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Abstract. This article develops a comprehensive framework for stability analysis of a broad
class of commonly used continuous and discrete time-filters for stochastic dynamic systems with
non-linear state dynamics and linear measurements under certain strong assumptions. The class of
filters encompasses the extended and unscented Kalman filters and most other Gaussian assumed
density filters and their numerical integration approximations. The stability results are in the form of
time-uniform mean square bounds and exponential concentration inequalities for the filtering error.
In contrast to existing results, it is not always necessary for the model to be exponentially stable
or fully observed. We review three classes of models that can be rigorously shown to satisfy the
stringent assumptions of the stability theorems. Numerical experiments using synthetic data validate
the derived error bounds.
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1. Introduction. Non-linear Kalman filters, such as the extended Kalman fil-
ter (EKF), the derivative-free unscented Kalman filter (UKF), and other Gaussian
integration filters, are fundamental tools widely used in estimating a latent time-
evolving state from partial and noisy measurements in, for instance, automatic control,
robotics, and signal processing [44]. These filters are local extensions to the classi-
cal linear Kalman filter for systems with non-linear state evolution or measurement
equation. Stability properties of the optimal linear Kalman filter are well understood,
having been extensively studied since the 1960s in continuous [12, 21, 6] and discrete
time [22, 24, 1] settings. However, most systems of interest are non-linear, and non-
linear extensions of the Kalman filter inherit no global optimality properties. Even
though these filters tend to provide useful estimates, analyzing their stability is far
from trivial.

This article analyzes stochastic stability, defined as time-uniform boundedness of
the mean square filtering error, of a large class of extensions of the Kalman filter for
systems with non-linear state dynamics and linear measurements. Our main stability
results, Theorems 3.1 and 4.2, provide time-uniform mean square filtering error bounds
and related exponential concentration inequalities for a large class of filters. The
theorems significantly extend the recent results by Del Moral et al. [19] on the EKF for
exponentially stable (i.e., contractive) and fully observed models. The most important
extensions are of three types: (a) we formulate an apparently novel framework that
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allows for considering a large class of commonly used filters simultaneously, not just the
EKF; (b) we do not require that the model be exponentially stable or fully observed;
and (c) we also cover the discrete-time case. In practice, generalization (b) is enabled
by introduction of a certain assumption on stability of the filter process. That this
assumption is satisfied by some classes of models not exponentially stable nor fully
observed, and thus beyond the scope of applicability of [19] even when the EKF is
used, is demonstrated in Section 5. Even though the stability assumptions used in
this article are extremely restrictive and essentially amount to stability of the filtering
error process, we stress that they are, as far as we are aware of, the least restrictive
among assumptions used in the literature that permit rigorous a priori assessment of
stability. A more detailed presentation of our contributions is provided in Section 1.2.

There are two underlying objectives in this article that are not present in most
previous works:

(i) Our stability analysis is general and unified in that the class of filters it
applies to encompasses most non-linear Kalman filters commonly used in
relatively low-dimensional applications, such as tracking. Ensemble Kalman
filters, useful in high-dimensional applications, have been recently analyzed
in [16, 18].

(ii) We require that stability be rigorously a priori verifiable and the error bounds
a priori computable. This means that it should be possible to conclude that a
filter is stable and compute mean square error bounds before the filter is run.
Accordingly, three classes of models for which this is possible are reviewed in
Section 5. These requirements are in contrast to much of the existing literature
where the results rely on opaque and difficult-to-verify assumptions [54, 33] or
no example models are provided that can be rigorously shown to satisfy the
assumptions [37, 38, 30].

The second objective is crucial if stability results are to be applied in practice and
is in some contrast to earlier work where it is occasionally suggested that (a) having
values of certain parameters, as computed when the filter is run, satisfy the bounds or
conditions required for stability allows for concluding that a stochastic filter is stable
(e.g., [37, p. 716] and [53, p. 244]), which is problematic if one is considering stability in
mean square sense since the conditions are validated only for one particular trajectory,
though more acceptable in the deterministic setting [9, p. 566], or that (b) the true
state can be assumed to remain in a compact set (see [37, Theorem 4.1] and [7]). A
consequence of this is that we work only with linear measurement models. However, it
should be noted that, out of necessity, many models that have been previously used in
demonstrating stability results have linear measurements; see for example the model
examined in [37, 54].

1.1. Previous Work and Technical Aspects. A Kalman filter1 or its non-
linear extension provides, at time t ≥ 0, an online estimate X̂t constructed out of
a potentially partial and noisy measurement sequence {Ys}ts=0 of the true latent
state Xt of a dynamic system. The estimates are typically accompanied with positive-
semidefinite matrices Pt, which are estimates of covariances of the estimation errors
Et = Xt− X̂t. These matrices and the associated gain matrices Kt are computed from
a Riccati-type differential equation. Stability of extensions of the Kalman filter for
non-linear systems can be analyzed either in a deterministic or stochastic setting. In
the former case, the state dynamics and measurements are noiseless and the positive-

1Later on, when we want to refer specifically to continuous-time Kalman filters, we use the term
Kalman–Bucy filter.
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semidefinite matrices Q and R, which in the stochastic case would be covariances of
Gaussian state and measurement noise terms, are tuning parameters. The goal is to
prove that the estimation error converges to zero as t→∞. In the stochastic setting
it cannot be expected that the error vanishes, and one instead (for example) attempts
to prove time-uniform upper bounds or concentration inequalities for the mean square
estimation error, E(‖Et‖2).

There is a large body of literature on stability properties, both in continuous and
discrete time, of the EKF as a non-linear observer [39, 32, 11, 40, 41, 31, 34, 9, 4]
and in the stochastic setting [37, 38, 36, 7, 30, 19] and of the UKF and related
filters [54, 55, 50, 52, 53, 33, 27]. However, majority of these articles attempt to be too
general, which often results in the use of assumptions that are effectively impossible
to verify, especially before the filter is actually run, or in a lack of discussion on and
examples of models for which the assumptions hold. There are two principal sources
of difficulty in the stability analysis of non-linear filters:

Time-uniform bounds on PtPtPt. Analysis in most of the above articles is similar
to the standard stability analysis for linear models [22, 24] in that use is made of the
Lyapunov function Vt = ET

t P
−1
t Et or its variants. Once stability results have been

obtained for Vt, time-uniform bounds on Pt are necessary for concluding stability of
the filter. While in the linear case Pt is deterministic and bounds on this matrix
follow from results on Riccati equations under certain observability and controllability
conditions, in the non-linear case the local structure of most Kalman filters, arising from
linearizations of some sort around the estimated trajectory, introduces a dependency
of Pt on the measurements and estimates. Consequently, the behavior of Pt is difficult,
if not impossible, to anticipate and control for most non-linear models and filters.

Model non-linearity. If the system is non-linear, stability analysis of a Kalman
filter necessarily involves analyzing non-linear (stochastic) differential equations. This
is obviously much more involved than analysis of linear differential equations. As
such, the approach taken in many articles is to assume that the error associated to
the linearization method used in a particular non-linear Kalman filter is “small”. This
allows for deriving a linear differential inequality for the Lyapunov function that can
be easily controlled.

When not outright assumed, boundedness of Pt has been addressed essentially
in two ways. If the system is fully observed, that is, dYt = Xt dt + R1/2 dVt, there
is hope for the Riccati equation to be well behaved despite the fact it depends on
X̂t since, essentially, the quadratic correction term in the Riccati equation prevents
X̂t and Pt from drifting indefinitely; see [30, Section IV] and [33, Section 4] for the
discrete and [26] for the continuous-time case. Alternatively, one can consider certain
difficult-to-verify non-linear extensions of the standard observability and controllability
conditions [3, 37, 38, 31]. Another situation of interest is when the estimates are
explicitly known to remain in a bounded region of the state space, which provides
some control over the estimate-dependent terms in the Riccati equation and limits
the possible values of Pt. See for example [7] where stochastic stability of the EKF
in a robotics application is considered. Model non-linearity is often dealt with by
enforcing Lipschitz-type bounds on the remainder related to the particular linearization
method used [37, 38] or by assuming boundedness of certain residual-correcting random
matrices [54, 53, 33]. However, such assumptions tend to be difficult to verify.

1.2. Contributions. This article follows the approach taken recently by Del
Moral et al. [19]. They study stochastic stability of the extended Kalman–Bucy
filter by directly considering the squared error ‖Et‖2 for which they derive stochastic
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differential inequalities that in turn establish time-uniform mean square error bounds
and exponential concentration inequalities. However, the class of systems they consider
is very restricted as they need to assume that the state is fully observed and the
dynamic model, as specified by the drift function, is exponentially stable (i.e., the
deterministic homogeneous differential equation ∂txt = f(xt) defined by the drift f
is exponentially stable). In Theorems 3.1 and 4.2 we introduce several significant
generalizations and improvements to the results in [19]:

1. We consider a broad class, defined in Section 2, of generic Kalman-type filters
for continuous-time non-linear systems when the measurements are linear;
see (2.3) for the model. As demonstrated in Section 2.5, this class of filters
contains many commonly used filters, including the extended Kalman–Bucy
filter and the more recent Gaussian integration filters such as the unscented
Kalman–Bucy filter [25, 43] and the Gauss–Hermite filter [51, 46]. This
unified framework is exceedingly convenient as every filter does not have to be
analyzed individually. There have been prior attempts at establishing a unified
stability analysis [50, 52, 27], but the formulations are somewhat unnatural,
being in terms of certain residual terms that are difficult to control.

2. Unlike in [19], the system is not explicitly required to be exponentially stable
or fully observed. While still very stringent, the assumption we use is satisfied
by a larger class of models (for discussion on the assumptions, see Section 3).
Two model and filter classes which do not require exponential stability or full
observability are reviewed in Sections 5.2 and 5.3.

3. Although our main focus is on continuous-time systems, Section 4 contains
analogous results for the discrete-time case. The discrete case is instructive
in demonstrating rigorously that under appropriate conditions a non-linear
Kalman filter improves upon the trivial estimator X̂Y,k = Yk. This is discussed
in Section 4.4.

4. Section 6 contains two numerical examples that demonstrate conservativeness
of the derived mean square error bounds. Unlike in much of the literature
(e.g., [37, Section V] and [38, Section 5]), we can verify beforehand that the
example models satisfy the stability assumptions.

Although some elements of the proofs are similar to those in [19], inclusion of complete
and self-contained proofs is necessary because our adoption of a general class of filters
introduces modifications, some of the constants involved are different, and also the
discrete case, for which the analysis has not been carried out before, is considered.

2. Non-Linear Systems and Filtering. This section introduces the
continuous-time stochastic dynamic systems and the class of stochastic Kalman–Bucy
filters the results in Section 3 apply to. A number of prominent members of this filter
class are also given. Discrete-time systems and filters are discussed in Section 4.

2.1. Logarithmic Norms and Lipschitz Constants. The smallest and largest
eigenvalues of a symmetric real matrix A are λmin(A) and λmax(A). The log-
arithmic norm µ(A) of a square matrix A ∈ Rd×d is µ(A) = 1

2λmax(A+AT),
coinciding with λmax(A) when A is symmetric. We also define the quantity
ν(A) = 1

2λmin(A+AT) = −µ(−A). Basic results that we repeatedly use are

ν(A) ‖x‖2 ≤ 〈x,Ax〉 = xTAx ≤ µ(A) ‖x‖2
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for any x ∈ Rd and the “triangle inequalities”

λmax(A+B) ≤ λmax(A) + λmax(B), λmin(A+B) ≥ λmin(A) + λmin(B),

µ(A+B) ≤ µ(A) + µ(B), ν(A+B) ≥ ν(A) + ν(B).

For a positive-semidefinite B, recall also the trace inequality [5, Chapter 8]

(2.1) ν(A) tr(B) ≤ tr(AB) ≤ µ(A) tr(B)

for any square matrix A and its special case λmin(A) tr(B) ≤ tr(AB) ≤ λmax(A) tr(B)
for a symmetric A. See [42, 47] for detailed reviews of the logarithmic norm.

Let g : Rd → Rd be differentiable and [Jg]ij = ∂gi/∂zj its Jacobian matrix. The
Lipschitz constant of g is ‖Jg‖ = supx∈Rd ‖Jg(x)‖, where the matrix norm is the
norm induced by the Euclidean norm (i.e., the spectral norm). This constant satisfies
‖g(x)− g(x′)‖ ≤ ‖Jg‖ ‖x− x′‖ for any x, x′ ∈ Rd. If ‖Jg‖ < ∞, the function g is
Lipschitz. The logarithmic Lipschitz constants of g are

N(g) = inf
z∈Rd

ν[Jg(z)] and M(g) = sup
z∈Rd

µ[Jg(z)].

These constants satisfy

(2.2) N(g) ‖x− x′‖2 ≤
〈
x− x′, g(x)− g(x′)

〉
≤M(g) ‖x− x′‖2 ,

for any x, x′ ∈ Rd. Note that M(g) ≤ ‖Jg‖ [47, Proposition 3.1].

2.2. System Description. We consider systems of stochastic differential equa-
tions of the form

dXt = f(Xt) dt+Q1/2 dWt,(2.3a)

dYt = HXt dt+R1/2 dVt,(2.3b)

where Xt ∈ Rdx is the latent state evolving according to a continuously differentiable
and potentially non-linear drift f : Rdx → Rdx . We assume that the drift is Lipschitz
(i.e., ‖Jf‖ <∞) and that its Jacobian is bounded in logarithmic norm:

(2.4) −∞ < N(f) = inf
x∈Rdx

ν[Jf (x)] and M(f) = sup
x∈Rdx

µ[Jf (x)] <∞.

These conditions ensure that the state and the filters defined later in this section
remain almost surely bounded in finite time. The measurements Yt ∈ Rdy are obtained
linearly through a measurement model matrix H ∈ Rdy×dx . Both the state and
measurements are disturbed by independent multivariate Brownian motions Wt ∈ Rdx
and Vt ∈ Rdy multiplied by positive-definite noise covariance matrices Q ∈ Rdx×dx and
R ∈ Rdy×dy . The state is initialized from X0 ∼ N (µ0,Σ0) for some mean µ0 ∈ Rdx
and a positive-definite covariance Σ0 ∈ Rdx×dx .

The results of this article remain valid if the time-invariant function f and matrices
H, Q, and R in (2.3) are replaced with time-varying versions that satisfy appropriate
regularity and uniform boundedness conditions. For instance, with a time-varying
drift ft the assumptions (2.4) become

−∞ < inf
t≥0

inf
x∈Rdx

ν[Jft(x)] and sup
t≥0

sup
x∈Rdx

µ[Jft(x)] <∞.
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Later in Theorem 3.1 the crucial assumption (3.2) would be replaced with

sup
t≥T

M(ft − PtSt) ≤ −λ < 0,

where St = HtR
−1
t Ht is a time-varying version of the matrix S in (2.6), and tr(Q)

and tr(S) on the right-hand side of the mean square error bound (3.4) would become
supt≥T tr(Qt) and supt≥T tr(St). We work in the time-invariant setting in order to
keep the notation simpler.

2.3. The Extended Kalman–Bucy Filter. The extended Kalman–Bucy filter
(EKF) is a classical method for computing estimates X̂t of the latent state Xt of the
system (2.3). The EKF is based on local first-order linearizations around the estimated
states. It is defined by the equations

dX̂t = f(X̂t) dt+ PtH
TR−1

(
dYt −HX̂t dt

)
,(2.5a)

∂tPt = Jf (X̂t)Pt + PtJf (X̂t)
T +Qtu − PtSPt,(2.5b)

where

(2.6) Kt = PtH
TR−1 and S = HTR−1H,

the former of which are known as Kalman gain matrices. Equation (2.5b) governing
evolution of Pt is known as the (non-linear) Riccati equation. The matrix Qtu is a
positive-definite matrix that does not have to be equal to Q, the state noise covariance,
in which case we can speak of tuning this matrix [8]. The rest of this section introduces
a framework for generalized Kalman-type filters similar in structure to the EKF and
amenable to a unified stability analysis.

2.4. A Class of Generic Filters for Non-Linear Systems. A filter computes
a quantity X̂t ∈ Rdx that is used as an estimate of the latent state Xt. We consider
generic filters defined as

(2.7) dX̂t = LX̂t,Pt
(f) dt+ PtH

TR−1
(

dYt −HX̂t dt
)
,

where Lx,P is a parametrized linear functional, to be discussed in detail below, that
maps functions g : Rdx → Rdx to Rdx and the matrices Pt ∈ Rdx×dx are user-specified,
can depend on all the system parameters as well as all preceding measurements and
state estimates, and are measurable with respect to the σ-algebra Ft = σ(Ys, s ≤ t)
generated by the measurements. An assumption that Pt is sufficiently regular and
well-behaved and Lipschitzianity in x and P of Lx,P (f) guarantee the existence of a
unique solution to (2.7). Explicit examples of filters follow in Section 2.5. We initialize
the filter (2.7) with a deterministic X̂0 = x̂0 ∈ Rdx and a positive-definite P0 ∈ Rdx×dx .
These do not have to be equal to µ0 or Σ0, respectively, the mean and covariance of
the initial state X0. In Section 3 we will see that, as long as they remain uniformly
bounded, the construction of the matrices Pt does not substantially affect our analysis.

The linear functional Lx,P is parametrized by x ∈ Rdx and P ∈ Rdx×dx and it is
required that the functional

(i) is Lipschitz (and hence continuous) in the parameters x and P in the sense
that Lx,P (g) is a Lipschitz function from Rdx × Rdx×dx to Rdx for any fixed
Lipschitz function g : Rdx → Rdx ;

(ii) satisfies Lx,P (g) = g(x) for any x and P if g(x) = Ax+b for some A ∈ Rdx×dx
and b ∈ Rdx .
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Note that it is not necessary for Lx,P to depend on P ; a prototypical example is the
standard point evaluation functional LEKF

x,P (g) = g(x) for any P . Another functional
that is used in this article is the Gaussian integration functional

LADF
x,P (g) =

∫
Rdx

g(z)N (z | x, P ) dz

:= (2π)−dx/2 det(P )−1/2
∫
Rdx

g(z) exp

(
− 1

2
(z − x)TP−1(z − x)

)
dz.

The above requirements on Lx,P are usually easily verifiable and non-restrictive. The
following less straightforward assumption is crucial to the stability analysis in Section 3.

Assumption 2.1. For any differentiable g : Rdx → Rdx with finite N(g) and M(g)
there is a constant Cg ≥ 0, which varies continuously with M(g) and N(g), such that〈

x− x̃, g(x)− Lx̃,P (g)
〉
≤M(g) ‖x− x̃‖2 + Cg tr(P )

for any x, x̃ ∈ Rdx and P ∈ Rdx×dx .

Since 〈x− x̃, g(x)− g(x̃)〉 ≤M(g) ‖x− x̃‖2 by (2.2), what the above assumption essen-
tially entails is that Lx̃,P (g) cannot deviate too much from g(x̃) and that magnitude
of their difference is controlled by the size of P .

The class of filters of the form (2.7) that use a linear functional satisfying Assump-
tion 2.1 is very large. It encompasses, for example, the extended Kalman–Bucy filter
and Gaussian assumed density filters and their most popular numerical integration
approximations. Next we review a few such examples, demonstrating in the process
that Assumption 2.1 is indeed reasonable and fairly natural.

2.5. Kalman–Bucy Filters for Continuous-Time Non-Linear Systems.
A Kalman–Bucy filter for the model (2.3) computes approximations X̂t and Pt, latter
of which is called error covariance in this setting, to the conditional filtering means
and covariances E(Xt | Ft) and Var(Xt | Ft), respectively. It is usually difficult
to derive tractable expressions for these quantities unless f is affine. A generalized
Kalman–Bucy filter for the model (2.3) is

dX̂t = LX̂t,Pt
(f) dt+ PtH

TR−1
(

dYt −HX̂t dt
)
,(2.8a)

∂tPt = RX̂t,Pt
(f) +RX̂t,Pt

(f)T +Qtu − PtSPt,(2.8b)

where the linear functional Rx,P maps functions to dx × dx matrices. A unique
solution to (2.8b) exists if Rx,P (f) is Lipschitz in x and P . This holds typically when
the Jacobian of f satisfies ‖Jf (x)− Jf (x′)‖ ≤ L ‖x− x′‖ for some L < ∞ and all
x, x′ ∈ Rdx . Examples of commonly used Rx,P appear below. As in the case of the
EKF, we call (2.8b) a Riccati equation and Qtu is a positive-definite tuning matrix.
As we shall see, proper tuning (in practice, inflation) is often necessary to induce
provable stability of a Kalman–Bucy filter. Next we provide three examples of classical
Kalman–Bucy filters of the form (2.8) that satisfy the assumptions in Section 2.4.

2.5.1. Extended Kalman–Bucy Filter. By selecting Lx,P (g) = LEKF
x,P (g) =

g(x) and Rx,P (g) = REKF
x,P (g) := Jg(x)P we observe that the EKF in (2.5) is an

example of a generalized Kalman–Bucy filter. Furthermore, Assumption 2.1 is trivially
satisfied by LEKF

x,P with Cg = 0 for any function g.
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2.5.2. Gaussian Assumed Density Filters. In Gaussian assumed density
filters [23], the point evaluations of the model functions and their Jacobians in the
EKF are replaced with Gaussian expectations with mean X̂t and variance Pt. That is,

(2.9) Lx,P (g) = LADF
x,P (g) = EN (x,P )(g) :=

∫
Rdx

g(z)N (z | x, P ) dz

and

Rx,P (g) = RADF
x,P (g) := EN (x,P )(Jg)P =

(∫
Rdx

Jg(z)N (z | x, P ) dz

)
P,

where the integrals are element-wise. Both of the basic properties required of Lx,P in
Section 2 hold. It can be shown that Assumption 2.1 holds with Cg = M(g)−N(g) ≥ 0;
the straightforward proof is presented in Appendix A.

2.5.3. Gaussian Integration Filters. Gaussian expectations required in im-
plementation of the Gaussian assumed density filter are typically unavailable in closed
form, necessitating the use of numerical integration formulas. We call such filters
Gaussian integration filters. Popular alternatives include fully symmetric formulas,
such as the ubiquitous unscented transform [25, 43], and tensor-product rules [51, 46].

A Gaussian integration filter replaces the Gaussian expectations occurring in the
Gaussian assumed density filter with numerical cubature approximations

(2.10) Lint
x,P (g) =

n∑
i=1

wig
(
x+
√
Pξi
)
≈ EN (x,P )(g),

where ξ1, . . . , ξn ∈ Rdx and w1, . . . , wn ∈ R are user-specified unit sigma-points and
weights, respectively, and

√
P is some form of symmetric matrix square root of P .

The integral EN (x,P )(Jg)P in the assumed density filter is replaced with Rint
x,P (g) =∑n

i=1 wig
(
x+
√
Pξi
)
ξTi
√
P , which makes use of Stein’s identity

EN (x,P )(Jg)P =

∫
Rdx

g(z)
(
z − x

)TN (z | x, P ) dz.

Obviously, it is not necessary to use the same numerical integration scheme in Lint
x,P and

Rint
x,P . In Appendix A it is shown that Assumption 2.1 holds with Cg = M(g)−N(g)

if the weights are non-negative and

(2.11) Lint
x,P (p) = EN (x,P )(p)

whenever p : Rd → R is a dx-variate polynomial of total degree at most two. Among
many other filters, (2.11) is satisfied by the aforementioned Kalman–Bucy filters based
on the unscented transform and Gaussian tensor-product rules. Filters that do not
satisfy this assumption include kernel-based Gaussian process cubature filters [45, 35].

2.5.4. On Ensemble Kalman–Bucy Filters. The ensemble Kalman–Bucy
filter for non-linear systems (e.g., [48, 16]) is closely related to a Gaussian integration
filter. The ensemble filter uses time-varying empirical estimate operators

Lint
x,P (g, t) =

1

n

n∑
i=1

g(ξi,t) and Rint
x,P (g, t) =

1

n− 1

n∑
i=1

(g(ξi,t)− x)(ξi,t − x)T,
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where the time-varying and random sigma-points ξi,t obey a differential equation
derived from the model. Without modifications our results do not apply to filters
of this type because Lint

x,P (·, t) does not necessarily satisfy (2.11) for second-degree
polynomials and all t ≥ 0.

3. Stability of Kalman–Bucy Filters. The main result, Theorem 3.1, of this
article contains an upper bound on the mean square filtering error and an associated
exponential concentration inequality. Similar exponential concentration inequalities
have previously appeared in [19] for the extended Kalman–Bucy filter and in [18] for
the ensemble Kalman–Bucy filter. See also [20, 6] for work regarding the linear case
and [16] for analysis, somewhat similar to ours, for ensemble Kalman–Bucy filters.

Theorem 3.1 is based on the evolution equation

(3.1) dEt =
[
f(Xt)− LX̂t,Pt

(f)− PtS(Xt − X̂t)
]

dt+Q1/2 dWt − PtHTR−1/2 dVt

for the filtering error Et = Xt− X̂t of the generic filter (2.7). This equation is derived
by differentiating Et, inserting the formulae for dXt, dYt, and dX̂t from (2.3) and (2.7)
into the resulting stochastic differential equation, and recalling that S = HTR−1H.
The proof is given in Appendix D. Observe that in the following f − PtS stands for
the function x 7→ f(x)− PtSx.

Theorem 3.1. Consider the generic filter (2.7) for the continuous-time
model (2.3) and let Lx,P satisfy Assumption 2.1. Suppose that there are positive
constants λP and λ and time T ≥ 0 such that supt≥0 tr(Pt) ≤ λP and

(3.2) M(f − PtS) = sup
x∈Rdx

µ
[
Jf (x)− PtS

]
≤ −λ < 0

holds for every t ≥ T almost surely. Denote β(δ) = e(
√

2δ + δ). Then there are
non-negative constants Cλ (continuously dependent on λ, M(f), N(f), tr(S), and λP )
and CT such that, for any t ≥ T and δ > 0, we have the exponential concentration
inequality

(3.3) P

[
‖Et‖2 ≥

(
CT e−2λ(t−T ) +

tr(Q) + 2CλλP + tr(S)λ2P
2λ

)
β(δ)

]
≤ e−δ

and the mean square filtering error bound

(3.4) E
(
‖Et‖2

)
≤ E(‖ET ‖2) e−2λ(t−T ) +

tr(Q) + 2CλλP + tr(S)λ2P
2λ

.

Several aspects of this theorem and its assumptions are discussed next.
Assumption (3.2). The assumption

sup
t≥T

M(f − PtS) = sup
t≥0

sup
x∈Rdx

µ
[
Jf (x)− PtS

]
< 0

is a time-uniform condition on contractivity of the filtering error process Et. Indeed,
it is the uniformity of this condition that enables the proof of Theorem 3.1. We are
essentially ignoring any non-linear couplings between elements of Xt that would need
to be exploited were the analysis to be significantly extended and improved; see [20,
Section 4] for more discussion. Even if one were to ignore issues with uniformity, the
condition is still an extremely stringent one as it does not necessarily hold even for
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stable Kalman–Bucy filters for linear time-invariant systems. The Kalman–Bucy filter
for the linear system

dXt = AXt dt+Q1/2 dWt,

dYt = HXt dt+R1/2 dVt

is

dX̂t = AX̂t dt+ PtH
TR−1

(
dYt −HX̂t dt

)
,

∂tPt = APt + PtA
T +Q− PtSPt.

Under certain observability and stabilizability conditions [49, 15, 14] the error co-
variance has a limiting steady state: Pt → P as t → ∞ for the solution P of the
algebraic Riccati equation AP + PAT + Q − PSP = 0. Furthermore, the system
∂txt = (A − PS)xt (i.e., homogeneous part of the linear filtering error equation) is
exponentially stable in the usual sense that the eigenvalues of the system matrix
are located in the left half-plane: α(A − PS) := maxi=1,...,dx Re

[
λi(A − PS)

]
< 0.

However, the general inequality linking α(A − PS) and M(A− PS) = µ(A− PS)
is in the “wrong” direction [47, Equation (1.3)]: α(A − PS) ≤ µ(A − PS). That
is, assumption (3.2) need not be satisfied even by stable filters for linear systems.
However, it often occurs that stability or forgetting theorems for non-linear filters do
not completely cover the linear case; see for instance the results in [2, 13].

Error covariance. As here, the uniform boundedness of Pt is assumed in almost
every article on the stability of non-linear Kalman filters (though we discuss in
Section 5 how to verify this assumption). What is less explicit is that in many cases
the assumption (3.2) enforces a lower bound on Pt because “negativity” of the term
−PtS may be needed to ensure that M(f − PtS) < 0. This behavior is discussed in
more detail in Section 5.2 in the context of covariance inflation. In literature it is in
fact often explicitly assumed that the smallest eigenvalue of Pt remains bounded away
from zero (e.g., [38, 54, 53, 30, 33]).

Constant CλCλCλ. For the EKF, the constant Cλ is zero. For Gaussian assumed
density and integration filters it was shown in Sections 2.5.2 and 2.5.3 that Cg =
M(g)−N(g). Because M(f − PtS) ≤ −λ and N(f − PtS) ≥ N(f)− tr(S)λP , these
filters have Cλ = −λ−N(f) + tr(S)λP .

Dimensional dependency. The error bounds of Theorem 3.1 are strongly de-
pendent on the dimensionality of the state space, dx. The dimensional dependency
is most clearly manifested in the term tr(Q) which grows linearly in dx if the noise
variances for different dimensions are of the same order. From the examples in Section 5
it is seen that other constants in the bounds behave similarly. For example, in the
setting of Proposition 5.1 we have tr(S) = sdx for s > 0 and λP is the sum of traces of
two dx×dx matrices. Note that the implications for the actual estimation error remain
unclear as the bounds of Theorem 3.1 appear to be very conservative (see Section 6).

4. Discrete-Time Models and Filters. This section analyzes discrete-time
systems and filters. First, we introduce a class of generic discrete-time filters analogous
to continuous filters defined in Section 2 and then provide a discrete-time analog of
Theorem 3.1. When necessary, we differentiate between the continuous and discrete
cases by reserving k for discrete time-indices and using an additional subscript d for
parameters related to the discrete case.
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4.1. A Class of Discrete-Time Filters for Non-Linear Systems. In dis-
crete time, we consider systems of the form

Xk = f(Xk−1) +Q1/2Wk,(4.1a)

Yk = HXk +R1/2Vk,(4.1b)

where Wk ∈ Rdx and Vk ∈ Rdy are independent standard Gaussian random vectors.
The drift f is assumed to be Lipschitz (i.e., ‖Jf‖ = supx∈Rdx ‖Jf (x)‖ <∞). We again
consider a linear functional Lx,P satisfying the basic properties listed in Section 2.
However, Assumption 2.1 needs to be replaced with a slightly modified version.

Assumption 4.1. For any differentiable g : Rdx → Rdx with finite ‖Jg‖ there is a
constant Cg ≥ 0, which varies continuously with ‖Jg‖, such that∥∥g(x)− Lx̃,P (g)

∥∥2 ≤ ‖Jg‖2 ‖x− x̃‖2 + Cg tr(P )

for any points x, x̃ ∈ Rdx and any P ∈ Rdx×dx .
Again, this assumption says that Lx̃,P (g) cannot deviate too much from g(x̃) since

the standard Lipschitz bound is ‖g(x)− g(x̃)‖ ≤ ‖Jg‖ ‖x− x̃‖. A generic discrete-time
filter for the system (4.1) produces the state estimates

(4.2) X̂k = LX̂k−1,Pk−1
(f) + Pk|k−1H

T
(
HPk|k−1H

T +R
)−1[

Yk −HLX̂k−1,Pk−1
(f)
]
,

where Pk and Pk|k−1 are user-specified positive-definite dx × dx matrices allowed to
depend on the state estimates and measurements up to time k − 1.

4.2. Kalman Filters for Discrete-Time Non-Linear Systems. Like
Kalman–Bucy filters of Section 2.5, a Kalman filter for the discrete-time model (4.1)
computes approximations X̂k and Pk to the filtering means and covariances
E(Xk | Y1, . . . , Yk) and Var(Xk | Y1, . . . , Yk). Such a filter consists of the prediction
step

X̂k|k−1 = LX̂k−1,Pk−1
(f),(4.3a)

Pk|k−1 = RX̂k−1,Pk−1
(f) +Qtu,(4.3b)

where Rx,P maps functions to positive-semidefinite matrices and Qtu is again a
potentially tuned version of Q, and the update step

Kk = Pk|k−1H
T
(
HPk|k−1H

T +R
)−1

,(4.4a)

X̂k = X̂k|k−1 +Kk

(
Yk −HX̂k|k−1

)
,(4.4b)

Pk = (I −KkH)Pk|k−1.(4.4c)

The matrices Kk are discrete-time versions of the Kalman gain matrices in (2.6). All
standard extensions of the Kalman filter for non-linear systems fit this framework. For
example, Lx,P (g) = LEKF

x,P (g) = g(x) and Rx,P (g) = REKF(d)
x,P (g) = Jg(x)PJg(x)T yield

the extended Kalman filter while

Lx,P (g) = LADF
x,P (g) =

∫
Rdx

g(z)N (z | x, P ) dz,

Rx,P (g) = RADF(d)
x,P (g) =

∫
Rdx

[
g(z)− LADF

x,P (g)
][
g(z)− LADF

x,P (g)
]TN (z | x, P ) dz
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correspond to discrete-time Gaussian assumed density filters. Obviously, by replacing
the exact integrals with their numerical approximations we obtain different discrete-
time Gaussian integration filters. For the EKF, Assumption 4.1 holds again with
Cg = 0, whereas similar arguments as those appearing in Appendix A show that
Cg = ‖Jg‖ for the Gaussian assumed density filter and Gaussian integration filters
whose numerical integration rules satisfy the second-degree exactness condition (2.11).

4.3. Stability of Discrete-Time Filters. Discrete-time stability analysis that
follows is based on a non-linear difference equation for the filtering error Ek = Xk−X̂k:

Ek = f(Xk−1) +Q1/2Wk − X̂k|k−1 −Kk

(
Yk −HX̂k|k−1

)
= f(Xk−1)− LX̂k−1,Pk−1

(f)−KkH
(
Xk − X̂k|k−1

)
+Q1/2Wk −KkR

1/2Vk

= (I −KkH)
[
f(Xk−1)− LX̂k−1,Pk−1

(f)
]

+ (I −KkH)Q1/2Wk −KkR
1/2Vk.

The full proof is similar to that of Theorem 3.1 and is given in Appendix E.

Theorem 4.2. Consider the generic discrete-time filter (4.2) for the model (4.1)
and let Lx,P satisfy Assumption 4.1. Suppose that there are positive constants λpP , λ

u
P ,

and λd such that supk≥0 tr(Pk|k−1) ≤ λpP , supk≥0 tr(Pk) ≤ λuP ,

(4.5) sup
k≥1
‖I −KkH‖ ≤ λd <∞, and sup

k≥1
‖Jf‖ ‖I −KkH‖ ≤ λdf < 1

hold almost surely. Denote β(δ) = e(
√

2δ+ δ) and κ = supk≥1 ‖Kk‖ ≤ λpP ‖H‖ ‖R−1‖.
Then there is a non-negative constant Cf such that, for any δ > 0, we have the
exponential concentration inequality

P

[
‖Ek‖2 ≥‖4‖β(δ)

(
λkdf

[
‖µ0 − x̂0‖+ ‖Σ0‖1/2

]
+

√
λ2d tr(Q) + κ2 tr(R) + λd(Cfλ

u
P )1/2

1− λdf

)2
]
≤ e−δ

(4.6)

and the mean square filtering error bound

(4.7) E
(
‖Ek‖2

)
≤ λ2kdf

(
‖µ0 − x̂0‖2 + tr(Σ0)

)
+
λ2d[tr(Q) + Cfλ

u
P ] + κ2 tr(R)

1− λ2df
.

4.4. Accuracy of Measurements. If the measurements are Yk = Xk +R1/2Vk,
one can simply use them as state estimates. For certain regimes of the system
parameters it can be shown that the mean square error bound of Theorem 4.2 is an
improvement over that for such naive state estimators. Consider the discrete-time
system (4.1) and suppose the measurement model is Yk = hXk +

√
rVk for some

positive scalars h and r. Error of the naive estimate X̂Y,k = Yk/h is

Xk − X̂Y,k = Xk − Yk/h = (
√
r/h)Vk,

which is a zero-mean Gaussian random vector with variance r/h2. That is,

(4.8) E
(
‖Xk − X̂Y,k‖

2 )
= dyr/h

2.
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If the assumptions of Theorem 4.2 hold, the mean square bound (4.7) is

(4.9) E
(
‖Ek‖2

)
≤ λ2kdf tr(P0) +

λ2d[tr(Q) + Cfλ
u
P ] + κ2dyr

1− λ2df
,

where λdf < 1 and

κ = sup
k≥1
‖Kk‖ = sup

k≥1

∥∥hPk|k−1(h2Pk|k−1 + rI)−1
∥∥ ≤ h

h2 + r/λpP
= O(r−1)

as r →∞. We observe that the bound (4.9) is smaller than (4.8) if tr(Q) and Cf are
sufficiently small and r is sufficiently large. From Section 4.2 we recall that Cf = 0
for the EKF and Cf = ‖Jf‖ for the UKF and its relatives. This result is intuitive: if
there is little process noise but the measurement noise level is high, the filter is able to
produce accurate estimates by following the dynamics. This also demonstrates that in
the setting where Theorem 4.2 is applicable the bounds it yields are sensible.

5. Example Models. This section examines three model classes for which
certain Kalman filters satisfy Theorem 3.1 or 4.2, possibly under sufficient covariance
inflation. The models in Sections 5.1 and 5.2 are fully observed, by which we mean
that S = HTR−1H = sI for some s > 0. This assumption, though admittedly strong,
is commonly used in analysis of various non-linear filters [28, 19, 20, 18, 16]. The
model in Section 5.3 is fully detected in the sense that the unobserved component is
exponentially stable.

5.1. Contractive Dynamics. Stability analysis in [19] was restricted to the
extended Kalman–Bucy filter for fully observed models with a contractive (or uniformly
monotone) drift: M(f) < 0. This section applies Theorem 3.1 to such models. The
main difference to [19] is that the class of filters the analysis applies to is significantly
expanded.

Consider a generalized Kalman–Bucy filter of the form (2.8) and suppose that
there is `c such that M(f) ≤ −`c < 0. This means that the homogeneous system
∂xt = f(xt) is exponentially stable: xt → c with an exponential rate as t → ∞ for
some c ∈ Rdx . Assume also that the matrix-valued operator Rx,P in the Riccati
equation (2.8b) satisfies

(5.1) tr[Rx,P (f)] ≤M(f) tr(P ).

As shown in [26], this assumption is natural and satisfied by all Kalman–Bucy filters
discussed in Section 2.5. From this assumption it follows that

∂t tr(Pt) = tr
[
RX̂t,Pt

(f) +RX̂t,Pt
(f)T

]
+ tr(Qtu)− tr(PtSPt)

≤ tr
[
RX̂t,Pt

(f) +RX̂t,Pt
(f)T

]
+ tr(Qtu)

≤ −2`c tr(Pt) + tr(Qtu).

Consequently, by Grönwall’s inequality (see Appendix B), tr(Pt) ≤ λP,t ≤ λP , where

λP,t = e−2`ct tr(P0) + tr(Qtu)/(2`c) ≤ λP := tr(P0) + tr(Qtu)/(2`c).

Furthermore, if the model is in addition fully observed,

M(f − PtS) ≤M(f) + sµ(−Pt) ≤ −`c.
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That is, the assumptions of Theorem 3.1 are satisfied for this class of exponentially
stable and fully observed models for any positive-definite Qtu.

Proposition 5.1. Consider a generic Kalman–Bucy filter (2.8), defined by Lx,P
satisfying Assumption 2.1, for the continuous-time model (2.3). Suppose that
there is a positive `c such that M(f) ≤ −`c < 0, S = HTR−1H = sI for some
s > 0, and that (5.1) holds. Then Theorem 3.1 holds with T = 0, λ = `c, and
λP = tr(P0) + tr(Qtu)/(2`c).

In particular, under the assumptions of the above proposition and when using the
time-dependent bound λP,t, the concentration inequality (3.3) for the EKF takes the
form

‖Et‖2 ≥
(
E(‖E0‖2) e−2`ct +

tr(Q) + dxs[e
−2`ct tr(P0) + tr(Qtu)/(2`c)]

2

2`c

)
β(δ)

−−−→
t→∞

[
tr(Q) +

dxs tr(Qtu)2

4`2c

]
1

2`c
β(δ)

with probability smaller than e−δ. This is, up to some constants, identical to (1.13),
the corresponding result in [19] (note that Del Moral et al. have Qtu = Q) which in
our notation and as t→∞ is

‖Et‖2 ≥
(

tr(Q) +
s tr(Q)2

2`c

)
1

2`2c
ω(δ) with ω(δ) = 4

√
2 e2

(
1

2
+ δ +

√
δ

)
.

5.2. Covariance Inflation. Intuitively, if the state is observed linearly and “well
enough”, artificial inflation of the error covariance matrix Pt should make the filter
more stable (or robust) since this results in less emphasis being placed on the state
dynamics, which mitigates instability due to non-linearity of the drift. Covariance
inflation, sometimes known in engineering literature as robust tuning, is an important
topic in the study of ensemble Kalman filters [28, 48] and has been suggested also for
stabilizing the discrete-time UKF [54, 53]. It allows for considering models whose drift
is not necessarily contractive, which is a case not covered by current theory in [19].

Suppose that S = sI for some positive s. Then

sup
x∈Rdx

µ
[
Jf (x)− PtS

]
≤M(f) + sµ(−Pt) = M(f)− sλmin(Pt),

and it is evident that for large enough λmin(Pt) this quantity becomes negative as
required in Theorem 3.1. Specifically, λmin(Pt) ≥ (M(f) + λ)/s is sufficient to ensure
that supx∈Rdx µ[Jf (x)− PtS] ≤ −λ. This can be achieved using covariance inflation
in Kalman–Bucy filters by choosing a large enough tuned dynamic noise covariance
matrix Qtu. For simplicity, consider the extended Kalman–Bucy filter. The inversion
formula ∂tP−1t = −P−1t (∂tPt)P

−1
t yields the Riccati equation

∂tP
−1
t = −P−1t Jf (X̂t)− Jf (X̂t)

TP−1t + S − P−1t QP−1t

for the inverse error covariance. By using arguments similar to those appearing in [26]
we can prove that

(5.2) tr(P−1t ) ≤
√
λmin(Qtu)λmax(S)/dx +N(f)2 −N(f)

λmin(Qtu)/dx
+ α1 e−β1t
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for some positive constants α1 and β2 that depend on the system parameters. Since
tr(P−1t ) =

∑dx
i=1 λi(Pt)

−1, (5.2) implies the eigenvalue bound

λmin(Pt) ≥
1

tr(P−1t )
≥ λmin(Qtu)/dx√

λmin(Qtu)λmax(S)/dx +N(f)2 −N(f) + α2 e−β2t

for some positive constants α2 and β2. As this eigenvalue bound grows as square
root of λmin(Qtu), the inequality λmin(Pt) ≥ (M(f) + λ)/s that induces the stability
condition (3.2) is satisfied when λmin(Qtu) and t are large enough.

5.3. Integrated Velocity Models. Let h 6= 0, a2, q1, q2, r > 0, and a1 be
constants and g : R→ R a continuously differentiable function such that

(5.3) N(g) = inf
x∈R

g′(x) ≥ `g > 0

for a constant `g. Consider the integrated velocity model

d

[
Xt,1

Xt,2

]
=

[
a1Xt,1 + a2Xt,2

−g(Xt,2)

]
dt+

[
q
1/2
1 0

0 q
1/2
2

]
dVt,

dYt =
[
h 0

]
Xt dt+ r1/2 dWt

(5.4)

for a two-dimensional state Xt = (Xt,1, Xt,2) ∈ R2 of which one-dimensional measure-
ments Yt are obtained. When a1 = 0, the state component Xt,1 can be interpreted as
the position of a target, obtained by integrating its velocity Xt,2. Using only position
measurements we then try to estimate both the position and the velocity.

We now show the extended Kalman–Bucy filter (2.5) for this model satisfies
Theorem 3.1 if there is sufficient covariance inflation. Because

Jf (x) =

[
a1 a2
0 −g′(x2)

]
and S =

[
h2/r 0

0 0

]
,

the EKF for the model (5.4) takes the form

dX̂t =

[
a1X̂t,1 + a2X̂t,2

−g(X̂t,2)

]
dt+

[
Pt,11 Pt,12
Pt,12 Pt,22

] [
h/r
0

] [
dYt − h

(
a1X̂t,1 + a2X̂t,2

)
dt
]
,

∂tPt =

[
a1 a2
0 −g′(X̂t,2)

] [
Pt,11 Pt,12
Pt,12 Pt,22

]
+

[
Pt,11 Pt,12
Pt,12 Pt,22

][
a1 0

a2 −g′(X̂t,2)

]

+

[
qtu,1 0

0 qtu,2

]
−
[
Pt,11 Pt,12
Pt,12 Pt,22

] [
h2/r 0

0 0

] [
Pt,11 Pt,12
Pt,12 Pt,22

]
,

where qtu,1 and qtu,2 are elements of the diagonal tuned noise covariance Qtu. Differ-
ential equations for the three distinct elements of Pt,11 are

∂tPt,11 = 2a1Pt,11 + qtu,1 − sP 2
t,11 + 2a2Pt,12,

∂tPt,12 =
[
a1 − g′(X̂t,2)− sPt,11

]
Pt,12 + a2Pt,22,

∂tPt,22 = −2g′(X̂t,2)Pt,22 + qtu,2 − sP 2
t,12.

From (5.3) it follows that ∂tPt,22 ≤ −2`gPt,22 + qtu,2, which yields the upper bound
Pt,22 ≤ e−2`gt P0,22 + qtu,2/(2`g) =: C22(t). Suppose that P0,12 ≥ 0. Since a2Pt,22 > 0,
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we have Pt,12 ≥ 0 for every t ≥ 0. Thus ∂tPt,11 ≥ 2a1Pt,11 + qtu,1 − sP 2
t,11, and from

this it can be established that [26, Lemma 3]

Pt,11 ≥
a1 + (sqtu,1 + a21)1/2

s
− α1 e−β1t

for some positive constants α1 and β1. It follows that

a1 − g′(x)− sPt,11 ≤ a1 − `g − sPt,11 ≤ a1 − `g − (sqtu,1 + a21)1/2 + sα1 e−β1t .

That is, for every 0 < λ12 < `g + (sqtu,1 + a21)1/2 there are qtu,1 and a time-horizon
Tλ12

such that

(5.5) a1 − g′(x)− sPt,11 ≤ a1 − `g − sPt,11 ≤ −λ12 < 0

when t ≥ Tλ12
. Thus ∂tPt,12 ≤ −λ12Pt,12+a2Pt,22 ≤ −λ12Pt,12+a2C22(t) for t ≥ Tλ12

,
implying that there is a time-uniform upper bound C12 on Pt,12. From this we obtain
an upper bound for Pt,11:

∂tPt,11 = 2a1Pt,11 + qtu,1 − sP 2
t,11 + 2a2Pt,12 ≤ 2a1Pt,11 − sP 2

t,11 + qtu,1 + 2a2C12

implies that

Pt,11 ≤
a1 + (s(qtu,1 + 2a2C12) + a21)1/2

s
+ α2 e−β2t

for some positive constants α2 and β2. Since the both diagonal elements Pt,11 and
Pt,22 are bounded, we have thus obtained an upper bound on tr(Pt).

Finally, to show that Theorem 3.1 is applicable, we need to prove that the matrix

A =
(
Jf (x)− PtS

)
sym =

[
a1 − sPt,11 a2
−sPt,12 −g′(x)

]
sym

=

[
2(a1 − sPt,11) a2 − sPt,12
a2 − sPt,12 −2g′(x)

]
is negative-definite for every x ∈ R and large enough t. Eigenvalues of this matrix are

1

2

(
tr(A)±

√
tr(A)2 − 4 det(A)

)
.

Having previously selected qtu,1 and Tλ12
such that

1

2
tr(A) = a1 − g′(x)− sPt,11 ≤ −λ12 < 0,

we see that the larger of the eigenvalues is negative since
√

tr(A)2 − 4 det(A) < |tr(A)|.
We have thus proved that error covariance inflation can be used to induce provable
stability of the extended Kalman–Bucy filter for the integrated velocity model (5.4).

6. Numerical Examples. This section contains numerical examples that val-
idate the mean square error bound of Theorem 3.1 for the extended and unscented
Kalman–Bucy filters applied to two toy models.

6.1. Contractive Dynamics. In this example we consider the EKF and the
UKF for the fully observed model

dXt = f(Xt) dt+ dWt,

dYt = Xt dt+
√

8 dVt,
(6.1)
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Fig. 1. Empirical mean square filtering errors based on 1,000 state and measurement trajectory
realisations and the theoretical error bounds (6.2) for the EKF and the UKF applied to the model (6.1).
Time-averaged empirical MSEs are 1.058 (EKF) and 1.128 (UKF).

that is initialised from X0 ∼ N (0, 10−2) and is specified by the drift function

f(x) =

−x3
(

1 + 1
1+x2

3

)
− 3x1

−x1 − x2 − x3
x21 e−x

2
1−x

2
3 −x1 − 2x3

 .
We compute N(f) ≈ −4.5046 and M(f) ≈ −0.5947. Hence the model is exponentially
stable and the assumptions of Proposition 5.1 are satisfied with `c = −M(f). For a
generic Kalman–Bucy filter, this proposition yields the bound (when Qtu = Q)

tr(Pt) ≤ λP = tr(P0) + tr(Q)/(2`c) ≈ 2.552.

We use the initialization X̂ = E(X0) = 0. The mean square bound of Theorem 3.1 is

(6.2) E
(
‖Xt − X̂t‖

2 )
≤ tr(P0) e−2λt +

tr(Q) + 2CλλP + tr(S)λ2P
2`c

,

where Cλ = 0 for the EKF and Cλ = M(f)−N(f) + tr(S)λP ≈ 4.867 for the UKF
(see Section 3). Note that this is merely a shortcoming of the proof technique we have
used rather than a manifestation of greater accuracy of the EKF.

Figure 1 depicts the theoretical upper bounds on E(‖Xt − X̂t‖
2
) for the EKF and

the UKF and the empirical mean square error based on 1,000 state and measurement
trajectory realizations. The results were obtained using Euler–Maruyama discretization
with step-size 0.01. It is evident that the theoretical bounds are valid and somewhat
conservative, which is quite typical in stability theory of non-linear Kalman filters (see,
e.g., numerical examples in [37, 38]).

6.2. Integrated Velocity Model. We now validate the theoretical bounds
obtained in Section 3 on the integrated velocity model discussed in Section 5.3.
Consider the EKF for the integrated velocity model (5.4) with the parameters a1 = 0,
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Fig. 2. Empirical mean square filtering errors based on 1,000 state and measurement trajectory
realisations and the limiting theoretical error bound for the EKF applied to an integrated velocity
model.

a2 = 1, q1 = q2 = 0.05, h = 1, r = 0.05, X̂0 = 0, µ0 = 0, P0 = 0.01I, and

g(x) = x

(
1 +

sinx

1 + x2

)
, g′(x) = 1 +

(x3 + x) cosx− (x2 − 1) sinx

(1 + x)2
.

The maximum and minimum of g′ are supx∈R g
′(x) ≈ 1.581 and infx∈R g

′(x) ≈ 0.419.
That is, g satisfies (5.3) with `g = 0.419. Based on the derivations in Section 5.3 we
are able to compute that tr(Pt) ≤ λP ≈ 0.173 for all sufficiently large t. Because
a1 = 0, no covariance inflation is needed for (5.5) to hold. In this particular case, the
value λ = 0.5478 can be used in Theorem 3.1.

Figure 2 depicts the limiting (i.e., all exponentially decaying terms are disregarded)
theoretical mean square filtering error bound for the EKF thus obtained and the em-
pirical mean square error based on 1,000 state and measurement trajectory realisations.
Again, Euler–Maruyama discretization with step-size 0.01 was used.

7. Conclusions and Discussion. In this article we have shown that large classes
of generic filters for both continuous and discrete-time systems with non-linear state
dynamics and linear measurements are stable in the sense of time-uniformly bounded
mean square filtering error if certain stringent conditions on boundedness of error
covariance matrices and the filtering error process are met. The analysis extends
the previous work [19] for the extended Kalman–Bucy filter and fully observed and
exponentially stable state models. Our main contributions have been generalizations
to models that need not be fully observed or exponentially stable and to a large class
of commonly used extensions of the Kalman–Bucy or Kalman filter to non-linear
systems, such as Gaussian assumed density filters and their numerical approximation,
including the unscented Kalman filter. In Section 5, we have also presented three
different classes of models and filters that satisfy the stability assumptions. This is in
stark contrast to earlier work for, for example, the UKF that has relied on unverifiable
assumptions on certain auxiliary random matrices [54].

The results rely on admittedly very strong conditions on the filtering error process.
These conditions cannot be significantly relaxed unless a more sophisticated proof
technique is devised as the technique we have used essentially neglects potential non-
linear couplings of state components. It appears to us that no such technique exists
at the moment. The only non-trivial and interesting extensions that we believe are
possible are to fully detected systems, essentially generalizations of the integrated
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velocity model we considered in Section 5.3, where not all state components need to
be (fully) observed, but those that are not must be exponentially stable so that their
effect on observed components is small.

Appendix A. Gaussian Assumed Density and Integration Filters.
This appendix proves that the Gaussian assumed density and integration filters

defined in Sections 2.5.2 and 2.5.3 satisfy Assumption 2.1.
For the Gaussian assumed density filter the functional LADF

x,P is defined in (2.9).
For any differentiable g : Rdx → Rdx we have〈
x− x̃, g(x)− LADF

x̃,P (g)
〉

=
〈
x− x̃, g(x)− EN (x̃,P )(g)

〉
=

∫
Rdx

〈
(x− z) + (z − x̃), g(x)− g(z)

〉
N (z | x̃, P ) dz

=

∫
Rdx

〈
x− z, g(x)− g(z)

〉
N (z | x̃, P ) dz −

∫
Rdx

〈
z − x̃, g(z)

〉
N (z | x̃, P ) dz.

The first term can be bounded as∫
Rdx

〈
x− z, g(x)− g(z)

〉
N (z | x̃, P ) dz

≤M(g)

∫
Rdx

‖x− z‖2 N (z | x̃, P ) dz

= M(g)

(∫
Rdx

(
‖z − x̃‖2 + ‖x− x̃‖2

)
N (z | x̃, P ) dz

)
= M(g)

[
‖x− x̃‖2 + tr(P )

]
,

whereas the second has the bound

−
∫
Rdx

〈
z − x̃, g(z)

〉
N (z | x̃, P ) dz = −

∫
Rdx

〈
z − x̃, g(z)− g(x̃)

〉
N (z | x̃, P ) dz

≤ −N(g)

∫
Rdx

‖z − x̃‖2 N (z | x̃, P ) dz

= −N(g) tr(P ).

These estimates show that Assumption 2.1 holds with Cg = M(g)−N(g) ≥ 0.
For the Gaussian integration filter the functional Lint

x,P is defined in (2.10).
That (2.11) holds for any polynomial of total degree up to two implies that

∑n
i=1 wi = 1

and
∑n
i=1 wi

√
Pξi = 0 since Lint

x,P (1) = LN (x,P )(1) = 1 and Lint
x,P (p) = EN (x,P )(p) = 0

for p(z) = z − x. Under these assumptions we can proceed as above:

〈
x− x̃, g(x)− Lint

x̃,P (g)
〉

=

〈
x− x̃, g(x)−

n∑
i=1

wig
(
x̃+
√
Pξi
)〉

=

n∑
i=1

wi

〈
x−

(
x̃+
√
Pξi
)

+
√
Pξi, g(x)− g

(
x̃+
√
Pξi
)〉

=

n∑
i=1

wi

(〈
x−

(
x̃+
√
Pξi
)
, g(x)− g

(
x̃+
√
Pξi
)〉

+
〈√

Pξi, g(x)− g
(
x̃+
√
Pξi
)〉)
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Hence 〈
x− x̃, g(x)− Lx̃y,P (g)

〉
≤M(g)

n∑
i=1

wi
∥∥x− (x̃+

√
Pξi
)∥∥2

+

n∑
i=1

wi

〈√
Pξi, g(x)− g

(
x̃+
√
Pξi
)〉
.

The first term is a sigma-point approximation of a quadratic function. Using (2.11)
and proceeding again as in Section 2.5.2,

n∑
i=1

wi
∥∥x− (x̃+

√
Pξi
)∥∥2 =

∫
Rdx

‖x− z‖2 N (z | x̃, P ) dz = ‖x− x̃‖2 + tr(P ).

To bound the second term, notice that
n∑
i=1

wi

〈√
Pξi, g(x)− g

(
x̃+
√
Pξi
)〉

= −
n∑
i=1

wi

〈
x̃−

(
x̃+
√
Pξi
)
, g(x̃)− g

(
x̃+
√
Pξi
)〉

≤ −N(g)

n∑
i=1

∥∥√Pξi∥∥2
= −N(g) tr(P )

by exactness of Lint
x̃,P for quadratic polynomials. Assumption 2.1 thus holds with the

constant Cg = M(g)−N(g).

Appendix B. Grönwall’s Inequalities.
Classical Grönwall inequalities are a basic ingredients in our proofs.
Continuous version. Suppose that βt is a continuous real-valued function of

t ∈ R and xt is continuously differentiable on R+ and satisfies ∂txt ≤ αxt + βt, t ≥ 0,
for some constant α. Then Grönwall’s inequality states that

(B.1) xt ≤ x0 eαt +

∫ t

0

eα(t−s) βs ds

for every t ≥ 0. If βt ≡ β, (B.1) reduces to

(B.2) xt ≤ x0 eαt−(1− eαt)β/α.

The form of (B.2) that we need the most is the one where βt ≡ β ≥ 0 and α = −γ for
γ > 0. Then the inequality takes the form xt ≤ x0 e−γt +β/γ.

Discrete version. Let 0 ≤ α < 1 and β ≥ 0 and suppose that xk ≥ 0 satisfy
the difference inequality xk ≤ αxk−1 + β for k ≥ 1. Then the discrete Grönwall’s
inequality states that

(B.3) xk ≤ αkx0 + β

k−1∑
n=0

αn ≤ αkx0 +
β

1− α
.

Appendix C. Bernstein’s Concentration Inequality.
In contrast to Del Moral et al. [19] who base their exponential concentration

inequality for the EKF on the concentration inequality appearing in Proposition 11.6.6
of [17], we use a version of the classical Bernstein inequality.
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Theorem C.1 (Bernstein’s inequality). Let X be a non-negative random variable.
Suppose that there is α > 0 such that E(Xn) ≤ nnαn for every integer n ≥ 2. Then

(C.1) P
[
X ≥ α e

(√
2δ + δ

)]
≤ e−δ

for any δ > 0.

Proof. By the standard Stirling bound,

E(Xn) ≤ nnαn ≤ n!√
2π

en αn ≤ n!

2
(eα)n

for every n ≥ 2. The “standard” version of Bernstein’s inequality (e.g., [10, Theorem
2.10]) posits that E(X2) ≤ σ <∞ and E(Xn) ≤ n!

2 σγ
n−2 for some σ > 0 and γ > 0

and every n ≥ 3 imply P[X ≥
√

2σδ + γδ] ≤ e−δ for any δ > 0. Thus, setting γ = eα
and σ = γ2 produces the claim.

The concentration inequality used in [19, Equation (3.6)] is based on the same
moment bounds E(Xn) ≤ nnαn but states instead that

P
[
X ≥ α e2√

2

(
1

2
+
√
δ + δ

)]
≤ e−δ

for any δ > 0. Since

P
[
X ≥ α e

(√
2δ + δ

)]
= P

[
X ≥ α

√
2 e

(√
δ +

1√
2
δ

)]
and
√

2 e < e2 /
√

2, the inequality (C.1) is the tighter of the two for every δ > 0.

Lemma C.2. Let X ∼ N (m,P ) be a d-dimensional Gaussian random vector with
a positive-semidefinite covariance P . Then

E(‖X‖2n)1/n ≤ 4
(
‖m‖2 + ‖P‖ [d+ 2]n

)
for every n ∈ N. If m = 0, the inequality is

E(‖X‖2n)1/n ≤ ‖P‖ (d+ 2)n.

Proof. We know that X = m+ P 1/2U for a standard normal U ∈ Rd. Therefore

E(‖X‖2n) = E
([
‖m‖+ ‖P 1/2U‖

]2n) ≤ 22n−1
(
‖m‖2n + E

[
(UTPU)n

])
≤ 22n−1

(
‖m‖2n + ‖P‖n E[‖U‖2n]

)
,

where E(‖U‖2n) is the nth moment around zero of the chi-squared distribution with
degrees of freedom d. That is,

E(‖U‖2n) = d× · · · × (d+ 2(n− 1)) ≤ (d+ 2(n− 1))n ≤ (d+ 2)nnn.

The inequality (a + b)1/n ≤ a1/n + b1/n for any a, b > 0 yields the first claim. The
second claim follows from E(‖X‖2n) = E([UTPU ]n) if X is zero-mean.

Appendix D. Proof of Theorem 3.1.
This appendix contains the complete proof of Theorem 3.1. We begin with a

proposition providing bounds for functions satisfying certain differential inequalities.
This proposition is a modification of Grönwall’s inequalities (B.1) and (B.2) and
appears also in [19, Appendix A.2].
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Proposition D.1. Let α 6= 0 and β ≥ 0 be constants and n a positive integer.
Suppose that a non-negative and differentiable function xt satisfies the differential
inequality ∂txt ≤ αnxt + βn2x

1−1/n
t for t ≥ t0. Then

x
1/n
t ≤ x1/nt0 eα(t−t0) +

βn

α

(
eα(t−t0)−1

)
.

Proof. For t ≥ t0, the function zt = e−αn(t−t0) xt ≥ 0 satisfies

∂tzt = −αn e−αn(t−t0) xt + e−αn(t−t0) ∂txt ≤ n2β e−αn(t−t0) x
1−1/n
t

= βn2 e−α(t−t0) z
1−1/n
t .

Consequently, for t ≥ t0, ∂tz1/nt = n−1z
1/n−1
t ∂tzt ≤ βn e−α(t−t0) and direct integration

yields

z
1/n
t ≤ z1/nt0 + βn

∫ t

t0

e−α(s−t0) ds = z
1/n
t0 +

βn

α

(
1− e−α(t−t0)

)
.

The claim is obtained by observing that x1/nt = eα(t−t0) z
1/n
t .

Proof of Theorem 3.1. Application of Itô’s lemma to (3.1) yields

d‖Et‖2 = dMt +
[

tr(Q) + tr(SP 2
t )
]

dt

+ 2
〈
f(Xt)− LX̂t,Pt

(f)− PtS(Xt − X̂t), Xt − X̂t

〉
dt,

where

dMt = 2
〈
Q1/2 dWt − PtHTR−1/2 dVt, Xt − X̂t

〉
is a zero-mean (local) martingale. Keeping in mind that LX̂t,Pt

(A) = AX̂t for any
A ∈ Rdx×dx , we write

f(Xt)− LX̂t,Pt
(f)− PtS(Xt − X̂t) = f(Xt)− PtSXt − LX̂t,Pt

(
f − PtS

)
and apply Assumption 2.1 to the function g = f − PtS with x = Xt and x̃ = X̂t:〈

f(Xt)− LX̂t,Pt
(f)− PtS(Xt − X̂t), Xt − X̂t

〉
≤ −λ ‖Xt − X̂t‖

2
+ Cλ tr(Pt),

where Cλ ≥ 0 is finite because M(f − PtS) ≤ −λ and

N(f − PtS) ≥ N(f) + ν(−PtS) = N(f)− µ(PtS) ≥ N(f)− ‖Pt‖ ‖S‖
≥ N(f)− tr(S)λP ,

which is finite by (2.4) and the assumption supt≥0 tr(Pt) ≤ λP . For t ≥ T , the
assumption (3.2), together with (2.2), produces the almost sure bound

d‖Et‖2 ≤ −2λ ‖Et‖2 dt+ udt+ dMt,

where u = tr(Q) + 2CλλP + tr(S)λ2P . Taking expectations and using Grönwall’s
inequality then yield the claimed mean square bound

(D.1) E(‖Et‖2) ≤ E(‖ET ‖2) e−2λ(t−T ) +u/(2λ),
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with E(‖ET ‖2) being finite due to finiteness of N(f) and M(f). This concludes the
proof of (3.4).

To prove the exponential concentration inequality (3.3) we compute upper bounds
on E(‖Et‖2n) for every n ≥ 1 in order to use Theorem C.1. First, note that for
0 ≤ t ≤ T we have the inequality d‖Et‖2 ≤ 2ρ ‖Et‖2 dt+ udt+ dMt, where

ρ = M(f) + ‖S‖ tr(Pt) ≥M(f) + µ(−PtS) ≥M(f − PtS).

In the following we can assume that ρ > 0, for if it were negative we could set −λ = ρ
and T = 0. Let γ stand for either −λ or ρ. Observe that 〈M〉t, the quadratic variation
of Mt (the increasing process such that M2

t − 〈M〉t is a martingale), satisfies

d〈M〉t ≤ 4 ‖Et‖2
[

tr(Q) + tr(SP 2
t )
]

dt ≤ 4 ‖Et‖2 udt.

For n ≥ 2, the above inequality, the identity d〈‖E‖2〉t = d〈M〉t, and the general form
of Itô’s lemma then produce

d‖Et‖2n = n ‖Et‖2(n−1) d‖Et‖2 +
n(n− 1)

2
‖Et‖2(n−2) d〈‖E‖2〉t

= n ‖Et‖2(n−1) d‖Et‖2 +
n(n− 1)

2
‖Et‖2(n−2) d〈M〉t

≤ 2γn ‖Et‖2n dt+ 2un2 ‖Et‖2(n−1) dt+ n ‖Et‖2(n−1) dMt.

Induction establishes that E(‖Et‖2n) does not explode in finite time. Thus the term
‖Et‖2(n−1) dMt vanishes when expectations are taken (see, e.g., [29, Section 4.5] for
similar arguments). Using Hölder’s inequality with p = n/(n− 1), we get

∂tE(‖Et‖2n) ≤ 2γnE(‖Et‖2n) + 2un2 E(‖Et‖2(n−1))

≤ 2γnE(‖Et‖2n) + 2un2E(‖Et‖2n)1−1/n.

We can now apply Proposition D.1 with xt = ‖Et‖2n and β = u. Setting α = 2ρ and
t0 = 0 and considering t ≤ T , we obtain

E(‖ET ‖2n)1/n ≤
[
E(‖E0‖2n)1/n +

un

2ρ

]
e2ρT .

Recall that X0 ∼ N (µ0,Σ0) and X̂0 = x̂0 is deterministic. Thus E0 ∼ N (µ0 − x̂0,Σ0)
so that Lemma C.2 gives

E(‖ET ‖2n)1/n ≤
[
4
(
‖µ0 − x̂0‖2 + ‖P0‖ [dx + 2]n

)
+
un

2ρ

]
e2ρT

≤ 4

[
‖µ0 − x̂0‖2 + ‖P0‖ (dx + 2) +

un

8ρ

]
e2ρT︸ ︷︷ ︸

=:CT

n.

This provides a bound on the initial value for the case α = −2λ, t0 = T , and t ≥ T in
Proposition D.1:

E(‖Et‖2n)1/n ≤ E(‖ET ‖2n)1/n e−2λ(t−T ) +
un

2λ
≤
(
CT e−2λ(t−T ) +

u

2λ

)
n.



24 T. KARVONEN, S. BONNABEL, E. MOULINES, AND S. SÄRKKÄ

That is,

E(‖Et‖2n) ≤
(
CT e−2λ(t−T ) +u/(2λ)

)n
nn.

The claimed exponential concentration inequality follows by applying Bernstein’s
inequality of Theorem C.1 to X = ‖Et‖2 with α = CT e−2λ(t−T ) +u/(2λ).

Appendix E. Proof of Theorem 4.2.

Proof of Theorem 4.2. Norm of the filtering error is

‖Ek‖2 =
[
f(Xk−1)− LX̂k−1,Pk−1

(f)
]T

(I −KkH)T

× (I −KkH)
[
f(Xk−1)− LX̂k−1,Pk−1

(f)
]

+ 2
[
f(Xk−1)− LX̂k−1,Pk−1

(f)
]T

(I −KkH)T

×
[
(I −KkH)Q1/2Wk −KkR

1/2Vk
]

+
[
(I −KkH)Q1/2Wk −KkR

1/2Vk
]T[

(I −KkH)Q1/2Wk −KkR
1/2Vk

]
.

We immediately obtain

κ = sup
k≥1
‖Kk‖ =

∥∥Pk|k−1HT(HPk|k−1H
T +R)−1

∥∥ ≤ λpP ‖H‖ ‖R−1‖ .
Using Assumption 4.1 and (4.5), we get the recursive filtering error bound

(E.1) ‖Ek‖2 ≤ λ2df ‖Ek−1‖
2

+ Cfλ
2
dλ
u
P + ‖Uk‖2 + 2Mk,

where Cf is the constant of Assumption 4.1 for the function f and the random variables

Uk = (I −KkH)Q1/2Wk −KkR
1/2Vk

and

Mk =
[
f(Xk−1)− LX̂k−1,Pk−1

(f)
]T

(I −KkH)TUk

are zero-mean because Wk and Vk are independent of Xk−1, X̂k−1, Pk−1, and Kk.
Because

(E.2) E(‖Uk‖2) ≤ ud := λ2d tr(Q) + κ2 tr(R),

we have

E(‖Ek‖2) ≤ λ2dfE(‖Ek−1‖2) + ud + Cfλ
2
dλ
u
P .

The discrete Grönwall’s inequality (B.3) then produces

E(‖Ek‖2) ≤ λ2kdf E(‖E0‖2)+
ud + Cfλ

2
dλ
u
P

1− λ2df
= λ2kdf

(
‖µ0 − x̂0‖2+tr(Σ0)

)
+
ud + Cfλ

2
dλ
u
P

1− λ2df
,

which is the mean square bound (4.7). Here we have used E(‖X‖2) = tr(P ) + ‖m‖2,
which holds for any Gaussian random vector X ∼ N (m,P ).
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To obtain the concentration inequality (4.6), we bound E(‖Ek‖2n) for every n ≥ 1
and use Bernstein’s inequality. The random variable Mk admits the bound

Mk ≤
(
λdf ‖Ek−1‖+ η

)
‖Uk‖ with η = λd(Cfλ

u
P )1/2.

Inequality (E.1) gives

E(‖Ek‖2n) ≤ E
[(
λ2df ‖Ek−1‖

2
+ ‖Uk‖2 + 2Mk + η2

)n]
and consequently Minkowski’s inequality yields

E(‖Ek‖2n)1/n ≤ E
[(
λ2df ‖Ek−1‖

2
+ ‖Uk‖2 + 2Mk + η2

)n]1/n
≤ λ2dfE(‖Ek−1‖2n)1/n + E(‖Uk‖2n)1/n + 2E(Mn

k )1/n + η2.
(E.3)

By Lemma C.2 and (E.2), E(‖Uk‖2n)1/n ≤ (dx + 2)nud, and by Minkowski’s and
Hölder’s inequalities,

E(Mn
k )1/n ≤ E(‖Uk‖n)1/nE

(
[λdf ‖Ek−1‖+ η]n

)1/n
≤ E(‖Uk‖n)1/n

[
λdfE(‖Ek−1‖n)1/n + η

]
≤ E(‖Uk‖2n)1/(2n)

[
λdfE(‖Ek−1‖2n)1/(2n) + η

]
≤
√

(dx + 2)nud
[
λdfE(‖Ek−1‖2n)1/(2n) + η

]
.

Inserting these bounds into (E.3) and recognizing that the result can be bounded by a
sum of two quadratic terms produces

E(‖Ek‖2n)1/(2n) ≤ λdfE(‖Ek−1‖2n)1/(2n) + 2
√

(dx + 2)nud + η.

Then the discrete Grönwall’s inequality and Lemma C.2 yield

E(‖Ek‖2n)1/(2n) ≤ λkdfE(‖E0‖2n)1/(2n) +
2
√

(dx + 2)nud + η

1− λdf

≤
(

2λkdf

[
‖µ0 − x̂0‖+ ‖Σ0‖1/2

√
(dx + 2)n

]
+

2
√

(dx + 2)nud + η

1− λdf

)
≤ 2

(
λkdf

[
‖µ0 − x̂0‖+ ‖Σ0‖1/2

]
+

√
ud + η

1− λdf

)√
(dx + 2)n.

This proves that

E(‖Ek‖2n) ≤ 22n
(
λkdf

[
‖µ0 − x̂0‖+ ‖Σ0‖1/2

]
+

√
ud + η

1− λdf

)2n

(dx + 2)nnn

The claim follows from Bernstein’s inequality with X = ‖Ek‖2 and

α = 4

(
λkdf

[
‖µ0 − x̂0‖+ ‖Σ0‖1/2

]
+

√
ud + η

1− λdf

)2

.
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