX x) K x(fx —mx) o
By requiring the derivative to vanish we obtain the maximum likelihood estimate
s  (Fx-mx)'K;%(fx-mx)

Oy = - (3.8)

Unfortunately, there is no closed-form solution for the maximum likelihood
estimate of the length-scale parameter. Note that the integral posterior corre-
sponding to the use of (3.8) is Gaussian with the mean Q,(f;X) and standard
deviation oyrex,(X,wg,), and that, for large n, the posterior is consequently
indistinguishable from the Student’s ¢ posterior obtained via marginalisation in
Section 3.3.1.
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Posterior (n =10) Posterior (n = 15) Posterior (n =25)

1.3 I 1.5 1.3 I 1.5 1.3 1.5
Integral estimates and credible intervals
1.45 — Qk(f;X)
I(f)r—pmmmmmeeeec oo - - - - o=
1.35
7 11 15 19 23 27 31

Figure 3.2. Illustration of uncertainty quantification for the toy integration problem (3.9). The
upper figure shows how the Bayesian quadrature posterior contracts towards the
true integral value I(f) = 1.3992 while the lower displays the 95% credible interval
around the integral posterior mean Qg (f;X).

3.3.3 Example: Credible Intervals

Quality of the uncertainty quantification provided by Bayesian cubature for the
unknown value of the integral is often assessed by examining Bayesian credible
intervals. This has been suggested already by Larkin (1974, 1972, Sec. 5.4); see
also Wahba (1983) for a relevant study on the more general regression context.
For a recent use of credible intervals for this purpose, see Briol et al. (2019,
Sec. 5) and Rathinavel and Hickernell (2018). The work of Rathinavel and
Hickernell is particularly interesting as they use credible intervals to decide
when to terminate the numerical integration procedure.

Figure 3.2 shows how the Bayesian quadrature posterior contracts towards
the true integral value when the number of points increases. This toy problem
consists of computation of

1
/ fx)dx  for f(x):exp<sin(6x)2—§> (3.9)
0

using the Matérn kernel (2.3) with v = 5/2. For each n, the magnitude and
length-scale parameters of the kernel were selected using empirical Bayes.
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4. Computational Methods
(Publications I-lll)

Recall from Section 2.3 that the integral approximation produced by a kernel
cubature rule is
Qf; X, w) = fiws = fxKx'yx, 4.1)

where fx € R" contains the integrand evaluations at X, [K];; = K(x;,x;) is
the n x n kernel matrix and &k, x € R" consists of evaluations of the kernel
mean. Computation of the weights wy = K}}lk wx thus necessitates solving a
linear system of n equations defined by the kernel matrix. Due to their cubic
time and quadratic memory complexity, naive linear solvers cannot cope with
more than some tens of thousands of points unless the kernel matrix is, for
example, sparse. For integration problems requiring a large number of points
due to high dimensionality of the integrand or a high level of accuracy desired,
approximations or exploitation of potential structure present in Kx and &k x
are required. A second problem that is often encountered when infinitely smooth
kernels, such as Gaussians, are used is that the kernel matrix quickly becomes
ill-conditioned (Schaback, 1995). This chapter deals with these two issues and
consists of the following parts:

1. Section 4.1 contains a short literature review of approximate and non-
approximate algorithms for evaluating (4.1).

2. Section 4.2 reviews fully symmetric sets and the results in Publications I
and II on how these sets can be used to enable kernel cubature for up to
tens of millions of points.

3. Section 4.3 is a summary of the results in Publication III on the use of the
Mercer expansion for numerically stable and explicit approximation of the
weights wx when both the kernel and integration measure are Gaussian.

4.1 A Short Literature Review

In the literature there exist a myriad of methods for fast kernel interpolation
and cubature and Gaussian process regression. Roughly speaking, these can be
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divided into approximate and exact methods. Approximate methods make use of
different approximations to, for example, the kernel to achieve a computational
speed-up while exact methods are typically based on exploiting structurality of
specifically designed point sets. Examples of approximate methods popular in
machine learning include certain sparse methods (Snelson and Ghahramani,
2005), variational and spectral methods (Hensman et al., 2018), and reduced
rank approximations (Solin and Sarkki, 2019), to name a few. For finitely
smooth kernels there are exact methods based on a connection to Kalman
filtering (Hartikainen and Sarkki, 2010; Sarkki et al., 2013). Little use of any
of these methods has been made in kernel or Bayesian cubature.

Perhaps the simplest, but also exceedingly inflexible, exact method for kernel
cubature is based on the use of full tensor grids and was suggested for Bayesian
cubature already by O’'Hagan (1991, Sec. 4). In short, if the kernel, domain and
measure take the product forms

d
K(x,x') = HKi(xi,xﬁ), Q=Qyx-xQq, p=p®-®ug
i=1
for kernels K;: Q; x Q; — R, domains Q; c R, and measures y; on Q; and the
point set is a Cartesian product of d one-dimensional sets,

X=X1x---xXgy, for X;cQ;, #X=n;,

then the kernel cubature weight for a point xq = (x4, ...,%q,) € X defined by a
multi-index @ € N? is

d
wK,ﬂ! = | | wKi,(I,"
i=1

where wy, € R® are the kernel cubature weights based on the kernel K;, points
X;, and the measure p; on Q;. This reduces the computational complexity of
kernel cubature from G((rn1 x --- x ng)?) to @’(n?i +oee nz), but imposes a severe
restriction on the form of point sets that can be used. See Oettershagen (2017,
Sec. 2.4) for a more comprehensive review that also covers sparse grids. Other
exact methods for kernel cubature have been proposed by Fuselier et al. (2014)
and Rathinavel and Hickernell (2018).

4.2 Fully Symmetric Kernel Cubature

This section contains a review of the results in Publications I and II. The main
contribution of these publications is summarised in Theorem 4.1, which provides
an efficient and exact algorithm for computing the kernel cubature weights
when the point set is a union of fully symmetric sets.
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Tensor grid Sparse grid Fully symmetric set

Figure 4.1. Three different point sets in R3 that are unions of fully symmetric sets.

4.2.1 Fully Symmetric Sets

The fully symmetric set generated by a generator vector A € R? is the set
[Al:={(s14qg1s---,8aMq,) 1 g €Tz, 8 € Sy} <RY,

where IT; © N? is the collection of all permutations of the first d positive integers
and S contains every vector of the form s = (s1,...,s4) for each s; either 1 or —1.
This means that [A] is the collection of all points that can be obtained from A by
permutations and sign-changes of individual coordinates. Some fully symmetric
sets are displayed in Figure 4.1. A generator vector A that has m non-zero
elements, [ of which are distinct and have multiplicities m1,...,m;, and mg
elements that are zero generates a fully symmetric set of cardinality

#A]= ﬂ (4.2)

mo!l---my!

This number grows very fast with the dimension d if A contains more than a
few distinct elements; see Table 4.1. Fully symmetric sets can be also defined
using permutation and sign-change matrices. These are d x d matrices that
have exactly one entry of 1 or —1 on each of their columns and rows. Note
that these matrices are invertible. We denote their collection by £;, so that
[Al={PA : P € Z2;}. The following four notions of different fully symmetric
objects are necessary for stating our results:

* A domain Q cR? is fully symmetric if it is closed under coordinate per-
mutations and sign-changes:

Q=PQ:={Px:x€Q} forany PeZ?,.

Standard domains such as R?, hypercubes of the form [-a,al?, and cen-
tered balls are fully symmetric.

* A measure p on a fully symmetric domain Q is fully symmetric if it is
invariant under fully symmetric pushforwards:

u=P,u for forany Pey,
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Table 4.1. Sizes of fully symmetric sets, as computed from (4.2), generated by the d-dimensional
(d =1,...,9) generator vector A =(Aq,...,4;,0,...,0) with / < m distinct non-zero ele-
ments 11,...,1;.

Dimension (d)

2 3 4 5 6 7 8 9
1=1 4 6 8 10 12 14 16 18
1=2 8 24 48 80 120 168 224 288
1=3 - 48 192 480 960 1,680 2,688 4,032
I=4 - - 384 1920 5760 13,440 26,880 48,384
I=5 - - - 3840 23040 80,640 215040 483,840
1=6 - - - - 46,080 322,560 1,290,240 3,870,720
1=7 - - - - - 645,120 5,160,960 23,224,320

where the pushforward measure is defined by (P.u)(A) = u(P~'A) for
measurable A ¢ Q. The Lebesgue measure and isotropic Gaussian mea-
sures are standard examples of fully symmetric measures. As will be
described in Section 4.2.2, the restriction that the measure needs to be
fully symmetric can be circumvented by the use of a change of measure
trick.

¢ Akernel K: O xQ — R defined on a fully symmetric domain Q is fully
symmetric if

K(Px,Px')=K(x,x') forany Pec%,.

All isotropic kernels and kernels formed out of products or sums of
dimension-wise one-dimensional isotropic kernels are fully symmetric.

* A cubature rule Q(X,w) is fully symmetric if the point set is a union of
fully symmetric sets and any two points in a particular fully symmetric
set have the same weight:

J J
X=J1 and QUiX.w)=) wy ¥ f@
j=1 j=1 x€[A;]

for distinct A; € Q and some w,,,...,wy, € R. That is, given a natural
ordering of the points the weight vector takes the block form

w = (w2, Tyia, - wa, Toia,)) €RY,

where 1,, is an m-vector of ones. Fully symmetric cubature rules based on
polynomial exactness conditions have been studied since the 1960s (Lyness,
1965; McNamee and Stenger, 1967). The most general constructions
appear to be due to Genz (1986) and Genz and Keister (1996).
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4.2.2 Exploiting Symmetry

When the point set X is a union of fully symmetric sets and the domain, measure,
and kernel are all fully symmetric, it would seem natural that the corresponding
kernel-based cubature rule should be fully symmetric. This is indeed the case
and, moreover, the distinct weights, one for each fully symmetric set, can be com-
puted very efficiently. The following theorem is the main result of Publication I.

Theorem 4.1. Suppose that the domain Q, measure y, and kernel K are fully
symmetric. Let X be a union of J distinct fully symmetric sets generated by
A j}}]:r' X= U}]: 1[A;1. Then the resulting kernel cubature rule is fully symmetric
with distinct weights w} e RY :

J
Qr(f;X)=) wh; > flx).

Jj=1 x€lA;]
The weights solve the linear system Swﬁ =k of J equations, where

[Slij= > KQAix) and [kual;=KuA;.
x€lA;]

The worst-case error is

J
ex(X,wy)* = I(K,)- Zw;’jKﬂ(lj)#[/lj].
Jj=1

The naive method of computing the weights requires n? kernel evaluations
and solving of a linear system of n equations; Theorem 4.1 reduces these to nJ
and J, respectively. This makes kernel cubature rules feasible for up to millions
of points (numerical examples in Publication I go up to 15,005,761 points). As
cardinalities of fully symmetric sets tend to grow rapidly with the dimension,
the nJ evaluations of the kernel needed to form S typically constitute the main
computational bottleneck. Publication IT extends Theorem 4.1 in various ways:

* Similar computational simplifications are possible for the Bayes—Sard
cubature, to be introduced in Section 5.2. In particular, if the function
space 7 in the definition of a Bayes—Sard rule consists of even monomials
up to a given degree and is of dimension </, then the distinct Bayes—Sard
weights can be solved from a linear system of J + </, equations.

* A method for simultaneous computation of multiple related integrals (Xi
et al., 2018) can also be made computationally competitive through the
use of fully symmetric sets.

¢ Symmetric change of measure can be used to relax the requirement that p
be fully symmetric. Let p. be a fully symmetric measure on Q such that u
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is absolutely continuous with respect to p.. Then the integral of interest

d
/fdu:/fd” dpis,
Q Q Hx

where dy/dp. is a Radon—Nikodym derivative, and a fully symmetric

can be written as

kernel-based cubature rule computed for u.. This method is related
to importance sampling and seems to work well in similar settings as
importance sampling.

It is also noteworthy that in the case #[A11] = - -- = #[As] the set of eigenvalues of S
is a subset of those of the full kernel matrix Kx. Consequently, the condition
number of 8 cannot exceed that of Kx. However, it seems difficult to say
anything about the relation of the condition numbers in the general case of fully
symmetric sets of unequal cardinalities.

4.3 Mercer Expansions

This section contains a review of the results in Publication III, which were
inspired by the work of Fasshauer and McCourt (2012) on numerically stable
interpolation with increasingly flat kernels (see Section 5.4). Define the integral
operator

Lggx):= / K(x,x)g(x')dulx')
Q

on L%(Q, ) and suppose that {xlp};"zo and {¢, }Z":O are its positive eigenvalues
and corresponding L2(Q, y)-orthonormal eigenfunctions. That is,

Lgpp,=2p9p and /Q(pp(pqdu:(?pq.

Our results are based on Mercer’s theorem, a version of which for general
domains is given below. For a proof, see Sun (2005) and also Steinwart and
Scovel (2012).

Theorem 4.2 (Mercer’s theorem). Suppose that w(A) >0 if A < Q is open. If
(i) Ky € LQ(Q,/J) for every x € Q and (ii) the integral operator L is bounded
and positive on L?(Q, ) and Lgg is continuous for every g € L(Q,p), then
{Ag pr};":o form an orthonormal basis of #x and

oo
K@x2)=) Ap0p@)pp), 4.3)
p=0
with the convergence being absolute and uniform on any compact subset of Q x Q).

Let d =1 and Q2 = R and consider the standard Gaussian measure

1
dut) = e 2 dy
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and the Gaussian kernel

(x—x')?
K(x,x")= exp <— W) .

The assumptions of Theorem 4.2 are satisfied and the eigensystem is available
in closed form (Fasshauer and McCourt, 2012):

1/2 2 P
- 4.4
Ap 1/2+52+£2(1/2+62+£2) @4
and
B 522
Ppx) = S Hp(Bx), (4.5)

where H, are the (unnormalised) probabilists’ Hermite polynomials (.e.,
<Hp,Hq>L2(Q7”) =pldpe) and

1
vaer
For explicit computations verifying that this indeed is an orthonormal eigensys-

tem of L, see Fasshauer and McCourt (2015, Sec. 12.2.1).
We can now truncate the expansion (4.3) after n terms.! This gives

E=

B=1+82)Y4  and 52=£(ﬁ2—1). (4.6)

Kx~®xA®; and k,x~®xAg,,

where [®x];; = ¢;_1(x;) is an n x n matrix, A is a diagonal matrix containing
the first n eigenvalues, and [(p#]i = I(¢p;). Invertibility of ®x follows from invert-
ibility of the classical Vandermonde matrix. The kernel quadrature weights are
then approximated as

wy =y = (OxADY) ' DxA@, =Dy @, “.7)

Since the approximate weights wy solve the linear system ®Jwy = ¢,,, rows of
which are
n

> wkipia) =11 for  j=1,..n,

i=1
we observe that wy define the unique quadrature rule for points X that is exact
for the first n eigenfunctions. The approximation (4.7) is further simplified if
the points are selected by scaling the points x7* of the classical Gauss—Hermite
quadrature rule. The Gauss—Hermite rule is the unique n-point quadrature rule
that satisfies

n
> wFEym =I1x™) foreach m=0,...,2n-1.
i=1

ITruncation lengths other than the number of points are possible, but do not result in
an attractive closed-form expression for the approximate weights.

55



Computational Methods (Publications I-III)

Its points are the roots of the nth degree Hermite polynomial H,,. By using
the scaling x; = x{"/ the integration points thus become the roots of the nth
eigenfunction ¢,. A result of Mysovskikh (1968), for which see also Cools
(1997, Sec. 7), that relates ®x to w®™ and an explicit formula for the integrals
I(pj-1) in (4.7) yield the following result, which is the main contribution of
Publication III. This result can be extended to higher dimensions by using
tensor-product grids.

Theorem 4.3. Let {x{*}]_; and w™ be the points and weights of the n-point
Gauss—-Hermite quadrature rule. If the integration points x; = x{"/f are used,
then the approximate weights in (4.7) are

1 1/2 5 s [(n—1)/2] 1 ﬁz p
~ . _ GH 67 _ GH
Wxi = <1+252> Wi € ;J 2pp!<1+252 1) Hyplw™)  (48)

for i=1,...,n, where the constants  and 6 are defined in (4.6) and Hs, are the
even probabilists’ Hermite polynomials.

As numerically demonstrated in Publication III, the combination of these
points and weights has a number of advantageous properties:

¢ Equation (4.8) provides a numerically stable and accurate approximation
to the kernel quadrature weights. The error |wy—wx| of the weight
approximation decreases as n and ¢ are increased.

¢ That both wy, and wy are positive is verified by numerical experiments
up to n =100, but we have not been able to furnish a rigorous proof. This
supports the conclusion that the scaled Gauss—Hermite points x; = 27"/
are in some sense “good” for kernel quadrature based on the Gaussian
kernel.

¢ An exponential rate of convergence of both Q(X,wy) and Q(X,wy) for
functions in the RKHS % can be proved under the assumption that wy
are positive. The only other convergence results that hold in this non-
compact setting (recall that results in Section 2.3.4 are only for compact
domains) we are aware of appear in Kuo and Wozniakowski (2012) and
Kuo et al. (2017).

* As ¢ — o0, x; — x7" and wx — w, which is to be expected based on the
results on flat limits cited in Section 5.4.

The main limitation of Theorem 4.3 is that its point sequences are not nested
and, as the points depend on the length-scale via the scaling by 1/8, the length-
scale cannot be easily selected using one of the data-dependent methods outlined
in Section 3.3.
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Cubature (Publications IV & V)

Properties of splines, Gaussian quadrature rules, and other classical methods
of numerical analysis have been studied extensively, and such methods form a
reliable toolkit for approximation. It would therefore be desirable to transform
their output into a full non-degenerate probability distribution because a useful
extension that retains all positive aspects of a widely used method tends to be
more appealing, particularly when it comes to implementation, than a wholly
new, untested, and exotic method. Accordingly, this chapter studies different
modelling choices that yield Bayesian cubature methods whose posterior means
coincide with classical numerical integration methods. In the context of cuba-
ture, some aspects of the topic have been discussed by Larkin (1970, Sec. 3);
Diaconis (1988, Sec. 1); O’'Hagan (1991, Sec. 3.3); Minka (2000); Sarkka et al.
(2016, Sec. IV); and Priiher and Sarkkéi (2016, Thm. 5.2), but no proper overview
appears to have been published. Similar questions have also been of great impor-
tance in development of probabilistic methods for differential equations (Schober
et al., 2014; Teymur et al., 2016; Schober et al., 2018).
The chapter consists of the following parts:

1. Section 5.1 defines what we mean by a polynomial approximation method
or cubature rule.

2. Sections 5.2 to 5.4 provide a review of three different methods for re-
producing polynomial methods and cubature rules via Gaussian process
regression and Bayesian cubature. In particular, Sections 5.2 and 5.3
review the relevant contents of Publications IV and V, while Section 5.4
discusses an approach that has been extensively studied in kernel interpo-
lation literature.

3. Finally, Section 5.5 reviews some fairly well-known results on the equiv-
alence of spline interpolation and Gaussian process regression and their
implications to corresponding quadrature methods, most importantly the
trapezoidal rule.

When more convenient, we employ kernel cubature terminology. It is therefore
essential to keep the fundamental equivalences (3.5) and (3.6) and the corre-
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Gauss-Hermite Gauss-Lagrange Clenshaw-Curtis
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Figure 5.1. Three classical polynomial quadrature rules for n = 8: the Gauss—Hermite rule
for integration over the real line against the standard Gaussian measure and the
Gauss-Lagrange and Clenshaw—Curtis rules for uniform integration over [-1,1].

spondence between kernel interpolation and Gaussian process regression in
mind throughout this chapter.

5.1 Polynomial Approximation Methods

It is a classical result that, for any n distinct points on the real line and any
univariate function f defined at these points, there exists a unique polynomial
interpolant py x of degree n — 1 (this follows from, for example, invertibility
of the Vandermonde matrix). Because, by its very definition, this interpolant
satisfies the interpolation conditions

n-1
pf,X(xi)=Zaqxg=f(xi) foreach i=1,...,n,
q=0

the coefficient vector @ € R” has to solve the linear system
Vxa=fx,

where [Vx];; = x{ “!is the n x n invertible Vandermonde matrix. In particular,
prx = f if f is a polynomial of degree at most n —1. A natural extension
is to replace the polynomials with a different class of functions. Collections
of functions for which the natural generalisation of the Vandermonde matrix
remains invertible are called Chebyshev systems (Karlin and Studden, 1966).

Unfortunately, in higher dimensions it can happen that the natural extension
of the Vandermonde matrix for multivariate polynomials is no longer invertible.
To guarantee that this does not happen, a unisolvency assumption unnecessary
in one dimension is required: a point set on which it is possible to construct
unique interpolants is said to be unisolvent.
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Definition 5.1 (Unisolvency). Let 7 be a linear space of real-valued functions
on (). An n-point set X < Q is m-unisolvent if the zero function is the only
function in any subspace 7 c 7 of dimension at most n that vanishes at X.

If dim() = n, unisolvency guarantees the existence of a unique interpolant in
any 7 c w such that dim(7) = n to any function defined on X. This is because
the requirement that the zero function be the only function in 7 to vanish at X
implies that

p1(x1) - @plx1)| a1 0

Q1(xn) - @nlxy)| |an 0

=0y
where {¢@;}_, is any basis of 7, which holds if and only if @ =0. This in turn is
equivalent to @x € R**” being invertible. This matrix, a generalised version
of the Vandermonde matrix above, is called an alternant matrix. Hence the
function .
Prx®) = aipix), a=®Ffx,
i=1

is well-defined, in span{¢pi,...,¢,}, and satisfies the interpolation condition
orxlx="Fflx.

By integrating a univariate polynomial interpolant one obtains a unique (for
the given points) polynomial quadrature rule that is exact for all polynomials up
to at least degree n — 1. That is, the quadrature rule Q(X,w,) with the weights
wp = V;(Tp”, puli = I(x'1), satisfies Q(p; X, w;) = I(p) for every polynomial p
of degree at most n — 1. It is possible that Q(X,w;) is exact for a larger space of
polynomials.

Definition 5.2 (Degree of a quadrature rule). A quadrature rule Q(X,w) is of
degree m if Q(p;X,w) = I(p) for every polynomial p of degree at most m and
Q(p;X,w) # I(p) for some polynomial p of degree m + 1.

By judicious choice of the points one can ensure that a quadrature rule is of
degree 2n — 1 (which is maximal degree possible with n points). Such a rule is
unique for the given measure! and called a Gaussian quadrature rule. For exam-
ple, the Gauss—Hermite rule, already discussed in Section 4.3, is the Gaussian
quadrature rule for p the standard Gaussian measure on Q =R and Gauss—
Legendre rule the Gaussian rule for y uniform on Q =[-1,1]. The Clenshaw-
Curtis rule (Clenshaw and Curtis, 1960) is one of the most widely used non-
Gaussian polynomial rules of degree n — 1. Gauss—Patterson rules are examples
of rules of intermediate degree (Patterson, 1968; Genz and Keister, 1996). Some
important polynomial quadrature rules are displayed in Figure 5.1. Note that
the polynomial weights are rarely solved directly from V}w » = Py. For instance,

1See Gautschi (2004, p. 3) for the extremely weak assumptions that u needs to satisfy.
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weights of Gaussian quadrature rules are related to the eigendecomposition
of a certain tridiagonal matrix constructed out of recursion coefficient of the
three-term recurrence formula of the relevant orthogonal polynomials (Gautschi,
2004, Sec. 3.1.1). Construction of polynomial cubature rules is much more in-
volved in higher dimensions (Cools, 1997), partially because not every n e N is a
dimension of a full space of multivariate polynomials up to a given degree.

The principal question that Sections 5.2 and 5.3 attempt to answer is whether
or not it is possible to construct Bayesian quadrature rules that coincide with
polynomial quadrature rules (or other classical cubature rules).

5.2 Bayes-Sard Cubature

This section reviews the main results in Publication IV on replicating classical
cubature rules by the use of a parametric prior mean model in a way that results
in a non-degenerate posterior.

5.2.1 Flat Prior Limit

In Publication IV, the prior mean function m in Gaussian process regression is
given the parametric form

Q
mx) =Y 0,00 =0"p(x), 6~NQO,5), (5.1)
q=1

where Z € R2*9Q for @ < n is a positive-definite covariance matrix, and the de-
terministic functions ¢, : 2 — R span a @-dimensional linear function space 7.
When the coefficients 6 are marginalised out, the GP posterior mean and covari-
ance take the forms

ml 5(x) = a'kx(x)+p o), (5.2)

K% s@,x") = K(x,x") + o) Zp(x)
(5.3)

" [Kx +®x20%) ' [kx(x) - ®xZpx)],

- [kx(x) - ®xZp(x)
where [@x];; = ¢;(x;) is an n x @ alternant matrix and the coefficients a € R"
and B € R? solve the linear system
Kx ©®x | |a| |fx
oL -zl |p 0

Suppose then that the point set X is m-unisolvent. As this implies that the
zero function is the only function in 7 to vanish at X, the matrix ®x has full
rank. As 271 — 0, the prior on 0 becomes “weakly informative” and the posterior
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mean (5.2) and covariance (5.3) convergence to
T _ T T
mx(x)=a kxx)+p o), (5.4)

K% (x,x') = K(x,x') —kx(x) Kx'kx(x)
. (5.5)
+ [ K hx(x) - o)) [@FKZ®x] " [0LK 3 kx(x) - p@)],

where the coefficients & and B now solve

Kx ®x| |a| |fx

®, o||g] |o

All relevant matrices above are invertible because ®x has full rank by the uni-
solvency assumption. For earlier appearances of essentially the same Gaussian
process model, see O’'Hagan (1978); Wahba (1978); and Santner et al. (2003,
Sec. 4.1.2). The posterior mean is also related to interpolation with conditionally
positive-definite kernels (Wendland, 2005, Ch. 8).

5.2.2 Construction and Properties of Bayes-Sard Cubature

Integration of the Gaussian process posterior with the mean and covariance
functions (5.4) and (5.5) produces the integral mean and variance

E[I(fer) | fx] = ZwBSCf(xl) =) fx, (5.6)

V[I(for) | fx) =IK,)— k) xKx'kyx + @3 [@3Kx'kyx —9u], (6.7

where [@,]; = I(¢;) is a @-vector and the weights w;° € R* and w* € R® are
solved from the linear system

KX (I)X wgsc _ k”’X

o 0| |wrc| | o

We call this probabilistic integration method the Bayes—Sard cubature due to its
resemblance to a numerical integration method by Sard (1949). An important
property of the posterior mean is that it integrates every function in 7 exactly.

Proposition 5.3. Suppose that @ < n and that X is n-unisolvent. Then the
Bayes—Sard posterior mean (5.6) coincides with the true integral for every f € m:

E[I(fe) | fx] =I(F) if fem.

A version of Bayesian cubature almost identical to Bayes—Sard cubature
has been considered in full generality by Larkin (1974) and O’Hagan (1991).
DeVore et al. (2018) work with the equivalent formulation of finding the weights
that minimise the worst-case error under the restriction that all functions in 7
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are integrated exactly. The special case @ = 1 and ¢; = 1 has been consid-
ered by Kennedy (1998); Pronzato and Zhigljavsky (2018); and Rathinavel and
Hickernell (2018). In this case the cubature weights are

o (7 Ex bl Ky,
K KM KM

)K}lku’x +

and they sum up to one. The central difference between the flat prior formulation
we use and previous work is that the coefficients 8 are typically directly assigned
an improper prior. For example, O’'Hagan (1991) equips the kernel with a
magnitude parameter o and uses the prior p(02,0) o 1/02 (recall Section 3.3.1).
This transforms the posterior into Student’s ¢ with n — @ degrees of freedom and
with variance that involves the factor (n — @ — 2)~1. A number of such results
for different priors on the parameters are collected in Santner et al. (2003,
Thm. 4.1.2). As O’'Hagan (1991, Sec. 2.3) already points out, a consequence of the
use of this model is that the case @ = n yields an improper posterior distribution.
The Bayes—Sard cubature does not suffer from this limitation and, as shown in
Publication IV, can be thus used in endowing classical cubature rules with a
non-zero posterior variance.

Theorem 5.4. Suppose that @ =n and that X is n-unisolvent. Then
wi=0x"p, and V[I(fer)|fx]=exX,wi

This theorem says that the squared worst-case error in any RKHS of any cu-
bature rule whose weights have been (uniquely) selected so as to integrate every
function in 7 exactly can be interpreted as a Bayesian posterior variance. In
fact, the same conclusions holds for any cubature rule with non-zero weights. To
highlight the somewhat artificial nature of this construction, we also reproduce
the corresponding proof from Publication IV.

Proposition 5.5. Suppose that Q. c R¢ has a non-empty interior; (i(A) > 0 when-
ever A c Q is open, and u({x}) = 0 for every x € Q. Consider an n-point cubature
rule Q(X,w) with non-zero weights. Then there exists an n-dimensional function
space 7 such that w = CI))}Ttpp.

Proof. By the assumptions there exist disjoint measurable subsets D; c Q such
that x; € D; and u(D;) >0 for each i = 1,...,n. Select the functions
(Di)

wi

u
@i = XDi\lx;} + Xz

where y 4 is the characteristic function of the set A. Then I(¢;) = u(D;) and ®x
is diagonal with the elements [®x];; = u(D;)/w;. It follows that w = Q}Ttpu. O

The construction is much more appealing if the points and weights are in some
sense “sensible”:

* One-dimensional classical polynomial quadrature rules, such as Gaus-
sian rules or the Clenshaw—Curtis rule, can be assigned a probabilistic

interpretation by selecting the functions ¢;(x) = x*~1.
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e If i is a probability measure, uniformly weighted (quasi) Monte Carlo
rules are reproduced by selecting ¢; = yp, for disjoint sets D; such that
x; € D; and pw(D;) = 1/n.

In the next section we study if similar reproduction of classical rules is possible
by selecting the kernel suitably.

5.3 Polynomial Kernels

This sections reviews the results in Publication V on using polynomial kernels
to construct polynomial quadrature rules. Let {pq}g‘:’o1 be a collection of polyno-
mials that span the space of univariate polynomials of degree at most m —1 and
consider the polynomial kernel

m-1
K&e,x):= ) pa@)pg(a). (5.8)
q=0

Note that this kernel is not strictly speaking positive-definite in that (2.1) holds
only for n < m. The RKHS induced by K%' is finite-dimensional, consisting of
polynomials of degree at most m — 1. Observe also that this kernel is essentially
equivalent to the one usually called polynomial kernel (e.g., Steinwart and
Christmann, 2008, Lem. 4.7),

K3e,a') = (o + ™71
Indeed, the multinomial theorem yields

B o) = (m 1)1 ,)q_’”‘l & (-1 ay
m\X,X )= Z q'r' xXx = z; Zm x*(x )",
q=

q+r=m-1 r=0

which means that the selection

molo oy M2
Dqlx)= <27q!(m—l—r)!> x9

r=0
makes K and K?' equivalent. The following is the main result of Publication V.

Proposition 5.6. Let Q(X,w;) be a polynomial quadrature rule of degree r — 1.
Then the kernel quadrature rule Q(X,wy) based on the kernel (5.8) coincides
with this rule if n <m <r. In this case, ex(X,wg) =0.

From the identification of the worst-case error as Bayesian quadrature poste-
rior variance we observe the unfortunate fact that classical polynomial quadra-
ture rules are reproduced with zero posterior variance. This renders the ker-
nel (5.8) virtually useless in endowing classical rules with a useful posterior
probability distribution. The conclusion is not particularly novel, though a
source of explicit analysis seems elusive. For example, Diaconis (1988, p. 164)
clearly had something similar in mind: “Is Simpson’s rule Bayes? (Only for
priors concentrated on cubic polynomials.)”
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5.4 Increasingly Flat Stationary Kernels

A different approach to obtain polynomial methods from kernel-based ones
is to consider increasingly flat kernels. Recall that stationary kernels can be
parametrised by the length-scale parameter ¢ > 0 such that

Ko(x,x') = K0<x;x) (5.9)

for some stationary kernel Ky3. As ¢ — oo, the kernel becomes increasingly
flat and the kernel matrix increasingly ill-conditioned because all its elements
converge to Ky(0). However, as the corresponding kernel interpolant, say s?’ X
has to interpolate f for each ¢, it is not entirely clear how it should behave and if
its limit exists. Research on this question was initiated by Driscoll and Fornberg
(2002).2 The perhaps surprising conclusions are that

¢ if the kernel Kj is isotropic and infinitely smooth and the point set X is
unisolvent for polynomial interpolation, the kernel interpolant converges
to a polynomial interpolant as ¢ — oo;

¢ if the kernel K| is instead only finitely smooth, convergence is to a poly-
harmonic spline interpolant.

Infinitely smooth isotropic kernels were initially considered by Driscoll and
Fornberg (2002); Fornberg et al. (2004); and Larsson and Fornberg (2005). The
results we present in detail below appear in Schaback (2005) and Lee et al.
(2007); see also (Schaback, 2008). Finitely smooth kernels are considered in
Song et al. (2012) and Lee et al. (2014), with further generalisations appearing
in Lee et al. (2015).

For the following theorem recall that the dimension of the space

Hgl = {x“ :aeNg, IaISm}

of d-variate polynomials of degree at most m is

(m+d)!

d ._ 3; d _
My, :=dimII;, = ol

m
We also need to define the Fourier transform I/{\g of Ky:

I?o({)::/ Ko(x)e_z”ifodx.
JR

The kernels K, are positive-definite on R? if I/{\o is non-negative and not identi-
cally zero (Wendland, 2005, Thm. 6.11).

21t is interesting to note that the question appears to have been first posed in the
context of Bayesian cubature already by O’Hagan (1991, Sec. 3.3). Also Minka (2000)
and Sarkka et al. (2016) discuss this conjecture.
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Theorem 5.7. Let m € N be such that M;’fl_l <n< M%. Suppose that the kernel
is of the form
(e o)
Ko(x,x') = Zaqﬁ_zq lx — x|
q=0
for some coefficients a, € R and that the Fourier transform I?o is positive on an
open subset of RE. If X is Hfln-unisolvent and

(i) n= Mfft, then limg_.oos}{X = p for the unique polynomial p € H‘,in such that
plx =flx;

(ii) n < Mffl, then limy_.o S?X = p for some polynomial p € l'[gl such that
plx =flx.

If the kernel is Gaussian, limgaoos? x exists and is a polynomial interpolant for
any X.

The statements for general kernels appear in Theorem 3.5 of Lee et al. (2007)
while the special case of a Gaussian kernel can be found in Theorem 2 of
Schaback (2005). In the latter case the limiting polynomial interpolant coincides
with the de Boor and Ron interpolant (de Boor and Ron, 1990, 1992). Because
kernel cubature rules are just integrated kernel interpolants, Theorem 5.7 ought
to imply, at least for compact domains, that the increasingly flat limit in the case
n=M ;‘,ﬂ is a polynomial cubature rule of degree (at least) m. Unfortunately, as
with the construction based on polynomial kernels in Section 5.3, the posterior
variance (i.e., the squared power function) vanishes at the limit ¢ — co. We have
not found this straightforward result anywhere in the literature and accordingly
supply its proof.

Proposition 5.8. Let m €N be such that M;‘fl_l <n< M;‘,ll. Suppose that there
exists a unique polynomial interpolant p € H‘,in to f at X and that s}’;’X converges
to this interpolant as ¢ — oco. Then limgﬁooné =0 for the corresponding power
function (2.20).

Proof. The squared power function is
PY(x)? =K (x,x) - k5 () (K5 k% (x),

with dependence on ¢ made explicit. Since ug, =K gf)"lkf,}(x) are the Lagrange
cardinal functions, which satisfy u§( ;(xj) =6, and the assumptions imply that
their limits are unique polynomials having the same property, we have

Jim Ph(x)? = Jim [Ko(x,%) - k5 (0) (KSR ()]

n
=Ko~ _ lim K (i, x)u ;@)
—00
i=1

=Ko(0)- Ko Jim uf ().
=1
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Because Z?:l u§( ;(x) interpolates 1 at X for any ¢ >0, so does its limit. As the
constant polynomial shares this property and polynomial interpolation at X has
been assumed unique, it follows that Z:L: 1 u§{ ;(x) — 1 and consequently P}’} -0
as ¢ — oo. O

It is possible that the posterior variance can be prevented from vanishing at
the limit by introducing an appropriate length-scale dependent scaling of the
kernel.

5.5 Spline-Based Methods

Splines are a classical method of numerical analysis, going back to the work of
Schoenberg (1946, 1964). Let 0 < x1 < --- <x, < 1. The natural spline interpolant
of degree 2m +1, s2,, 41, is a sufficiently smooth piecewise polynomial interpolant
to f having the following properties:

(1) restricted on [0,x1] or [x,,1], S2;m+1 is a polynomial of degree m;

(i1) restricted on any of the n — 1 intervals [x;,x;+1], S2m+1 1S a polynomial of
degree 2m + 1;

(i) sam+1 € C?™([0,1]).

A total of 2(m + 1)n coefficients are needed to define sg,,+1: 2(m + 1) come from
S2m+1 being of degree m on [0,x1] and [x,,1] and (n — 1)(2m + 2) from it being of
degree 2m + 1 on each of the n — 1 inner intervals. The interpolation condition
sem+11x = flx fixes n of these coefficients while the smoothness condition (iii)
imposes (2m + 1)n additional constraints; sg;,+1 is thus uniquely defined by
properties (i)—(iii).

It can be shown that the posterior mean (5.4) constructed out of the m times
integrated Brownian motion kernel (2.8) and with appropriately selected func-
tion space 7 is the natural spline interpolant of degree 2m + 1. The origins of
this result appear to be somewhat obscure; see the discussion by Diaconis and
Freedman (1983, p. 110); Diaconis (1988, Ex. 2); and Lee and Wasilkowski (1986,
Rmk. 5.1). The most accessible explicit proof we have found is by Wahba (1990,
Sec. 1.3).

Theorem 5.9. Let 0 < x1 <--- <x, < 1and consider the m < n—1 times integrated
Brownian motion kernel K, in (2.8) and the flat prior limit model of Section 5.2.1.
IfQ@ =m+1and @4(x) = x4 for g =1,....m+1, then the posterior mean mk
in (5.4) is the natural spline interpolant of degree 2m + 1.

A similar result is true when the parametric prior mean (5.1) is not used if
property (i) of the natural spline is modified by requiring that s(zqn)l +1(0) =0 for

q=0,...,m (Lee and Wasilkowski, 1986, Sec. 5.3). Thus we see that natural
splines can be conveniently interpreted as posterior means of Gaussian processes
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1
- posterior mean
—— integrand
0
0 0.2 0.4 0.6 0.8 1

Figure 5.2. The trapezoidal rule is recovered as the integral of the Gaussian process posterior
mean with the Brownian motion kernel K if f(0) =0 and x, = 1.

with integrated Brownian motion kernels. Further results exist also for other
types of splines (Kimeldorf and Wahba, 1970a,b, 1971).

In quadrature, m = 0 is probably one of the most interesting cases because the
resulting kernel quadrature rule coincides with the trapezoidal rule if the points
are selected appropriately. The trapezoidal rule for approximation of fol f(x)dx
using points 0 =:xp <x1 <---<xp, <1is

n
Qu.(f) = lzzl W(ﬂq —%x-1)
(5.10)

n-1
_X1 Xi+1 —Xi-1 ) Xn —Xn-1
=5 f(0)+i_zl 5 @)+ == ),

which is just the integral of the piecewise linear interpolant to f, as depicted
in Figure 5.2. The following result can be found in Ritter (2000, Ch. II, Sec. 3),
though its origins are in the work of Suldin (1959, 1960).

Proposition 5.10. Consider the Brownian motion kernel Ky(x,x') = min{x,x'}.
If £:10,1] — R satisfies f(0) = 0, then kernel quadrature rule with points
X ={x1,...,%,}, x, = 1, for approximation of fol f(x)dx coincides with the trape-
zoidal rule (5.10).

Because the corresponding worst-case error is (for this formula, see Ritter,
2000, Ch. II, Sec. 3.3)
1 n
exy (X, wy)? = ﬁz;m ~xi-1)?,
im

and hence non-zero, Proposition 5.10 shows that the trapezoidal rule can be
seen as a Bayesian quadrature rule with non-degenerate posterior variance. Of
particular interest is the uniform point selection x; = 2i/(2n + 1) that produces a
uniformly weighted rule,

P 2i
@, (f3X) = 2n+1;f(2n+1)'

3Although these references are concerned with the average-case setting, the result we
cite is valid also in the worst-case setting.
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6. Summary and Discussion

We conclude this overview with a brief summary and assessment of the signifi-
cance of the five publications and a discussion on some of the central challenges
that, we believe, are currently holding up more widespread adoption of kernel
and Bayesian cubature methods.

6.1 Summary and Assessment of Publications

This section briefly summarises the main contributions of the publication that
make up this thesis and evaluates their significance.

Publication | (Section 4.2). This publication develops a method for efficient
computation of kernel cubature rules that use fully symmetric point sets. The
method computes the cubature weights exactly and remains computationally
feasible even for up to millions of points. Its main advantage over alternatives
exploiting tensor and sparse grids is the relative flexibility with which the
points can be selected because fully symmetric constituent sets can be added and
removed at will. Although the methodology is not fully mature yet, this approach
appears very promising in enabling kernel cubature for hitherto infeasible large
point sets that often arise in, for example, financial applications. The main
issues, that we are currently working on, are related to efficient computation
of the kernel hyperparameters, automatic selection of the fully symmetric sets,
and reliable uncertainty quantification in high dimensions.

Publication Il (Section 4.2). This publication contains a number of extensions
of the fully symmetric computational methods developed in Publication I. The
main extensions are for (i) the Bayes—Sard cubature proposed in Publication IV,
(ii) the multi-output Bayesian cubature method proposed by Xi et al. (2018), and
(iii) non-symmetric measures via a change of measure trick. The extension for
multi-output Bayesian cubature, naive implementation of which does not scale
well with the number of points and integrands, seems particularly promising as
it enables simultaneous computation of a huge number of related integrals.
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Publication lll (Section 4.3). This publication shows how the weights of one-
dimensional kernel quadrature for the Gaussian kernel and measure can be
approximated in an accurate, explicit, and computationally stable manner if the
points are selected via a scaling of the points of the classical Gauss—Hermite
quadrature rule. An exponential rate of convergence is proved for integrands in
the Gaussian RKHS under the assumption that the sum of absolute values of
the approximate weights does not grow too fast. For the most part, we consider
the weight approximation an interesting closed-form curiosity. The fact the
scaled Gauss—Hermite points are, to our knowledge, the “best” ones proposed for
this kernel quadrature problem suggests that the results of the publication may
have some practical implications in the future.

Publication IV (Section 5.2). This publication proposes the use of a finite-
dimensional parametric mean model that is marginalised out such that exact-
ness conditions akin to those appearing in polynomial cubature are incorporated
into the resulting Bayesian cubature rule. Even though some of its parts have
been proposed before (O’Hagan, 1978; Wahba, 1978), the model has not seen
sufficient use in Bayesian cubature. In general, the parametric prior mean
model makes the integral estimates of Bayesian cubature more robust against
improper selection of the kernel, which is useful especially in high dimensions.
The main novel contribution of the publication is perhaps the interesting proba-
bilistic interpretation (Theorem 5.4 and Proposition 5.5) of any cubature rule
as a Bayesian cubature rule such that the worst-case error corresponds to the
posterior standard deviation. Even though selection of the prior via the kernel
remains a challenge, it has been already demonstrated that this interpretation
can be useful (Priiher et al., 2018).

Publication V (Section 5.3). The main contribution of this publication is an
explicit discussion of how polynomial kernels can be used to interpret classical
polynomial quadrature rules as Bayesian quadrature rules. The gist of the
technical contributions of the article appears to be part of the folklore of the
field (see e.g. Diaconis, 1988, p. 164), though we have been unable to locate
explicit derivations. As the resulting Bayesian quadrature rules are of zero
posterior variance, the main result (Proposition 5.6), being incapable of providing
useful uncertainty quantification, is largely a curiosity.

6.2 Challenges

Finally, it seems proper to discuss some partially unresolved challenges in kernel
and Bayesian cubature.
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6.2.1 Computational Cost

As discussed already Chapter 4, the cubic computational cost in the number
of points of kernel cubature places it at a significant disadvantage compared
to standard methods that introduce either negligible computational overhead
(Monte Carlo and quasi Monte Carlo) or can mostly rely on pre-computed weights
(Gaussian quadratures). The problem is further exacerbated by the frequent
need to fit the kernel length-scale parameter using maximum likelihood or some
other methods. In the case of maximum likelihood, costly optimisation of (3.7) is
required.

Fortunately, there already exist several methods for (partially) efficient com-
putation (Publications I & II; Rathinavel and Hickernell 2018) and many of the
fast Gaussian process methods developed in machine learning literature have
not been adequately tested in the cubature setting. However, it appears to us
that there are fundamental limits to what can be achieved. Namely, computa-
tionally competitive non-approximate algorithms for weight computation are
feasible only if the point sets admit some structurality (e.g., symmetricity or
being quasi Monte Carlo sets) that can be exploited. When the point sets are
unstructured, approximate algorithms are certainly possible, but it is not clear if
their computational overhead and weight approximation error can be balanced
in a satisfactory way.

6.2.2 Kernel Means

To compute the kernel cubature weights and the worst-case error one needs to
be able to evaluate the integrals

Kp(xi)=/ K(x;,x)du(x) and I(Kp)=//K(x’,x)du(x)du(x’),
Q QJQ

former of which is the kernel mean. That these integrals may not be avail-
able in closed form has been long recognised as a fundamental practical prob-
lem (O’Hagan, 1992, Sec. 3.2). There are a number of kernel-measure pairs for
which the integrals are analytically tractable (e.g., Briol et al., 2019, Sec. 4.2),
but the measure at hand is often not a member of this class and may be ac-
cessible only via sampling. Numerical approximation of the integrals, though
possible and suggested by Sommariva and Vianello (2006b, Sec. 2); Tronarp
et al. (2018); and Briol et al. (2019, Appx. B), can be as difficult a problem as
the original integration problem and introduces an additional level of numerical
approximation that may need to be modelled if one is interested in principled
uncertainty quantification by the means of Bayesian cubature.

Although there are approaches to tackle or circumvent the need to compute
kernel means using stick breaking (Oates et al., 2017b) and Stein kernels (Barp
et al., 2018), these tend to be of limited utility or muddle the interpretability
of the prior model. It seems to us that, if they are to be computationally com-
petitive and statistically interpretable, kernel and Bayesian cubature need to
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remain restricted to “traditional” integration problems, such as computation of
f[o 132 [ (®)dx, instead of, say, involved posterior integration problems arising in
statistics.

6.2.3 Uncertainty Calibration

Perhaps the most fundamental question in probabilistic numerics is whether
or not the uncertainty quantification a probabilistic numerical method pro-
vides for the true value of the quantity of interest is in some sense meaningful.
Unfortunately, there exists little theory; only evidence that the uncertainty
quantification in terms of, say, coverage properties of Bayesian credible intervals
is sensible comes from a limited number of numerical experiments. Because, by
necessity, the form of the kernel is typically fixed beforehand, the question of
uncertainty calibration is intricately linked to the behaviour of kernel hyper-
parameter estimates discussed in Section 3.3. The only relevant result we are
aware of is due to Xu and Stein (2017) who conjecture that

[2"’1

2 m—1/2

T w2 (m + 1/2)
when the kernel is Gaussian with length-scale ¢ > 0, the n points are placed
uniformly on [0,1], and f(x) = x™ for m € Ny (they prove this fully for m =0 and
partially for m =1).

The relatively large body of literature on the behaviour of maximum likelihood
estimates for related Gaussian process regression problems (van der Vaart and
van Zanten, 2011; Szabé et al., 2013, 2015; Hadji and Szabé, 2019) leads us
to believe that it is only a matter of time before results on consistency and
calibration of Gaussian process estimators with noise-free evaluations begin
to appear. Based on the regression results we expect, quite reasonably, that
uncertainty calibration will be, at least asymptotically, very sensitive to model
misspecification. Probabilistic parameter fitting methods such as maximum
likelihood cannot be expected to fare well unless the true function can be seen
as a realisation of the underlying Gaussian process; this class is small and it is
practically impossible to confirm whether or not an integrand, which may be an
output of a complicated computer simulation lacking closed-form expression, is
a member of this class.
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