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∗Department of Cybernetics, University of West Bohemia, Pilsen, Czech Republic

†Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland

Abstract—The aim of this article is to design a moment
transformation for Student-t distributed random variables, which
is able to account for the error in the numerically computed
mean. We employ Student-t process quadrature, an instance of
Bayesian quadrature, which allows us to treat the integral itself
as a random variable whose variance provides information about
the incurred integration error. Advantage of the Student-t process
quadrature over the traditional Gaussian process quadrature, is
that the integral variance depends also on the function values,
allowing for a more robust modelling of the integration error. The
moment transform is applied in nonlinear sigma-point filtering
and evaluated on two numerical examples, where it is shown to
outperform the state-of-the-art moment transforms.

I. INTRODUCTION

State estimation problems arise in many engineering fields
and sciences, such as global positioning system [1], tracking [2],
[3] and finance [4]. In this paper, we are interested in designing
a robust filter applicable in cases where the process and
measurement noises are heavy-tailed. Student-t filter for linear
systems was presented in [5], where it was found to increase
robustness with respect to assumptions on the noise statistics
in the sense of mean error. It was later extended to the non-
linear and non-additive noise case in [6] by generalising the
Unscented transform to integration with respect to a Student-t
distribution; the robustness with respect to noise assumptions
was also replicated. The key component of any local filtering
algorithm is a moment transform (MT), which is responsible
for computing the moments of a random variable transformed
through a non-linear function. When the dynamical system is
linear, the transformed moments can be computed analytically.

In the case of non-linear systems, numerical approximations
are required. Many such approximations have been proposed
over the years, including the well-known Unscented trans-
form [7] (an instance of a fully symmetric integration rule [8],
[6]), and the Gauss–Hermite quadrature [9], [10].

All the above-mentioned MTs are based on numerical
quadrature rules that are approximative and make errors that
go unaccounted for. Recently, [11] proposed to leverage the
Bayesian quadrature (BQ) approach and presented a Gaussian
process quadrature (GPQ) MT which is able to account for
the integration error in a principled manner. In particular,
Gaussian filters with the GPQ MTs were shown to exhibit better
filter self-assessment [11], [12] properties than their classical
quadrature counterparts. It is thus reasonable to expect similar
improvements in the setting of Student-t filtering [13], [6].

The foundation of the GPQ is the Gaussian process (GP)
regression model [14], which is used as a surrogate probabilistic
model of the integrand. Given the evaluation points (sigma-
points), the mean function of the conditioned GP approximates
the integrand, while the GP predictive variance informs about
the lack of knowledge of the function behaviour in places
where it was not evaluated. As the numerical quadrature
approximations seek to work with as few integrand evaluations
as possible to constrain the computational load, it is of
paramount importance that the surrogate model predictive
variance is as accurate as possible.

An attractive alternative to the GP is the Student-t process
(TP) regression [15], [16], which has the advantage that
the model predictive variance also depends on the observed
function values unlike in the case of the GP model. It can
thus provide more accurate and robust predictive variances,
which directly translate into the resulting integral quadrature
approximations. Motivated by findings in [15] where it was
concluded that “TP has many if not all of the benefits of GPs,
but with increased modelling flexibility at no extra cost.”, we
aim to leverage the TP regression model for the design of
a Student-t process quadrature (TPQ) MT. As far as we are
aware, the use of TP in a quadrature context has not been
previously attempted, although it has been suggested in [17,
Section 2.1].

It should be noted that the transformation of moments is a
more general problem as it arises in other applications, such as
sensor system design [18] and optimal control [19]; however,
the focus of this article is in sigma-point filtering [20]. We
combine the proposed TPQ moment transform with the recent
approach by [6] to sigma-point filtering of non-linear systems
with heavy-tailed noise.

The article is structured as follows, Section II describes the
Student-t process quadrature, which is applied in Section III
for moment transformation design. Section IV applies the
proposed TPQ moment transform in Student-t sigma-point
filtering, while Section V presents the numerical experiments.
Finally, Section VI concludes the article.

II. STUDENT-t PROCESS QUADRATURE

The key problem in moment transformations pertains to the
computation of the moments of a transformed random variable.
Given a random variable x ∈ RD with a density function p



and a non-linear integrand g : RD → RE , the goal of an MT
is to compute

µ = Ex[g(x)] =

∫
g(x)p(x) dx, (1)

Π = Cx[g(x)] =

∫
(g(x)− µ)(g(x)− µ)>p(x) dx, (2)

C = Cx[x,g(x)] =

∫
(x− E[x])(g(x)− µ)>p(x) dx. (3)

In general, the above integrals cannot be evaluated analytically.
There are essentially two ways of approximating them. The
first one is to linearize the integrand (in the context of state
estimation, this yields the extended Kalman filter and its
relatives) and the second to use numerical quadrature which
leads to variants of sigma-point filters. This section develops
a probabilistic numerical integration rule based on modelling
the integrand as a Student-t process. The input density is
considered to be the multivariate Student-t, given by

p(x) = St(x |m, Σ, ν )

= Z

[
1 +

1

ν
(x−m)

>
Σ−1(x−m)

]− ν+D2
, (4)

where Z = [Γ((ν +D)/2)]/
[
Γ(ν/2)|νπΣ|1/2

]
is the normal-

izing constant and the mean m, the scaling matrix Σ and the
degrees of freedom ν are parameters. Note that Σ = ν−2

ν P
defines relationship between the scaling and the covariance
matrix. Its application to the MT problem is given in Section III.

A quadrature (or a sigma-point) rule is an approximation to
the expectation (integral) of the transformed random variable
g(x) of the form

Ex[g(x)] =

∫
g(x)p(x) dx ≈

N∑
i=1

wig(xi) (5)

where wi ∈ R are the non-zero weights and xi ∈ RD are the
sigma-points (or nodes). The classical approach to selecting
the sigma-points and the weights is to choose them so that the
rule (5) is exact whenever the coordinates of g are multivariate
polynomials of low degree. The most popular sigma-point
rules used in Gaussian assumed density filtering such as the
Unscented transform [7], an instance of a fully symmetric
integration rule [8], and iterated Gauss–Hermite quadrature [9]
belong to this category.

Alternatively, one can embrace the philosophy of proba-
bilistic numerics [21], [22], [23], [24] and view the process
of numerical computation of an integral as a problem of
statistical inference. In this setting, the integrand is modelled
as a stochastic process conditioned on the evaluations g(xi) at
the sigma-points xi. Injecting additional uncertainty through
a stochastic process into the problem might seem counter-
productive at first. However, after examining (5), we come to
realize that the quadrature rule sees the function only through
a finite number of function values—how the integrand behaves
at other points is unknown. A probabilistic model for the
integrand allows us to acknowledge this uncertainty and induces

a posterior probability distribution over the integral (5) itself.
The posterior integral mean estimates the value of the integral
while the posterior variance is construed as a model of the
integration error. Numerical approximations of this sort go by
the name Bayesian quadrature (BQ) [25], [26], [17].

Gaussian processes [14] have been a popular modelling
choice in the BQ as prior distributions on functions due to their
favourable analytical properties. Namely, when a GP distributed
function is mapped through an integral, which is a linear
operator, the integration result is also Gaussian distributed.
GPQ has been applied to filtering problems in [27], [28] (a
more general presentation on the MT problem can be found
in [11]).

In this article, we consider the TP regression model as an
attractive alternative to the GP, which we believe has potential
to bring about significant improvements for the reasons outlined
below. Since Student-t distribution is invariant under affine
transformations, TPs retain the favourable analytical properties
of GPs, while providing increased modelling flexibility [15],
namely:

• the distribution of the integral itself is Student-t,

• as opposed to GP, the model predictive variance addi-
tionally depends on the function values, which allows for
more precise uncertainty modelling,

• and finally, a TP contains a GP as a special case (for
infinite degrees of freedom (DoF)).

A. Student-t Process Regression Model

From the perspective of the BQ, the TP regression model
is a tool for modelling uncertainty in the knowledge of
the numerically integrated function. Consider a real-valued
function g : RD → R which is assigned a TP prior, such
that g(x) ∼ T P(0, k(x,x′), νg). This implies that for any
finite collection of points x′1, . . . , x′m the function values are
jointly Student-t distributed with the degrees of freedom (DoF)
νg > 2. That is,[

g(x′1) · · · g(x′m)
]
∼ St

(
0,

νg−2
νg

K, νg

)
, (6)

where the kernel (covariance) matrix K is made up of pairwise
kernel evaluations, so that [K]ij = k(x′i,x

′
j ;θ), where θ are

the kernel parameters. For brevity, dependence on θ will be
made explicit only when absolutely necessary. The choice of the
positive-definite kernel k is up to the user and usually reflects
expected smoothness of the underlying function. Given N
observations y = [g(x1), . . . , g(xN )]> at the evaluation points
x1, . . . , xN , conditioning on the data D = {(xi, g(xi))}Ni=1

results in a TP posterior with mean and variance [15], [16]

Eg[g(x) | D] = k>(x)K−1y, (7)

Vg[g(x) | D] = γ
[
k(x,x)− k>(x)K−1k(x)

]
, (8)

where γ = (νg − 2 + y>K−1y)/(νg − 2 +N) and [k(x)]i =
k(x,xi).



The posterior mean is identical to that of the GP regres-
sion, but the posterior variance (8) has the additional data-
dependent scaling coefficient γ. This dependency on the
function evaluation means that the TP regression is often
more informative about the true underlying function than GP
regression. Furthermore, the DoF is an additional tunable
parameter allowing for control of the heavy-tailed process
behaviour. The lower the DoF, the heavier the tails and vice
versa. For νg → ∞ a GP is recovered, which means the
GP regression can be interpreted as a special case of the
TP regression. Worth noting is that for increasing DoF the
scaling factor becomes less dependent on the function values,
eventually degrading to the GP predictive variance. Intuitively,
one would assume that the predictive variance of the function
would be affected by its own observations. For the GP this is
not the case, implying that it is possible to know the predictive
variance before the function observations are even obtained,
which can be advantageous in certain applications. We argue,
however, that in BQ applications, where limited datasets are
encountered and an accurate quantification of uncertainty is
crucial, the TP should be preferred, because of its superior
characterization of uncertainty. The difference in the predictive
variance can be seen in Figure 1, where the GP and TP are
compared using the same values of kernel parameters. The
mean functions of both models, which approximate the true
underlying function, are identical. The TP is able to inflate the
predictive variance due to its heavy-tailed nature, resulting in
more realistic uncertainties in the function behaviour given the
available data.
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Figure 1: Comparison of predictive moments of the Gaussian
process (top) and the Student-t process (bottom) regression
models using the same set of kernel parameters. The DoF of
the TP model was set to νg = 10. The true function (dashed
red), the posterior mean (solid black) and predictive variance
(gray band).

B. Student-t Process Quadrature Integral Moments

A TP posterior distibution over the integrand g(x) in-
duces a posterior distribution over the integral Ex[g(x)] =

∫
g(x)p(x) dx. The mean and variance of this distribution can

be directly evaluated [26], [17]:

Eg[Ex[g(x)] | D] = Ex[Eg[g(x) | D]] = q>K−1y, (9)
Vg[Ex[g(x)] | D] = Ex,x′ [Cg[g(x), g(x′) | D]]

= γ
[
Ex,x′

[
k(x,x′)

]
− q>K−1q

]
, (10)

where q = Ex

[
k(x)

]
. In Equation (9), the mean of the integral

is identical to integrating the TP posterior mean function. The
only difference to the GPQ is in the integral posterior variance
(10) having a data-dependent coefficient. Note that the integral
posterior mean (9) is indeed a quadrature rule of the form (5)
with the weights wi = [q>K−1]i. Integrals of general vector
functions g : RD → RE can be evaluated by applying the
above equations to each function output independently with
the same kernel and DoF used for each output.

III. STUDENT-t PROCESS QUADRATURE MOMENT
TRANSFORM

In this section, we apply the results for the integral moments
from the previous section for derivation of our proposed general
purpose TPQ moment transform. The results from this section
are aimed to be applied later in Section IV for approximation of
the state and measurement moments in a Student-t sigma-point
filtering setting.

First, consider a general case of non-linear transformation
of arbitrarily distributed random variable

y = g(x), x ∼ p(x) (11)

where g : RD → RE is such that the first two moments of y
exist. In the BQ, when the uncertainty in g(x) is introduced
through a posterior stochastic process regression model, the
general BQ approximations to the moments in Equations (1)
to (3) need to account for it, resulting in

E[y] = Ex[g(x)] ≈ Eg,x[g(x)], (12)
C[y] = Cx[g(x)] ≈ Cg,x[g(x)], (13)

C[x,y] = C[x, g(x)] ≈ Cg,x[x, g(x)]. (14)

The BQ transformed mean can be written out, using the law
of total expectation, as

Eg,x[g(x)] = Eg[Ex[g(x)]] = Ex[Eg[g(x)]], (15)

which shows that the expectation of the integral is equivalent
to integrating the model mean function (cf. Equation (9)).
Applying the law of total covariance, we can decompose the
transformed covariance in two ways

Cg,x[g(x)] = Eg[Cx[g(x)]] + Cg[Ex[g(x)]] (16)
= Ex[Cg[g(x)]] + Cx[Eg[g(x)]]. (17)

The first decomposition reveals the fact that the general BQ
MT incorporates integral variance as an additional term in
transformed variance. By now it is evident that the MT
based on BQ can be interpreted as a principled covariance
inflation scheme. Note that for deterministic g the covariance
decomposition in Equation (16) would revert back to the



classical definition of the covariance. In the BQ, however, the
integrand uncertainty is crucial for modelling the integration
error. The second decomposition is computationally beneficial
because the individual terms can be computed in closed form
for suitable kernel-density pairs.

In order to derive the TPQ MT for x ∼ St(m, P, ν), we
utilize the familiar stochastic decoupling substitution x =
m + Lξ, which allows for casting the expectations in terms of
a standard Student-t random variable ξ ∼ St(0, I, ν), so that

Ex[g(x)] = Eξ[g(m + Lξ)] ≈ Eg,ξ[g(m + Lξ)], (18)
Cx[g(x)] = Cξ[g(m + Lξ)] ≈ Cg,ξ[g(m + Lξ)], (19)

Cx[x,g(x)] = Cξ[ξ,g(m + Lξ)] ≈ Cg,ξ[ξ,g(m + Lξ)],
(20)

where LL> = P. For notational brevity we define g̃(ξ) ,
g(m + Lξ). Using Equations (9) and (15), the transformed
mean becomes

Eg,ξ[g̃(ξ)] = Eξ[Eg[g̃(ξ)]] = Y>K−1Eξ

[
k(ξ)

]
, (21)

where Y =
[
y1 . . . yE

]
contains observations of each

output of g in columns. For the transformed covariance we
employ Equation (16) and obtain

Cg,ξ[g̃(ξ)] = Eξ

[
Eg

[
g̃(ξ)

]
Eg

[
g̃(ξ)

]>]−µ̂µ̂>+Eξ[Cg[g̃(ξ)]],
(22)

where, after plugging in from Equation (9), the first term
becomes

Eξ

[
Eg

[
g̃(ξ)

]
Eg

[
g̃(ξ)

]>]
= Y>K−1Eξ

[
k(ξ)k(ξ)>

]
K−1Y

(23)
and the third term is

Eξ[Cg[g̃(ξ)]] = diag
( [
s1TP . . . sETP

] )
(24)

where

seTP = γe
[
Eξ[k(ξ, ξ)]− tr

(
Eξ

[
k(ξ)k(ξ)>

]
K−1

)]
(25)

and γe = (νg − 2 + y>e K−1ye)/(νg − 2 +N). Finally, for the
input-output covariance we have

Cg,ξ[ξ, g̃(ξ)] = LEξ[ξEg[g̃(ξ)]] = LEξ

[
ξk(ξ)>

]
K−1Y.

(26)
The following definition gathers our results so far.

Definition 1 (General TPQ moment transform). The general
Student-t process quadrature approximation to the joint dis-
tribution of x ∼ St

(
m, ν−2ν P, ν

)
and a transformed random

variable y = g(x) is given by[
x
y

]
∼ St

([
m
µ̂

]
,
ν − 2

ν

[
P Ĉ

Ĉ
>

Π̂

]
, ν

)
(27)

where the transformed moments are

µ̂ = Y>w, (28)

Π̂ = Y>WY − µ̂µ̂> + S, (29)

Ĉ = LWcY, (30)

S = diag
( [
s1TP . . . sETP

] )
, (31)

seTP =
νg − 2 + y>e K−1ye

νg − 2 +N

[
k̄ − tr

(
QK−1

)]
(32)

and Y =
[
y1 . . . yE

]
, where the e-th column ye =[

ge(x1) . . . ge(xN )
]>

contains function values of the e-th
output of g(x). The sigma-points are given by xi = m + Lξi,
where LL> = P. The elements of the kernel matrix are
[K]ij = k(ξi, ξj ;θ) and the TPQ weights are w = K−1q,
W = K−1QK−1 and Wc = RK−1, where

[q]i = Eξ[k(ξ, ξi;θ)], (33)

[Q]ij = Eξ

[
k(ξ, ξi;θ)k

(
ξ, ξj ;θ

)]
, (34)

[R]∗j = Eξ

[
xk
(
ξ, ξj ;θ

)]
, (35)

k̄ = Eξ[k(ξ, ξ;θ)]. (36)

The notation [R]∗j stands for the jth column of the matrix
R. The set of unit sigma-points {ξi : i = 1, . . . , N} can be
chosen arbitrarily.

The transform is general in a sense that it can, in principle,
operate with any kernel. Since decoupling is used in the
moment integrals, the kernel expectations in (33)–(36) do not
depend on the parameters of the distribution of x and the
TPQ weights can be fully pre-computed. This fact significantly
eases computational burden when our proposed TPQ moment
transform is later applied in Student-t sigma-point filtering.

From the above summary it is apparent that the TPQ MT
requires evaluation of the kernel expectations in (33)–(36). The
popular radial basis function (RBF) kernel, given by

k(ξ, ξ′;θ) = s2 exp

(
−1

2

(
ξ − ξ′

)>
Λ−1

(
ξ − ξ′

))
, (37)

where s, Λ = diag
( [
`21 . . . `2D

] )
are kernel parameters

collected into a vector θ, has been used in previous work [28].
This kernel admits a closed-form evaluation of the expectations
in (33)–(36) for a Gaussian distributed x. However, in our case,
where x is Student-t distributed, we have been unable to find
any kernel admitting closed-form solution. For this reason, we
used the RBF kernel and resorted to the standard Monte Carlo
numerical approximation. Fortunately, in filtering this is not
really a problem, because the expectations, and consequently
the TPQ weights, can be fully pre-computed offline.

IV. TPQ STUDENT-t FILTER

The aim of this section is to present the TPQ Student-t
filter harnessing the proposed TPQ MT presented in Section III
and enriching the work of [6] with the BQ philosophy. We
first review the general Student-t filtering framework for non-
additive noise setting, and then later apply the TPQ MT for
construction of the TPQ Student-t filter.



Consider the following discrete-time state-space model

xk = f(xk−1,qk−1), (38)
zk = h(xk, rk), (39)

where (38) describes the evolution of the system state xk in
time and (39) describes the process by which measurements
zk are generated. The function f : Rdx × Rdq → Rdx is
the system dynamics and h : Rdx × Rdr → Rdz is the
measurement function. The variables qk and rk represent
the zero-mean process and measurement noises with known
covariance matrices Qk and Rk, respectively.

The source of novelty in Student-t filter comes from the
conditioning formula for Student-t random variables [29],
[5]. The measurement update equations can be derived by
assuming that the state and the measurement are jointly Student-
t distributed, such that[

xk
zk

]
∼ St

([
mx
k|k−1

mz
k|k−1

]
,
ν − 2

ν

[
Px
k|k−1 Pxz

k|k−1
Pzx
k|k−1 Pz

k|k−1

]
, ν

)
.

(40)
Then, the conditioned state is distributed according to
xk | z1:k ∼ St

(
mx
k|k,

ν?−2
ν? Px

k|k, ν
?
)

with the statistics
given by

mx
k|k = mx

k|k−1 + Pxz
k|k−1(Pz

k|k−1)−1(zk −mz
k|k−1), (41)

Px
k|k =

νx − 2 + β

νx − 2 + dz

(
Px
k|k−1 −Pxz

k|k−1(Pz
k|k−1)−1Pzx

k|k−1

)
,

(42)

β = (zk −mz
k|k−1)>(Pz

k|k−1)−1(zk −mz
k|k−1), (43)

ν? = ν + dz. (44)

These equations constitute the Student-t measurement update
rule, where mx

k|k and Px
k|k are the filtered state mean and

covariance, respectively. It is instructive to consider the case
where zk is Gaussian, which entails β ∼ χ2(dz) and E[β] = dz .
Thus the posterior covariance Px

k|k either increases or decreases
depending on the outcome of β in relation to its expected value
under a χ2 assumption.

The means and covariances in (40), necessary for the update,
can be approximated by any moment transform. The predicted
state mean mx

k|k−1 and covariance Px
k|k−1 are computed by

using the system dynamics f(xk−1,qk−1) in place of the
general non-linear transformation from Equation (11) with
the input variable distributed according to[

xk−1
qk−1

]
∼ St

([
mx
k−1|k−1

0

]
,
ν − 2

ν

[
Px
k−1|k−1 0

0 Q

]
, ν

)
.

(45)
The same applies for the measurement mean mz

k|k−1, covari-
ance Pz

k|k−1 and cross-covariance Pxz
k|k−1, which are computed

by using the measurement function h(xk, rk) in place of
the non-linear transformation from Equation (11) with input
variable distributed according to[

xk
rk

]
∼ St

([
mx
k|k−1
0

]
,
ν − 2

ν

[
Px
k|k−1 0

0 R

]
, ν

)
. (46)

Once the approximations to the predictive state and measure-
ment moments are available, a joint Student-t approximation
in Equation (40) can be formed with the desired degrees of
freedom ν. This subsequently enables the use of the update
rule given by Equations (41) to (44).

Notice, the DoF update in Equation (44) entails that ν? →∞
for k →∞, which means the filter will asymptotically behave
as a Kalman filter. In order to continue to operate at desired
DoF ν, we opt for the moment matching perspective used
in [5], [6] and assume that the conditioned state xk | z1:k ∼
St
(
mx
k|k,

ν−2
ν Px

k|k, ν
)
.

The entire procedure of is outlined in Algorithm 1. Note
that any sigma-points can be used for the TPQ MT in this
algorithm.

Algorithm 1 (One step of the TPQ Student-t filter).
Input: filtered mean mx

k−1|k−1, filtered covariance Px
k−1|k−1,

desired DoF ν
Output: filtered mean mx

k|k and covariance Px
k|k

1) Use the TPQ MT with kernel parameters θf to compute
the predictive state moments mx

k|k−1 and Px
k|k−1 using

(28) and (29) assuming the input is distributed according
(45).

2) Use TPQ MT with kernel parameters θh to compute the
predictive measurement moments mz

k|k−1, Pz
k|k−1 and

Pxz
k|k−1 using (28) to (30) assuming the input is distributed

according (46).
3) Use the Student-t measurement update in (41) and (42)

to compute the filtered mean mx
k|k and covariance Px

k|k.
4) Fix the DoF by putting St

(
xk |mx

k|k,
ν−2
ν Px

k|k, ν
)
≈

St
(
xk |mx

k|k,
ν?−2
ν? Px

k|k, ν
?
)
.

V. EXPERIMENTAL RESULTS

In this section, we compare the performance of the proposed
TPQ-based Student-t filters and the Student-t filter introduced
in [6], which is based on classical quadrature. In all experiments,
we are measuring the filter error by the root mean square error
(RMSE)

RMSE =

(
1

K

K∑
k=1

‖xk −mx
k|k‖

2

)1/2

. (47)

Since the BQ-based MTs, such as TPQ or GPQ, are primarily
focused on incorporating additional uncertainty by inflating the
estimated covariance, we used the inclination indicator (INC)
[12] as a metric which takes into account the estimated state
covariance. The indicator is given by

INC =
10

K

K∑
k=1

log10

(
xk −mx

k|k
)>(

Px
k|k
)−1(

xk −mx
k|k
)(

xk −mx
k|k
)>

Σ−1k
(
xk −mx

k|k
) ,

(48)
where Σk is the sample mean-square-error (MSE) matrix,
which can be computed from samples of the true system state
trajectories. When the indicator is INC = 0 the estimator
is said to be balanced, which is to say that the estimated
covariance is on average equal to the true state MSE matrix.



For INC > 0 the estimator is said to be optimistic while for
INC < 0 it is considered pessimistic.

A. Univariate Non-Stationary Growth Model

In the first numerical illustration, we consider the univariate
non-stationary growth model (UNGM), which is often used
for benchmarking purposes [30], [31]. The system is given by
the following set of equations

xk = 0.5xk−1 +
25xk−1

1 + x2k−1
+ 8 cos(1.2k) + qk−1, (49)

zk = 0.05x2k + rk. (50)

The initial conditions were drawn from x0 ∼ N(0, 1). Outliers
in the state noise qk and measurement noise rk were simulated
with Gaussian mixtures, such that qk ∼ 0.8N

(
0, σ2

q

)
+

0.2N
(
0, 10σ2

q

)
and rk ∼ 0.8N

(
0, σ2

r

)
+ 0.2N

(
0, 100σ2

r

)
,

where σ2
q = 10 and σ2

r = 0.01. We simulated 500 trajectories
for 250 time steps, which were used for evaluation of the RMSE
and INC performance metrics. All tested filters used a state-

RMSE STD INC STD

UKF 8.6924 0.1517 3.0012 0.1539
SF 17.4461 0.6236 51.8733 0.4417
TPQSF(νg = 3) 7.5683 0.1091 1.5837 0.1561
TPQSF(νg = 4) 6.8323 0.1044 2.3384 0.1713
TPQSF(νg = 10) 6.1423 0.0154 5.6910 0.0324
TPQSF(νg = 100) 7.4399 0.1550 12.5120 0.1676
TPQSF(νg = 500) 7.5709 0.1546 13.2104 0.1623
GPQSF 7.6766 0.1554 13.5926 0.1595

Table I: Performance of TPQSF compared in terms of average
RMSE and INC. Standard deviations of the criteria were
estimated by bootstrapping. For increasing DOF parameter
νg of the TP regression model the performance approaches
that of the GPQSF.

space model with an initial condition distributed according
to x0 ∼ St

(
0, ν−2ν 1, ν

)
and the following noise statistics

qk ∼ St
(
0, ν−2ν σ2

q , ν
)
, rk ∼ St

(
0, ν−2ν σ2

q , ν
)
, where ν = 4.

We compared the RMSE and INC of our proposed TPQSF
with the SF [6], the UKF [7] and a Student-t filter using
the GPQ MT [28] (abbreviated GPQSF). The TPQSF and
the GPQSF will be collectively referred to as the BQ filters.
Student-t filters used the same 3rd degree fully symmetric
sigma-point set with κ = 0 and the filter DoF fixed at ν = 4.
The kernel parameters for all BQ filters were set to θf =[
3 1

]
and θh =

[
3 3

]
. Table I reports MC simulation

averages of both metrics along with bootstrapped variances [32]
of the averages (using 10,000 samples). It is evident that the
TPQSFs can outperform all the classical filters (UKF, SF) as
well as the GPQSF in terms of both metrics. The values of INC,
being closer to zero, indicate increased estimate credibility. For
increasing DoF of the Student-t process model, we observe the
performance of TPQSFs approaching that of GPQSF, which is
an expected behaviour, since TPQSF with νg =∞ is equivalent
to GPQSF.

B. Radar Tracking with Glint Noise

As a second illustration, we consider tracking of a moving
object where the range and bearing measurements are corrupted
with glint noise. We adopt the example from [33], where the
tracking scenario is described by the following state-space
model

xk =


1 τ 0 0
0 1 0 0
0 0 1 τ
0 0 0 1

xk−1 +


τ2/2 0
τ 0
0 τ2/2
0 τ

qk−1 (51)

zk =

[ √
x2k + y2k

atan2 (yk, xk)

]
+ rk (52)

with the system state being defined as xk =[
xk ẋk yk ẏk

]
. The state components xk and yk

are the Cartesian coordinates of the moving object and the
pair ẋk, ẏk stands for the velocity in the respective directions.
During simulations, the discretization interval was τ = 0.5 s,
the initial state was drawn from x0 ∼ N(m0, P0) with m0 =[
10 000 m 300 ms−1 1000 m −40 ms−1

]
and P0 =

diag
( [

10 000 m2 100 m2s−2 10 000 m2 100 m2s−2
] )

.
The state noise is Gaussian distributed, such that qk ∼ N(0, Q)
with covariance Q = diag

( [
50 m2s−4 5 m2s−4

] )
. The glint

noise in the measurements is modelled by a Gaussian mixture

rk ∼ (1− β)N(0, R1) + βN(0, R2) (53)

with R1 = diag
( [

50 m2 0.4 mrad2
] )

and R2 =
diag

( [
5000 m2 16 mrad2

] )
, where β is the glint noise prob-

ability.
As in the UNGM experiment, we compared the performance

of our proposed TPQSF with the SF, the standard UKF and the
GPQSF. The UKF used κ = 0, following the usual heuristic
recommendation. For the TPQSF we considered two settings
of the TP model DoF parameter, νg = 2.2 and νg = 4. All
of the Student-t filters assumed that the initial state, the state
noise and the measurement noise were characterized by the
Student-t distribution, such that

x0 ∼St
(
mx

0|0,
νx−2
νx

Px
0|0, νx

)
, (54)

qk ∼St
(
0,

νq−2
νq

Q, νq
)
, (55)

rk ∼St
(
0, νr−2νr

R, νr
)

(56)

where the initial state estimate was mx
0|0 =[

10 175 m 295 ms−1 980 m −35 ms−1
]
, the initial

covariance Px
0|0 = P0 and DoF parameters were νx = 1000,

νq = 1000 and νr = 4.0. The kernel parameters for the BQ
filters were set to θf =

[
1 100 100 100 100

]
for the

dynamics model and θf =
[
0.05 10 100 10 100

]
for

the measurement model.
The filter performance was evaluated by simulating 1,000

trajectories, each 100 time steps long, and computing the Monte
Carlo averages of the performance scores. Figure 2 shows
box-plots of the time-averaged RMSE scores. The left pane
shows that the UKF and SF have more extreme outliers than
the proposed TPQSF, while in the right pane we see that



the classical SF is better in terms of median RMSE. It is
worth noting that because TPQ-based filters have a tunable
DoF parameter, they were able to achieve improved median
RMSE over the GPQ-based filter. From Figure 3, showing
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Figure 2: Overall filter RMSEs shown with outliers (left) and a
detail without outliers (right). The proposed TPQ-based filters
have less extreme outliers, whereas the median RMSE favours
the classical quadrature-based SF.

the time-averaged INC score, we can deduce that the BQ
filters provide more balanced estimates on average, whereas
the classical filters are excessively optimistic in their estimates.
This behaviour is in accordance with our expectations, because
the BQ filters account for the additional functional uncertainty
as described in Section III. Table II shows the mean of the
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Figure 3: Overall filter INCs shown with (left) and without
(right) outliers. The proposed TPQ-based filters display im-
proved INC with most outliers in the pessimistic direction,
whereas the UKF and SF are excessively optimistic.

overall average RMSE and INC along with the their standard
deviations, which were estimated by bootstrapping with 10,000
samples. Evidently, TPQSFs drastically improve the mean
of the overall average RMSE and, as mentioned previously,
provide much more balanced state estimates.

RMSE STD INC STD

UKF 803.99 231.62 18.37 1.80
SF 457.49 200.88 12.22 0.58
TPQSF(νg = 2.2) 77.29 32.17 2.39 0.38
TPQSF(νg = 4) 75.54 31.95 1.92 0.39
GPQSF 81.04 32.17 3.52 0.45

Table II: Overall RMSEs for the radar tracking example. The
average RMSE favours the TPQ-based filters. Our proposed
filters also give more balanced state estimates on average, as
shown by the inclination indicator (INC) being closer to zero.

VI. CONCLUSION

In this article, we proposed a Student-t filter with a moment
transform based on the Student-t process quadrature. The MT
is able to acknowledge the limited extent of knowledge of
the integrated function when evaluated at finite number of
evaluation points. The proposed TPQ moment transform was
applied in sigma-point Student-t filtering and its performance
evaluated on two numerical examples. Overally, the results
indicate that the proposed TPQSF is superior at self-assessing
its own performance and consequently provides more balanced
estimates.
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