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Abstract

The recently proposed statistical finite element (statFEM) approach synthesises measurement data with finite element
models and allows for making predictions about the unknown true system response. We provide a probabilistic error
analysis for a prototypical statFEM setup based on a Gaussian process prior under the assumption that the noisy
measurement data are generated by a deterministic true system response function that satisfies a second-order elliptic
partial differential equation for an unknown true source term. In certain cases, properties such as the smoothness of the
source term may be misspecified by the Gaussian process model. The error estimates we derive are for the expectation
with respect to the measurement noise of the L2-norm of the difference between the true system response and the mean
of the statFEM posterior. The estimates imply polynomial rates of convergence in the numbers of measurement points
and finite element basis functions and depend on the Sobolev smoothness of the true source term and the Gaussian
process model. A numerical example for Poisson’s equation is used to illustrate these theoretical results.
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1. Introduction

The finite element method has become an indispensable tool for solving partial differential equations in engineering
and applied sciences. Today, the design, manufacture and maintenance of most engineering products rely on mathemat-
ical models based on finite element discretised partial differential equations (PDEs). These models depend on a wide
range of parameters, including material, geometry, and loading, which are inevitably subject to both epistemic and
aleatoric uncertainties. Consequently, the response of the actual engineering product and the inevitably misspecified
mathematical model often bear little resemblance to each other, resulting in inefficient designs and overtly cautious
operational decisions. Fortunately, more and more engineering products are equipped with sensor networks that provide
operational measurement data [e.g., 14]. The statistical finite element method (statFEM) allows us to infer the true
system response by synthesising limited measurement data with finite element models [19]. By adopting a Bayesian
approach, the prior probability measure of the finite element solution is obtained from the misspecified finite element
model by solving a probabilistic forward problem. Although any parameters of the finite element model can be random,
in this article only the source term of the respective PDE is random and Gaussian, so that the finite element solution
is Gaussian. The assumed data-generating process for determining the likelihood of the measured data is additively
composed of the random finite element solution, the known random measurement noise, and, possibly, an unknown
random discrepancy component. The chosen prior and the likelihood ensure that the posterior finite element probability
density conditioned on the measurement data is Gaussian and easily computable.

More concretely, we consider the following mathematical problem. Let L be a differential operator and suppose
that the system response u that generated the measurement data is given by the solution of

Lu = f (1.1)

∗Corresponding author. Email address: toni.karvonen@lut.fi May 26, 2025

toni.karvonen@lut.fi


Fig. 1: Left: Four translates K(·, x) of the Matérn covariance kernel in (2.5) with ν = 1/2 and σ = ℓ = 1. Right: Four translates Ku(·, x) of the
corresponding kernel of the process uGP for Poisson’s equation with zero boundary conditions.

on a bounded domain Ω with zero Dirichlet boundary conditions. The statistical component of the statFEM solution
arises from the placement of a stochastic process prior on the source term f and, possibly, the differential operator
L or some of its parameters. Doing this induces a stochastic process prior over the solution u. After hyperparameter
estimation and inclusion of additional levels of statistical modelling [25], which may account for various modelling
discrepancies, one uses Bayesian inference to obtain a posterior distribution over the PDE solution given the measure-
ment data. The posterior can then be used predict the system behaviour at previously unseen data locations and provide
associated uncertainty quantification. See [8, 19, 27] for applications of this methodology to different types of PDEs
and [1] for a somewhat different approach focusing on random meshes. In any non-trivial setting, computation of the
prior for u from that placed on f requires solving the PDE (1.1). In statFEM, the PDE is solved using finite elements.
Due to their tractability, Gaussian processes (GPs) are often the method of choice for modelling physical phenomena.
In the PDE setting that we consider Gaussian processes are particularly convenient because a GP prior, fGP, on f
induces a GP prior, uGP, on u if the PDE is linear (see Fig. 1). The induced prior uGP has been studied in [32, 35] and
Section 3.1.2 of [7]. Although uGP is generally not available in closed form, it is straightforward to approximate its
mean and covariance functions from those of fGP by using finite elements.

In this article, we provide estimates of the predictive error for the GP-based statFEM when the data are noisy
evaluations of some deterministic true system response function ut which is assumed to be the solution of (1.1) for an
unknown—but deterministic—true source term ft. Due to the complexity and difficulty of analysing a full statFEM
approach, we consider a prototypical version that consists of a GP prior on f and, possibly, a GP discrepancy term.
Scaling and other parameters these processes may have are assumed fixed. Despite recent advances in understanding
the behaviour of GP hyperparameters and their effect on the convergence of GP approximation [24, 41, 49], these
results are either not directly applicable in our setting or too generic, in that they assume that the parameter estimates
remain in some compact sets, which has not been verified for commonly used parameter estimation methods, such as
maximum likelihood.

As mentioned, finite elements are needed for computation of the induced prior uGP and the associated posterior. But
why not simply use a readily available and explicit GP prior for u, such as one with a Matérn covariance kernel, instead
of something that requires finite element approximations? The main reason (besides this being the first step towards
analysing the full statFEM) is that a prior uGP, for which LuGP = fGP, satisfies the structural constraints imposed by
the PDE model and can therefore be expected to yield more accurate point estimates and more reliable uncertainty
quantification than a more arbitrary prior if the data are generated by a solution of (1.1) for some source term. We give
a detailed description of the considered method in Section 2.

1.1. Contributions

Our contribution consists of a number of error estimates for the statFEM approach sketched above. Suppose that
the measurements are yi = ut(xi) + εi for n locations xi ∈ Ω ⊂ Rd and independent Gaussian noises εi ∼ N(0, σ2

ε). The
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regression error estimates we prove are of the form

E
[
∥ut − m̃∥L2(Ω)

]
≤ C1n−1/2+a +C2n−q

FEn3/2, (1.2)

where m̃ is a posterior mean function obtained from statFEM and the expectation is with respect to the measurement
noise. The constant a ∈ (0, 1/2) depends on the smoothness of ft and q > 0 is the dimension d dependent characteristic
rate of convergence of the finite element approximation with nFE elements. In (1.2) it is assumed that the points xi

cover Ω sufficiently uniformly. In Section 6.2 we present error estimates for four different variants of statFEM, each of
which corresponds to a different m̃:

• Theorem 3.2 assumes that no finite element discretisation is required for computation of m̃. In this case C1 > 0
and C2 = 0. It is required that ft be at least as smooth as the prior fGP.

• In Theorem 3.5, the more realistic assumption that m̃ is constructed via a finite element approximation is used.
In this case C1,C2 > 0. It is required that ft be at least as smooth as the prior fGP.

• Theorems 3.7 and 3.8 concern versions which include a GP discrepancy term vGP (i.e., the prior for u is uGP+vGP)
and do not use or use, respectively, finite element discretisation to compute m̃. These theorems allow the priors
to misspecify the source term and system response smoothness as it is not required that ft be at least as smooth
as fGP or that ut be at least as smooth as vGP or uGP. Such misspecification results are valuable because one often
lacks precise information about the smoothness (or other properties) of ut.

As discussed in Remark 3.3, these rates are likely slightly sub-optimal. Some numerical examples for one-dimensional
Poisson’s equation are given in Section 4.

The proofs of these results are based on reproducing kernel Hilbert space (RKHS) techniques which are commonly
used to analyse approximation properties of GPs [6, 7, 24, 41, 44, 47, 49]. Our central tool is Theorem 6.5, which
describes the RKHS associated to the prior uGP under the assumptions that the RKHS for fGP is a Sobolev space and L
is a second-order elliptic differential operator. This result is used to “export” (a) regression error estimates in some of
the aforementioned references and (b) bounds on the concentration function [29, 44] from a “standard” GP prior fGP
(e.g., one specified by a Matérn covariance kernel) to the transformed prior uGP. When a finite element approximation
is used, the regression error estimates are combined with a simple result (Proposition 6.12) which bounds the difference
between GP posterior means for two different kernels in terms of the maximal difference of the kernels.

1.2. Related work

Solving PDEs with kernel-based methods goes back at least to the work of Kansa [22]; see [11, 15] as well
as Chapter 16 in [48] for a more general treatment. In the language of GPs, this radial basis function collocation
approach is essentially based on modelling u as a GP with a given covariance kernel and conditioning on the derivative
observations Lu(xi) = f (xi). Typically no synthesis of actual measurement data is present (though this could be easily
included). For convergence results in a well-specified setting, see for example Theorem 16.15 in [48]. In a GP setting
similar methods have been proposed and analysed by Cialenco et al. [6], Cockayne et al. [7], Graepel [20], and Raissi
et al. [35]. For some error estimates, see Lemma 3.4 and Proposition 3.5 in [6]. Priors and covariance kernels derived
from Green’s function have been considered by Fasshauer and Ye [12, 13] and Owhadi [32]. Furthermore, Papandreou
et al. [33] have recently derived bounds on the Wasserstein distance W2 between the ideal prior and posterior (see
Section 2.1 in the present article) and their finite element approximations.

2. Statistical finite element methods

This section describes the statFEM approach that is analysed in Section 6.2 and discusses some extensions that are
not covered by our analysis. We begin by defining the class of second-order elliptic PDE problems that are considered
in this article.

Let d ∈ N andΩ ⊂ Rd be an open and bounded set which satisfies an interior cone condition [e.g., 48, Definition 3.6]
and has a Lipschitz boundary ∂Ω (i.e., the boundary is locally the graph of a Lipschitz function). Occasionally we also
require an assumption that ∂Ω be Ck or Ck,α, which means that its boundary can be interpreted locally as the graph of a
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function in Ck(Rd−1) or in the Hölder space Ck,α(Rd). Definitions of Hölder spaces and the smoothness of the domain
can be found in Sections 3.1 and 6.1.1.

Let L be a second-order partial differential operator of the form

Lu = −
d∑

i=1

d∑
j=1

∂i(ai j∂ ju) +
d∑

i=1

bi∂iu + cu (2.1)

for coefficient functions ai j, bi and c which are bounded on the closure Ω̄. We further assume that ai j ∈ C1(Ω) and
ai j = a ji for all i, j ∈ {1, . . . , d}. The differential operator is assumed to be uniformly elliptic, which is to say that there
is a positive constant λ such that

∑d
i=1

∑d
j=1 ai j(x)ziz j ≥ λ ∥z∥22 for any x ∈ Ω and z ∈ Rd. Moreover, our results use the

following regularity assumption.

Assumption 2.1 (Regularity). For a given k ∈ N0, the boundary ∂Ω is Ck+2 and ai j, bi, c ∈ Ck+1(Ω̄) for all i, j ∈
{1, . . . , d}.

Given a known differential operator L, we consider the elliptic PDE

Lu = f in Ω,
u = 0 on ∂Ω

(2.2)

for a source term f : Ω → R. LetHL(Ω) be some space of functions defined on Ω such that the above PDE admits
a unique classical (i.e., pointwise) solution u : Ω̄ → R for every f ∈ HL(Ω). Therefore there is a linear operator
L−1 : HL(Ω)→ C2(Ω) such that u = L−1 f is the unique solution of (2.2) for any f ∈ HL(Ω). Suppose that there is a
true system response ut which is the unique solution of

Lut = ft in Ω,
ut = 0 on ∂Ω

(2.3)

for a certain true source term ft ∈ HL(Ω), which may be unknown, and that one has access to n ∈ N noisy observations
Y = (y1, . . . , yn) ∈ Rn of ut at distinct data locations X = {x1, . . . , xn} ⊂ Ω:

yi = ut(xi) + εi for independent εi ∼ N(0, σ2
ε), (2.4)

where σε > 0. The statFEM approach provides a means for predicting the value of the true system response, ut(x),
at any point, x, in the domain. It also provides uncertainty estimates for these predictions that are based on the
observations, the differential operator L, and a prior which encodes, for example, assumptions on the smoothness of
the true source term. We emphasise that here ut and ft are always assumed to be some fixed and deterministic functions.
Although we use GPs to model them, the functions themselves are not considered stochastic processes. All expectations
that occur in this article are with respect to the noise variables εi alone. The locations xi are not assumed random in this
article.

2.1. Gaussian process inference
Let K : Ω ×Ω→ R be a positive-semidefinite kernel. That is, for any n ∈ N, α1, . . . , αn ∈ R, and z1, . . . , zn ∈ Ω it

holds that
∑n

i=1
∑n

j=1 αiα jK(zi, z j) ≥ 0. One of the most ubiquitous—as well as one which appears repeatedly in this
article—classes of positive-semidefinite kernels is that of the Matérn kernels

K(x, y) = σ2 21−ν

Γ(ν)

( √
2ν ∥x − y∥2

ℓ

)ν
Kν

( √
2ν ∥x − y∥2

ℓ

)
, (2.5)

where ν > 0 is a smoothness parameter, ℓ > 0 a length-scale parameter, σ > 0 a scaling parameter, Γ the gamma
function, and Kν the modified Bessel function of the second kind of order ν. These kernels are important because they
induce Sobolev spaces (see Section 3.1). We model ft as a Gaussian process fGP ∼ GP(m,K) and assume that

(i) m ∈ HL(Ω) and (ii) K(·, x) ∈ HL(Ω) and L−1
x K(·, x) ∈ HL(Ω) for every x ∈ Ω, (2.6)
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where the subscript denotes the variable with respect to which the linear operator is applied. These assumptions
ensure that various functions that we are about to introduce are unique and pointwise well-defined. Because L is a
linear differential operator, the above GP prior over ft induces the prior uGP ∼ GP(mu,Ku) over ut with mean function
mu = L

−1m and covariance kernel Ku, which satisfies

LxLyKu(x, y) = K(x, y) (2.7)

for all x, y ∈ Ω, as well as LKu(·, y) = 0 on ∂Ω for every y ∈ Ω̄. The existence and uniqueness of the mean and
covariance are guaranteed by the assumptions in (2.6).

To arrive at an ideal version of the GP-based statFEM we condition the GP uGP on the measurement data in (2.4).
This yields the conditional process

uGP | Y ∼ GP(mu|Y,Ku|Y)

whose mean and covariance are

mu|Y(x) = mu(x) +Ku(x, X)⊺
(
Ku(X, X) + σ2

εIn

)−1
(Y −mu(X)), (2.8a)

Ku|Y(x, y) = Ku(x, y) −Ku(x, X)⊺
(
Ku(X, X) + σ2

εIn

)−1
Ku(y, X), (2.8b)

where Ku(X, X) is the n × n kernel matrix with elements Ku(xi, x j), Ku(x, X) and mu(X) are n-vectors with elements
Ku(x, xi) and mu(xi), respectively, and In is the n × n identity matrix. However, the mean function mu = L

−1m and
the covariance kernel Ku in (2.7) cannot be solved in closed form in all but the simplest of cases. This necessitates
replacing their occurrences in (2.8) with finite element approximations.

2.2. Finite Element methods
Let H1

0(Ω) denote the Sobolev space of order one and zero trace. Informally, this space consists of once weakly
differentiable functions that vanish on ∂Ω. A function u ∈ H1

0(Ω) is a weak solution to the PDE in (2.2) if

B(u, v) =
∫
Ω

f (x)v(x) dx for all v ∈ H1
0(Ω), (2.9)

where

B(u, v) =
∫
Ω

( d∑
i=1

d∑
j=1

ai j(x)[∂iu(x)][∂ jv(x)] +
d∑

i=1

bi(x)[∂iu(x)]v(x) + c(x)u(x)v(x)
)

dx

is the bilinear form associated with the elliptic differential operator L in (2.1). The bilinear form is obtained from∫
Ω

[Lu(x)]v(x) dx =
∫
Ω

f (x)v(x) dx via integration by parts.
Finite element methods construct approximations to the weak solution by replacing the infinite-dimensional Sobolev

space in (2.9) with a finite-dimensional trial space V ⊂ H1
0(Ω) and finding uFE ≈ u in V such that

B(uFE, v) =
∫
Ω

f (x)v(x) dx for all v ∈ V.

If V is an nFE-dimensional vector space with basis ϕ1, . . . , ϕnFE , it follows from the bilinearity of B and linearity of
integration that

uFE(x) =
nFE∑
i=1

uiϕi(x), (2.10)

where the coefficient vector u = (u1, . . . , unFE ) is the solution of the linear system
B(ϕ1, ϕ1) · · · B(ϕnFE , ϕ1)

...
. . .

...
B(ϕnFE , ϕ1) · · · B(ϕnFE , ϕnFE )




u1
...

unFE

 =

∫
Ω

f (x)ϕ1(x) dx
...∫

Ω
f (x)ϕnFE (x) dx

 , (2.11)

where the nFE × nFE matrix on the left-hand side is called the stiffness matrix and denoted by A.
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Fig. 2: Triangulation of a polyhedral domain in R2 and three piecewise linear hat functions that vanish on the boundary.

The choice of the trial space V ⊂ H1
0(Ω) determines how well uFE approximates u. The simplest and most prevalent

approach is to use piecewise linear basis functions. Assume for a moment that Ω is a polyhedron. One first constructs
a triangular partition of Ω (or mesh) that consists of simplices Ω1, . . . ,Ωñ defined by nFE < ñ vertices xFE

1 , . . . , xFE
nFE

in the interior of Ω plus additional vertices on the boundary and then selects V as the space of continuous functions
that are piecewise linear in each simplex and zero on the boundary. This space is spanned by piecewise linear hat
functions ϕ1, . . . , ϕnFE with the property ϕi(xFE

j ) = δi j. The finite element approximation is then given by (2.10), where
the coefficients ui are obtained from the linear system (2.11). See [4, 26, 30] for detailed reviews of finite element
methods. Fig. 2 shows a triangular mesh for a two-dimensional domain and piecewise linear hat functions.

2.3. Finite element posterior
One can approximate the mean mu and covariance Ku of uGP ∼ GP(mu,Ku) with the finite element method. Because

Lmu = m, by solving u from (2.11) with f = m we obtain the mean approximation

mFE
u (x) = µµµ⊺A−1ϕϕϕ(x) ≈ mu(x),

where ϕϕϕ(x) = (ϕ1(x), . . . , ϕnFE (x)) and µµµ = (
∫
Ω

m(x)ϕ1(x) dx, . . . ,
∫
Ω

m(x)ϕnFE (x) dx). Because LxLyKu(x, y) = K(x, y),
we may approximate Ku by first forming an approximation with f = K(·, y) in (2.11) and subsequently forming a
second approximation with the first approximation as f in (2.11). From this we obtain the covariance approximation

KFE
u (x, y) = ϕϕϕ(x)⊺A−1MA−1ϕϕϕ(y) ≈ Ku(x, y),

where the matrix M ∈ RnFE×nFE has the elements

(M)i j =

∫
Ω

∫
Ω

ϕi(x′)K(x′, y′)ϕ j(y′) dx′ dy′.

Substituting mFE
u for mu and KFE

u for Ku yields the approximations

mFE
u|Y(x) = mFE

u (x) +KFE
u (x, X)⊺

(
KFE

u (X, X) + σ2
εIn

)−1
(Y −mFE

u (X)), (2.12a)

KFE
u|Y(x, y) = Ku(x, y) −KFE

u (x, X)⊺
(
KFE

u (X, X) + σ2
εIn

)−1
KFE

u (y, X) (2.12b)

to the conditional moments in (2.8). In practice, it may be tedious or impossible to compute the elements of M in
closed form. When the supports of ϕi are contained within small neighbourhoods of some nodes xFE

i ∈ Ω, one may
treat the kernel as constant within these supports and employ the approximations∫

Ω

∫
Ω

ϕi(x′)K(x′, y′)ϕ j(y′) dx′ dy′ ≈
( ∫
Ω

ϕi(x′) dx′
)
K(xFE

i , xFE
j )

( ∫
Ω

ϕi(y′) dy′
)
. (2.13)

The structure of the resulting statFEM approach is displayed in Fig. 3.
Later we will use the following generic assumption on the error of the finite element approximations.
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ut εi

YYY

ft

L

fGP

mFE
u

KFE
u

FE
mFE

u|YYY
KFE

u|YYY

Fig. 3: Graphical model of the statFEM approach considered in this article. Blue variables are known to the user while red variables are unknown.
Orange variables represent parameters that the user can choose.

Assumption 2.2 (Finite element error). Let q1, q2 > 0 and q = min{q1, q2}. There exist positive constants C1 and C2,
which do not depend on nFE, such that

sup
x∈Ω
|mu(x) − mFE

u (x)| ≤ C1n−q1
FE and sup

x,y∈Ω
|Ku(x, y) − KFE

u (x, y)| ≤ C2n−q2
FE

for all nFE ∈ N.

One should expect that q2 ≤ q1 because the approximation to the covariance Ku is obtained via two-fold finite
element approximation. In the error analysis of finite element methods it is typical to express error estimates in terms
of a characteristic simplex size defined as

h = max
i=1,...,ñ

min
x,y∈Ωi

∥x − y∥2

instead of the number of elements as we have done in Assumption 2.2. If the mesh is quasi-uniform, in that h tends to
zero as n−1/d

FE , rates expressed in terms of h are easily converted to rates in terms of nFE. Our focus is on the statistical
component of the statFEM approach and we do not wish to introduce the machinery that is necessary for precise
presentation of estimates on the error of finite elements in the uniform norm. Under certain regularity assumptions one
can show that piecewise linear finite elements (see Section 2.2 and Fig. 2) for Poisson’s equation −∆u = f in dimension
d converge with the rate h2|ln h| in the uniform norm, which translates to the rate n−2/d

FE ln n in the quasi-uniform
case [31]. See [37–39] for additional estimates in the uniform norm. For more casual introductions to error estimates
we refer to [4, 30]. An additional motivation for Assumption 2.2 is the presence of integral approximations, such as
that in (2.13), which are not incorporated into many of the existing error estimates for finite elements.

2.4. The discrepancy term
It is often desirable to include a discrepancy term vGP ∼ GP(md,Kd) to account for modelling errors. We do this by

replacing the induced GP model uGP ∼ GP(mu,Ku) for ut with uGP + vGP, so that the full GP model for ut is

uGP + vGP ∼ GP(mu + md,Ku + Kd).

Unlike uGP, which is induced by the GP prior fGP over ft and is thus accessible only by solving the PDE (2.2), the
discrepancy term is typically taken to be a GP with some standard covariance kernel, such as a Matérn in (2.5). Denote
mud = mu + md and Kud = Ku + Kd. When the discrepancy term is included, the exact conditional moments in (2.8)
become

md;u|Y(x) = mud(x) +Kud(x, X)⊺
(
Kud(X, X) + σ2

εIn

)−1
(Y −mud(X)), (2.14a)

Kd;u|Y(x, y) = Kud(x, y) −Kud(x, X)⊺
(
Kud(X, X) + σ2

εIn

)−1
Kud(y, X). (2.14b)
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When a finite element approximation is employed, we get

mFE
d;u|Y(x) = mFE

ud (x) +KFE
ud (x, X)⊺

(
KFE

ud (X, X) + σ2
εIn

)−1
(Y −mFE

ud (X)), (2.15a)

KFE
d;u|Y(x, y) = KFE

ud (x, y) −KFE
ud (x, X)⊺

(
KFE

ud (X, X) + σ2
εIn

)−1
KFE

ud (y, X). (2.15b)

where mFE
ud = mFE

u + md and KFE
ud = KFE

u + Kd.

2.5. Extensions
In practice, a variety of additional levels of statistical modelling, or altogether a more complex PDE model, are

typically used in statFEM [19]. These can include an additional factor with GP models placed on them on the left-hand
side of (2.2). The standard example being is Poisson’s equation

−∇(eµ∇u) = f (2.16)

in which a GP prior is placed on µ (and the exponential ensures positivity of the diffusion coefficient, eµ) in addition to
f . Estimation of various parameters present in model, such as parameters of the covariance kernel K (e.g., σ, ℓ and ν of
a Matérn kernel), is also common. If GP priors are placed on µ and f in the model (2.16) or its generalisation of some
form, the prior induced on u is no longer a GP. This will render most of the theoretical tools that we use inoperative,
and this generalisation is not accordingly pursued here. While there is some recent theoretical work on parameter
estimation in Gaussian process regression for deterministic data-generating functions and its effect on posterior rates
of convergence and reliability [23, 24, 41, 46], the results that have been obtained are not yet sufficiently general or
flexible to be useful in the PDE setting considered here. Reliability refers to the quality of the posterior standard
deviation as a measure of approximation error. Informally speaking a GP model is reliable if the posterior standard
deviation decays with the same rate as the approximation error as n→ ∞. See [40] for some work on reliability and its
connection to model parameter estimation in the context of the Gaussian sequence model.

3. Main Results

This section contains the main results of this article. The results provide rates of contraction, as n → ∞, of the
expectation (with respect to the observation noise distribution) of the L2(Ω)-norm between the true source term ut and
the GP conditional means in (2.8a), (2.12a), and (2.15a). All proofs are deferred to Section 6. The results are expressed
in terms of the fill-distance

hX,Ω = sup
x∈Ω

min
i=1,...,n

∥x − xi∥2 (3.1)

of the set of points X ⊂ Ω. The fill-distance cannot tend to zero with a rate faster than n−1/d, a rate which is achieved
by, for example, uniform Cartesian grids.

3.1. Function spaces
Let Dα f denote the weak derivative of order α ∈ Nd

0 of any sufficiently regular function f : Ω → R. Let k ∈ N0.
The Sobolev space Hk(Ω) consists of functions for which Dα f exists for all |α| ≤ k and the norm

∥ f ∥Hk(Ω) =

( ∑
|α|≤k

∥Dα f ∥2L2(Ω)

)1/2

is finite. The Hölder space Ck,α(Ω) consists of functions which are k ∈ N0 times differentiable on Ω and whose
derivatives of order k are Hölder continuous with exponent α ∈ (0, 1].

Some of our assumptions are expressed in terms of reproducing kernel Hilbert spaces (RKHSs). By the classical
Moore–Aronszajn theorem [3, p. 19] every positive-semidefinite kernel K : Ω × Ω → R induces a unique RKHS,
H(K,Ω), which consists of functions f : Ω → R and is equipped with an inner product ⟨·, ·⟩K and norm ∥·∥K . Two
fundamental properties of this space are that (i) K(·, x) is an element ofH(K,Ω) for every x ∈ Ω and (ii) the reproducing
property

⟨ f ,K(·, x)⟩K = f (x) for every f ∈ H(K,Ω) and x ∈ Ω. (3.2)

Our results use an assumption thatH(K,Ω) is norm-equivalent to a Sobolev space.
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Definition 3.1 (Norm-equivalence). The RKHS H(K,Ω) is norm-equivalent to the Sobolev space Hk(Ω), denoted
H(K,Ω) ≃ Hk(Ω), ifH(K,Ω) = Hk(Ω) as sets and there exist positive constants CK and C′K such that

CK ∥ f ∥Hk(Ω) ≤ ∥ f ∥K ≤ C′K ∥ f ∥Hk(Ω) (3.3)

for all f ∈ H(K,Ω).

The RKHS of a Matérn kernel of smoothness ν in (2.5) is norm-equivalent to Hν+d/2(Ω). If k > d/2, the Sobolev
embedding theorem ensures that any kernel which is norm-equivalent to Hk(Ω) is continuous and that all functions
in its RKHS are continuous. From now on we assume thatH(K,Ω) ⊂ HL(Ω), which is to say that the PDE in (2.2)
admits a unique classical solution for every f ∈ H(K,Ω).

3.2. Exact posterior

Our first result concerns an ideal statFEM that uses no finite element discretisation. The relevant posterior moments
are given in (2.8).

Theorem 3.2. Let k > d/2 and suppose that Assumption 2.1 holds and c ≤ 0. IfH(K,Ω) ≃ Hk(Ω), m ∈ Hk(Ω), and
ft ∈ Hk(Rd) ∩Ck(Rd), then there is a positive constant C1 that is independent of X such that

E
[
∥ut − mu|Y∥L2(Ω)

]
≤ C1

(
hk+2

X,Ω

√
n + hd/2

X,Ω nd/(4k)
)
. (3.4)

If hX,Ω = O(n−1/d), then there is a positive constant C2 that is independent of X such that

E
[
∥ut − mu|Y∥L2(Ω)

]
≤ C2 n−1/2+d/(4k) (3.5)

for all n ≥ 1.

Proof sketch. We first establish in Theorem 6.5 that the RKHS of Ku is a sub-space of Hk+2(Ω) with an equivalent
norm. The rest of the proof mirrors that of Corollary 3 in [49] with minor modifications. The main ingredients are a
sampling inequality from [2] and bounds on the concentration function similar to those in [44].

Remark 3.3. The mini-max optimal rate for regression in Hk(Ω) is n−k/(2k+d) [43, Chapter 2]. Since

1
2
−

d
4k
≤

1
2
−

d
4k + 2d

=
k

2k + d
,

the rate (3.5) that we have proved is slightly sub-optimal.

Minor modifications to the proof of Theorem 3.4 yield a variant in which it is assumed that the observations are
noiseless. That is, yi = ut(xi) for i ∈ {1, . . . , n}. One can informally interpret this as the case σε = 0.

Theorem 3.4. Consider the setting of Theorem 3.2 but assume that the observations are noiseless. Then there is a
positive constant C1 that is independent of X such that

E
[
∥ut − mu|Y∥L2(Ω)

]
≤ C1hk+2

X,Ω

(
∥ut∥Hk+2(Ω) + ∥mu∥Hk+2(Ω)

)
.

If hX,Ω = O(n−1/d), then there is a positive constant C2 that is independent of Xsuch that

E
[
∥ut − mu|Y∥L2(Ω)

]
≤ C2 n−(k+2)/d

(
∥ut∥Hk+2(Ω) + ∥mu∥Hk+2(Ω)

)
for all n ≥ 1.

It is straightforward to prove a similar noiseless variant of Theorem 3.7. However, Theorem 3.4 does not extend to
posteriors obtained via finite element discretisation because in the noiseless case it is difficult to bound the difference of
posterior means corresponding to different kernels in terms of some distance between the said kernels.
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3.3. Finite element posterior
Next we turn to the analysis of the effect of finite element discretisation and consider the posterior mean in (2.12a).

A straightforward combination of Theorem 3.2 and Proposition 6.12 yields an error estimate that combines the errors
from GP regression and finite element discretisation.

Theorem 3.5. Let k > d/2. Suppose that Assumptions 2.1 and 2.2 hold and that c ≤ 0. If H(K,Ω) ≃ Hk(Ω),
m ∈ Hk(Ω), ft ∈ Hk(Rd) ∩ Ck(Rd), and hX,Ω = O(n−1/d), then there is a positive constant C that is independent of X
such that

E
[
∥ut − mFE

u|Y∥L2(Ω)

]
≤ C

(
n−1/2+d/(4k) + (n−q

FE + σ
2
ε)σ

−2
ε (∥ ft∥L∞(Ω) + σε)n

−q
FEn3/2

)
(3.6)

for all n ≥ 1.

Remark 3.6. To obtain the best possible rate of convergence in terms of n in (3.6), we could set

nFE = n(2−d/(4k))/q. (3.7)

By incorporating all other terms in the constant C, we then obtain the error estimate

E
[
∥ut − mFE

u|Y∥L2(Ω)

]
≤ C

(
n−1/2+d/(4k) + n−q

FEn3/2
)
= 2Cn−1/2+d/(4k),

which is equal to the bound in (3.5) up to a constant factor.

Practical application of Remark 3.6 is difficult because, while (3.7) yields the best possible polynomial rate in (3.6),
what one would actually like to obtain is the smallest possible right-hand side in (3.6). But finding nFE that minimises
the right-hand side is difficult because the constant factors involved are rarely, if ever, available.

3.4. Inclusion of a discrepancy term
Finally, we consider inclusion of a discrepancy term as described in Section 2.4. The following two theorems

concern the posterior means in (2.14a) and (2.15a). In these theorems it is assumed that the points are quasi-uniform,
which means that there is Cqu > 0 such that

qX ≤ hX,Ω ≤ CquqX ,

where hX,Ω is the fill-distance in (3.1) and qX is the separation radius

qX =
1
2

min
i, j
∥xi − x j∥2.

Quasi-uniformity implies that the mesh ratio ρX,Ω = hX,Ω/qX is uniformly bounded from above and that hX,Ω = O(n−1/d);
see Chapter 14 in [48].

Theorem 3.7. Let k1 ≥ r − 2 ≥ k2 > d/2 and suppose that Assumption 2.1 holds with k = k1 and c ≤ 0. If
H(K,Ω) ≃ Hk1 (Ω), H(Kd,Ω) ≃ Hr(Ω), md ∈ Hk2+2(Ω), m ∈ Hk2 (Ω), and ft ∈ Hk2 (Rd) ∩ Ck2 (Rd), then there is a
positive constant C1 that is independent of X such that

E
[
∥ut − md;u|Y∥L2(Ω)

]
≤ C1

(
hk2+2

X,Ω ρ
r−k2−2
X,Ω +

√
n hr

X,Ω + nκ(k2,r)hd/2
X,Ω

)
. (3.8)

The constant κ(k2, r) ≤ 1/2 is given in (6.22). If the points are quasi-uniform, there is a positive constant C2 independent
of X such that

E
[
∥ut − md;u|Y∥L2(Ω)

]
≤ C2

(
n−(k2+2)/d + n−r/d+1/2 + n−1/2+κ(k2,r)

)
(3.9)

for all n ≥ 1.

Proof sketch. We proceed as in the proof of Theorem 3.2. However, now the assumption k1 ≥ r − 2 ensures that the Ku

is not rougher than Kd, which means that the regularity of the RKHS of Kud = Ku + Kd is determined by the regularity
of Kd. In this case we can directly apply Theorem 2 in [49].

Combining Theorem 3.7 with Proposition 6.12 allows including the effect of finite element discretisation.
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Fig. 4: The statFEM conditional mean (blue) and 95% credible interval given some noisy data (red points). The dashed black line is the true system
response.

Theorem 3.8. Let k1 ≥ r − 2 ≥ k2 > d/2. Suppose that Assumptions 2.1 (with k = k1) and 2.2 hold and that c ≤ 0.
If H(K,Ω) ≃ Hk1 (Ω), H(Kd,Ω) ≃ Hr(Ω), md ∈ Hk2+2(Ω), m ∈ Hk2 (Ω), ft ∈ Hk2 (Rd) ∩ Ck2 (Rd), and the points are
quasi-uniform, then there is a positive constant C independent of X such that

E
[
∥ut − mFE

d;u|Y∥L2(Ω)

]
≤ C

(
n−(k2+2)/d + n−r/d+1/2 + n−1/2+κ(k2,r) + n−q

FEn3/2
)

(3.10)

for all n ≥ 1. The constant κ(k2, r) ≤ 1/2 is given in (6.22).

Unlike the results in Sections 3.2 and 3.3, these theorems are valid also when the smoothness of the source term is
misspecified. That is, in Theorems 3.7 and 3.8 it is possible that k1, the smoothness of the kernel K which specifies
the prior for the source term, is larger than the smoothness, k2, of the true source term ft. Such misspecification
results for GP regression in different settings can be found in, for example, [21, 24, 41, 49]. The effectiveness of the
discrepancy term in Theorems 3.7 and 3.8 is due to the condition k1 ≥ r − 2 ≥ k2. Because the prior on ut has regularity
k1 + 2 ≥ r, the first inequality states that the discrepancy term is rougher than the uGP. It is a general phenomenon in
approximation and regression that the roughest component dominates, which is precisely what one can observe in the
bounds (3.8)–(3.10). The inequality r − 2 ≥ k2 states that ut is rougher than the discrepancy term, which is to say that
the discrepancy term oversmooths the truth. Oversmoothing is the scenario in which convergence rates tend to adapt to
misspecification (see the references above).

4. Numerical example

In this section we investigate the convergence of the posterior mean mFE
u|Y to the true system response ut for different

values of the kernel smoothness parameter k. We consider the one-dimensional Poisson’s equation

−u′′ = f in Ω = (0, 1) and u(0) = u(1) = 0. (4.1)

The true source term is set as the function

ft(x) =
π2

5
sin(πx) +

49π2

50
sin(7πx). (4.2)

The respective true system response is given in closed form by

ut(x) =
1
5

sin(πx) +
1

50
sin(7πx).

A similar example was used in [19].
For the source term, we use a zero-mean Gaussian prior fGP ∼ GP(0,K) with the Matérn covariance kernel (2.5).

We use the kernel hyperparameters

ℓ ∈

{
1
2
, 1

}
and ν ∈

{
1
2
,

5
2

}
.

11



100 100.5 101
10−2

10−1

n

nFE = 32

100 101
10−2

10−1

n

nFE = 64

100 101 102
10−2

10−1

n

nFE = 128

100 101 102
10−2

10−1

n

nFE = 256

StatFEM L2-error

Matérn L2-error

Rate n−1/2

ℓ = 1/2 — ν = 1/2 — σ2
ε = 10−2

100 100.5 101
10−2

10−1

100

n

nFE = 32

100 101
10−2

10−1

100

n

nFE = 64

100 101 102
10−2

10−1

100

n

nFE = 128

100 101 102
10−2

10−1

100

n

nFE = 256

StatFEM L2-error

Matérn L2-error

Rate n−1/2

ℓ = 1 — ν = 1/2 — σ2
ε = 10−2

Fig. 5: Empirical approximations to L2-errors over 10 000 noise realisations when ℓ ∈ {1/2, 1}, ν = 1/2, and σ2
ε = 10−2.

As explained in Section 3.1, the values of ν correspond to the values k ∈ {1, 3} of the RKHS smoothness parameter.
In order to facilitate comparison with standard GP regression based on a Matérn kernel, we set scaling parameter
σ such that the maximum of Ku equals one (see Figure 1). For each k, the true source term in (4.2) is an element
of the RKHS and of Ck(Ω). The selection of the hyperparameters could be automated by considering the marginal
likelihood or cross-validation [36, Chapter 5]. For finite element analysis we use the standard piecewise linear basis
functions (see Fig. 2 for their bivariate versions) centered at nFE ∈ {32, 64, 128, 256} uniformly placed points on
Ω = (0, 1). To compute the conditional mean mFE

u|Y, we use the approximation in (2.13); see Section 2.2 in [19] for
more details. Observations of ut at n ∈ {21 − 1, 22 − 1, . . . , nFE − 1} uniformly placed points are corrupted by Gaussian
noise with variances σ2

ε ∈ {10−2, 10−4}. For illustration, the true system response and the finite element approximation
to the conditional mean mFE

u|Y and the corresponding 95% credible interval are shown in Fig. 4 for ν = 1/2, ℓ = 1/2,
nFE = 2048, and n = 7.

Convergence results are depicted in Figs. 5 to 8. In these results the L2-norm is approximated by numerical
quadrature and the expectation by an average over 10 000 independent observation noise realisations. For each ν and
nFE we also plot the L2-error of standard GP regression when ut is directly modelled as a purely data-driven GP whose
kernel is a Matérn with smoothness ν + 2 and parameters σMatérn = 1 and ℓMatérn = ℓ. The selection of the smoothness
parameter of the Matérn prior for ut corresponds to the smoothness of the induced prior uGP in statFEM. Being purely
data-driven, this Matérn model for ut does not incorporate the boundary conditions or other structural characteristics.

We see that statFEM outperforms the Matérn model in Figs. 5 to 7, particularly for small n. This is to be expected
as the prior dominates when there is little data. In Fig. 8 (ℓ ∈ {1/2, 1}, ν = 5/2 and σ2

ε = 10−4), statFEM exhibits clear
saturation. However, as the Matérn model behaves similarly when ℓ = 1, ν = 5/2 and σ2

ε = 10−4, it seems that the
saturation effect is not specific to statFEM in this example. The plots also show that statFEM works well even when the
number of finite element nodes, nFE, is small. This is important because, especially in higher dimensions, the number
of data points will be significantly smaller than the number of finite element nodes so that it will become even more
important to encode the PDE and its boundary conditions.
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Fig. 6: Empirical approximations to L2-errors over 10 000 noise realisations when ℓ ∈ {1/2, 1}, ν = 5/2, and σ2
ε = 10−2.
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Fig. 7: Empirical approximations to L2-errors over 10 000 noise realisations when ℓ ∈ {1/2, 1}, ν = 1/2, and σ2
ε = 10−4.
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Fig. 8: Empirical approximations to L2-errors over 10 000 noise realisations when ℓ ∈ {1/2, 1}, ν = 5/2, and σ2
ε = 10−2.

5. Concluding Remarks

We have analysed a particular formulation of the statFEM approach in a deterministic setting with generic points
and finite elements. A different set of assumptions could be used—the practical relevance of these assumptions would
likely depend much on the application and whether or not the user views the data-generating process as an actual
Gaussian process or some unknown deterministic function. Settings that we believe could or could not be analysed
using similar or related techniques as those in this article include the following:

• We have considered a “mixed” case in which a GP is used to model a deterministic function. But one could
alternatively assume that ft, and consequently ut, is a GP (or some other stochastic process) and proceed from
there. This is how statFEM is formulated in [19].

• Distribution of the points x1, . . . , xn where the measurement data are obtained is quite generic in this article in
that no reference is made to how these points might be selected or sampled and all results are formulated in terms
of the fill-distance hX,Ω or, in the quasi-uniform case, n. In applications the points may be sampled randomly
from some distribution on Ω. We refer to [5, Theorem 1] and [28] for related results concerning random points.

• To remove the assumption that the measurement data are noisy is likely to be challenging if one is interested in
including the effect of the finite element discretisation. It is straightforward to derive versions of Theorems 3.2
and 3.7 in the noiseless case (see Theorem 3.4), but no other result in Section 6.2 generalises readily. The
reason is the presence of the factor σ−2 in (6.18) which is used to prove all theorems concerning finite element
discretisations: if σ = 0, this bound is rendered meaningless.

• As already mentioned in Section 3.3, the bounds include a variety of non-explicit constants. We do not believe
that the constants are computable in all but perhaps the simplest of special cases.

• Although desirable for computational reasons, the Gaussian process framework that we have used is restrictive.
It may be possible to derive rates under more general assumptions [16]. However, the proof technique would
have to be different as our proof relies on sampling inequalities and a connection between the GP posterior and
approximation in an RKHS.
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• An interesting problem that we have not encountered in the GP or kernel literature would be to recover ft from
observations of ut. Because ft = L−1ut, this is a generalised regression problem in which one tries to recover a
function from linear information. Alternatively, this is a linear inverse problem in which one recovers the source
from the response. If a GP prior with covariance K is placed on ft, conditioning on evaluations of ut at X gives
rise to a posterior that involves the kernel matrix Ku(X, X); see [42]. Some of the results derived in this article
could therefore be useful.

6. Proofs

This section contains the proofs of the theorems in Section 3.

6.1. Auxiliary results

We first collect and derive a number of auxiliary results that we use to prove the error estimates. These results are
of four types: (i) standard regularity results for solutions of elliptic PDEs; (ii) results on the RKHS of the kernel Ku;
(iii) sampling inequalities; and (iv) results related to the concentration function and small ball probabilities of Gaussian
measures. We use the notation C = C(θ1, . . . , θp) to indicate that a constant C depends only on some parameters
θ1, . . . , θp.

6.1.1. Regularity results for elliptic pdes
Recall the function spaces from Section 3.1. In Assumption 2.1 and Theorem 6.2, the boundary of Ω is required to

have certain smoothness. The boundary ∂Ω is said to be Ck (or Ck,α) if for each x0 ∈ ∂Ω there is an open ball B centered
at x0 and a surjection ψ from B to some D ⊂ Rd such that (a) ψ(B ∩ Ω) ⊂ Rd

+, (b) ψ(B ∩ ∂Ω) ⊂ ∂Rd
+, (c) ψ ∈ Ck(Ω)

[resp. ψ ∈ Ck,α(Ω)], and (d) ψ−1 ∈ Ck(D) [resp. ψ ∈ Ck,α(D)]. Certain standard regularity results and estimates play
a crucial role in the derivation of our results. The following regularity theorem can be found in, for example, [10,
Theorem 5 in Section 6.3].

Theorem 6.1. Consider the elliptic PDE given in (2.2). Let k ∈ N0 and suppose that Assumption 2.1 holds. If
f ∈ Hk(Ω) ∩HL(Ω), then u ∈ Hk+2(Ω) and there is a constant C = C(k,Ω,L) such that

∥u∥Hk+2(Ω) ≤ C ∥ f ∥Hk(Ω) .

The following boundedness result is a combination of the a priori bound in Theorem 3.7 and the Schauder regularity
result in Theorem 6.14 of [17].

Theorem 6.2. Consider the elliptic PDE in (2.2). Suppose that ∂Ω is C2,α, ai j, bi, c ∈ C0,α(Ω̄) for all i, j ∈ {1, . . . , d}
and some α ∈ (0, 1) and c ≤ 0. If f ∈ C0,α(Ω̄), then u ∈ C2,α(Ω̄) and there is a constant C = C(Ω,L) such that

∥u∥L∞(Ω) ≤ C ∥ f ∥L∞(Ω) .

Note that Assumption 2.1 implies the regularity assumptions in Theorem 6.2.

6.1.2. Transformed reproducing kernel Hilbert spaces
The following lemma justifies the assumption in (2.6) that L−1

x K(·, x) is an element ofH(K,Ω) ⊂ HL(Ω) for every
x ∈ Ω. Let δx be the point evaluation functional at x ∈ Ω, which is to say that δx( f ) = f (x). As earlier, whenever there
is a risk of ambiguity we use subscripts to denote the variable to which a functional or an operator applies to. That is,

A f (x) = Ax f (x) = (δx ◦ A)x′ f (x′)

for any operatorA.

Lemma 6.3. Let k > d/2. Suppose thatH(K,Ω) ≃ Hk(Ω) and that Assumption 2.1 holds. Then the functional δx ◦L
−1

is bounded onH(K,Ω) and L−1
x K(·, x) ∈ H(K,Ω) for every x ∈ Ω.
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Proof. Let x ∈ Ω and set ℓx = δx ◦ L
−1. Since H(K,Ω) is norm-equivalent to Hk(Ω) and Hk+2(Ω) is continuously

embedded in C(Ω), it follows from Theorem 6.1 that

|ℓx( f )| = |u(x)| ≤ ∥u∥L∞(Ω) ≤ C1 ∥u∥Hk+2(Ω) ≤ C1C2 ∥ f ∥Hk(Ω) ≤ C1C2C−1
K ∥ f ∥K

for any f ∈ H(K,Ω) and constants C1 = C(k,Ω) and C2 = C(k,Ω,L). This proves that ℓx is bounded on H(K,Ω).
Because ℓx is bounded, it follows from the Riesz representation theorem that there exists a unique function lx ∈ H(K,Ω)
such that ℓx( f ) = ⟨ f , lx⟩K for every f ∈ H(K,Ω). Setting f = K(·, y) and using the reproducing property (3.2) we get,
for any y ∈ Ω,

L−1
x K(y, x) = ℓx(K(y, x)) = ⟨K(y, ·), lx⟩K = lx(y).

That is, L−1
x K(·, x) = lx ∈ H(K,Ω).

Next we want to understand how the RKHS of the kernel Ku defined in (2.7) relates to that of K. We use the
following general proposition about transformations of RKHSs. See Theorems 16.8 and 16.9 in [48], Section 5.4
in [34], and Section 7 in [45] for similar results. A proof is included here for completeness and because our formulation
differs slightly from those that we have found in the literature.

Proposition 6.4. Let K be a positive-semidefinite kernel on Ω andA an invertible linear operator onH(K,Ω) such
that the functional δx ◦ A is bounded onH(K,Ω) for every x ∈ Ω. Then

R(x, y) = AxAyK(x, y) = (δx ◦ A)x′ (δy ◦ A)y′K(x′, y′)

defines a positive-semidefinite kernel on Ω. Furthermore,

H(R,Ω) = A(H(K,Ω)) = {A f : f ∈ H(K,Ω)} and ∥A f ∥R = ∥ f ∥K for every f ∈ H(K,Ω).

Proof. Because the functional ℓy = δy ◦ A is bounded on H(K,Ω), the Riesz representation theorem implies that
there exists a unique representer ly ∈ H(K,Ω) such that ℓy( f ) = ⟨ f , ly⟩K for every f ∈ H(K,Ω). Therefore, by the
reproducing property,

ly(x) = ⟨K(x, ·), ly⟩K = ℓy(K(x, ·)) = (δy ◦ A)uK(x,u)

for any x, y ∈ Ω. Since ly is an element ofH(K,Ω), ℓx(ly) = ⟨lx, ly⟩K and

ℓx(ly) = (δx ◦ A)(ly) = (δx ◦ A)v(δy ◦ A)uK(v,u) = R(x, y),

from which it follows that R is a well-defined kernel. To verify that R is positive-semidefinite, compute

N∑
i=1

N∑
j=1

aia jR(xi, x j) =
N∑

i=1

N∑
j=1

aia j⟨lxi , lx j⟩K =

〈 N∑
i=1

ailxi ,

N∑
i=1

ailxi

〉
K

=

∥∥∥∥∥∥∥
N∑

i=1

ailxi

∥∥∥∥∥∥∥
2

K

≥ 0 (6.1)

for any N ∈ N, ai ∈ R, and xi ∈ Ω. To prove the claims related toH(R,Ω) we use a classical characterisation [e.g., 34,
Section 3.4] which states that f ∈ H(K,Ω) if and only if there is c > 0 such that

Kc(x, y) = c2K(x, y) − f (x) f (y) (6.2)

defines a positive-semidefinite kernel. The smallest constant for which Kc is positive-semidefinite equals the RKHS
norm of f . Now, assuming that f ∈ H(K,Ω) and applyingA twice on (6.2) yields the kernel

Rc(x, y) = c2R(x, y) −A f (x)A f (y),

which, by the argument used in (6.1), is positive-semidefinite if Kc is. HenceA(H(K,Ω)) ⊂ H(R,Ω) and ∥A f ∥R ≤
∥ f ∥K . That these are equalities follows from the invertibility ofA : H(K,Ω)→ A(H(K,Ω)).

Applying Proposition 6.4 toA = L−1 yields the following theorem.

Theorem 6.5. Let k > d/2 and consider the kernel Ku in (2.7). IfH(K,Ω) ≃ Hk(Ω) and Assumption 2.1 holds, then
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(i) The kernel Ku is positive-semidefinite on Ω and its RKHS is

H(Ku,Ω) = {u : u is a solution of (2.2) for some f ∈ H(K,Ω)}. (6.3)

Furthermore, ∥u∥Ku
= ∥ f ∥K .

(ii) It holds thatH(Ku,Ω) ⊂ Hk+2(Ω) and there are constants Cu = C(K, k,Ω,L) and C′u = C(K, k,Ω,L) such that

Cu ∥u∥Hk+2(Ω) ≤ ∥u∥Ku
≤ C′u ∥u∥Hk+2(Ω) (6.4)

for all u ∈ H(Ku,Ω).

Proof. BecauseH(K,Ω) ⊂ HL(Ω), the linear operator L is invertible onH(K,Ω). Furthermore, by Lemma 6.3 the
functionals δx ◦L

−1 are bounded onH(K,Ω). Therefore the first claim follows by applying Proposition 6.4 toA = L−1.
To verify the second claim, observe that it now follows from the norm-equivalenceH(K,Ω) ≃ Hk(Ω) and Theorem 6.1
that, for a constant C = C(k,Ω,L),

∥u∥Ku
= ∥ f ∥K ≥ CK ∥ f ∥Hk(Ω) ≥ CKC−1 ∥u∥Hk+2(Ω)

and
∥u∥Ku

= ∥ f ∥K ≤ C′K ∥ f ∥Hk(Ω) = C′K ∥Lu∥Hk(Ω) ≤ C′KCL ∥u∥Hk+2(Ω) ,

where CL = CL(k,Ω,L) and the last inequality follows from the fact that the differential operator L is second-order
and its coefficient functions are in Ck+1(Ω̄) by Assumption 2.1.

Theorem 6.5 is essential in what follows. We believe that there is room for significant generalisations by studying
operatorsA for which the transformed RKHS can be connected to a Sobolev (or other classical) function space. Finally,
we need the following result [e.g., 3, p. 24] on the RKHS of a sum kernel to analyse statFEM when a discrepancy term
is included (recall Section 2.4).

Theorem 6.6. Let K1 and K2 be two positive-semidefinite kernels on Ω. Then R = K1 + K2 is a positive-semidefinite
kernel onΩ and its RKHS consists of functions which can be written as f = f1+ f2 for f1 ∈ H(K1,Ω) and f2 ∈ H(K2,Ω).
The RKHS norm is

∥ f ∥2R = min
{
∥ f1∥2K1

+ ∥ f2∥2K2
: f = f1 + f2 s.t. f1 ∈ H(K1,Ω), f2 ∈ H(K2,Ω)

}
.

6.1.3. Sampling inequalities
Denote (x)+ = max{x, 0} for x ∈ R. The following sampling inequality is the main building block of our error

estimates.

Theorem 6.7 (Theorem 4.1 in [2]). Let p ∈ [1,∞], k > d/2, and γ = max{p, 2}. If g ∈ Hk(Ω), then there is a constant
C = C(k, p,Ω) such that

∥g∥Lp(Ω) ≤ C
(
hk−d(1/2−1/p)+

X,Ω ∥g∥Hk(Ω) + hd/γ
X,Ω ∥g(X)∥2

)
. (6.5)

Here g(X) = (g(x1), . . . , g(xn)) ∈ Rn.

See [24, 41, 46, 47, 49] for a variety of applications of this and related sampling inequalities to error analysis of GP
regression. Note that it is often stated that (6.5) and similar bounds hold when hX,Ω is sufficiently small, a requirement
that can be eliminated by enlarging the multiplicative constant C on the right-hand side.
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6.1.4. The concentration function and small ball probabilities
Final ingredients that we need are certain results on the concentration function and small ball probabilities of

Gaussian measures. Given u0 = L
−1 f0 for some f0 ∈ HL(Ω), define the concentration function

ϕu0 (ε) = γuu0
(ε) + β(ε),

where
γu0 (ε) = inf

u∈H(Ku,Ω)

{
∥u∥2Ku

: ∥u − u0∥L∞(Ω) < ε
}

and
β(ε) = − lnΠu

(
{u : ∥u∥L∞(Ω) < ε}

)
.

Here Πu denotes the Gaussian probability measure associated to the zero-mean Gaussian process with covariance
kernel Ku.

Proposition 6.8. Let k ≥ r > d/2. Suppose thatH(K,Ω) ≃ Hk(Ω), that Assumption 2.1 holds and that c ≤ 0. If there
exists f0 ∈ Hr(Rd) ∩Cr(Rd) such that u0 = L

−1 f0|Ω, then there is a constant C = C( f0,K, k, r,Ω,L) such that

γu0 (ε) ≤ Cε−2(k−r)/r

when ε is sufficiently small.

Proof. Theorem 6.5 implies that

γu0 (ε) = inf
f∈H(K,Ω)

{
∥ f ∥K : ∥u − u0∥L∞(Ω) < ε for u = L−1 f

}
.

Since k > d/2, so thatH(K,Ω) is embedded in a Hölder space, and r ≥ 1, for any f ∈ H(K,Ω) the function f − f0|Ω
has a unique continuous extension to Ω̄ that satisfies the assumptions of Theorem 6.2. Thus there is C1 = C(Ω,L) such
that ∥u − u0∥L∞(Ω) ≤ C1 ∥ f − f0|Ω∥L∞(Ω). Therefore ∥u − u0∥L∞(Ω) < ε if ∥ f − f0|Ω∥L∞(Ω) < εC

−1
1 , which implies that

γu0 (ε) ≤ inf
f∈H(K,Ω)

{
∥ f ∥K : ∥ f − f0|Ω∥L∞(Ω) < ε/C1

}
.

Lemma 4 in [44] and Lemma 23 in [49] bound the right-hand side as

inf
f∈H(K,Ω)

{
∥ f ∥K : ∥ f − f0|Ω∥L∞(Ω) < ε/C1

}
≤ C2C2(k−r)/r

1 ε−2(k−r)/r

for C2 = C( f0,K, k, r,Ω) when ε is sufficiently small. This completes the proof.

Let ε > 0 and let (H , dH ) be a metric space The metric entropy of a compact subset A of (H , dH ) is defined as
Hent(A, dH , ε) = ln N(A, dH , ε). Here N(A, dH , ε) denotes the minimum covering number:

N(A, dH , ε) = min

n ≥ 1 : there exist x1, . . . , xn ∈ A such that A ⊂
n⋃

i=1

Bε(xi;H , dH )

,
where Bε(x;H , dH ) is the x-centered ε-ball in (H , dH ). If (H , dH ) is a normed space, we have the scaling identity

Hent(λA, dH , ε) = Hent(A, dH , ε |λ|−1) (6.6)

for any λ , 0; see, for example, Equation (4.171) in [18].

Lemma 6.9. Let k > d/2. Suppose thatH(K,Ω) ≃ Hk(Ω), that Assumption 2.1 holds, and that c ≤ 0. Let Bu
1 and Bk

1
denote the unit balls of (H(Ku,Ω), ∥·∥Ku

) and (Hk(Ω), ∥·∥Hk(Ω)), respectively. Then there is a constant C = C(K,Ω,L)
such that

Hent

(
Bu

1, ∥·∥L∞(Ω) , ε
)
≤ Hent

(
Bk

1, ∥·∥L∞(Ω) ,Cε
)
. (6.7)
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Proof. Fix ε > 0 and denote nε = N(Bk
1, ∥·∥L∞(Ω) , ε) and let f1, . . . , fnε ∈ Bk

1 be such that

Bk
1 = B1

(
0; Hk(Ω), ∥·∥Hk(Ω)

)
⊂

nε⋃
i=1

Bε
(

fi; Hk(Ω), ∥·∥L∞(Ω)

)
.

Then

L−1B1

(
0; Hk(Ω), ∥·∥Hk(Ω)

)
⊂

nε⋃
i=1

L−1Bε
(

fi; Hk(Ω), ∥·∥L∞(Ω)

)
. (6.8)

We have ∥u∥Ku
= ∥ f ∥K ≥ CK ∥ f ∥Hk(Ω) by Theorem 6.5. The norm-equivalence H(K,Ω) ≃ Hk(Ω) and the estimate

∥u∥L∞(Ω) ≤ C∞ ∥ f ∥L∞(Ω) for C∞ = C(Ω,L) follow from the Sobolev embedding theorem and Theorem 6.2. Therefore

Bu
1 = B1

(
0;H(Ku,Ω), ∥·∥Ku

)
= L−1B1

(
0;H(K,Ω), ∥·∥K

)
⊂ L−1B1/CK

(
0; Hk(Ω), ∥·∥Hk(Ω)

)
and

L−1Bε
(

fi; Hk(Ω), ∥·∥L∞(Ω)

)
⊂ BC∞ε

(
ui;H(Ku,Ω), ∥·∥L∞(Ω)

)
,

where ui = L
−1 fi. Applying these two inclusion relations to (6.8) and using the definition of metric entropy, together

with (6.6), yields the claim.

Proposition 6.10. Let k > d/2. Suppose that H(K,Ω) ≃ Hk(Ω), that Assumption 2.1 holds, and that c ≤ 0. Let Bu
1

denote the unit ball of (H(Ku,Ω), ∥·∥Ku
). Then there is a positive constant C, which does not depend on ε, such that

β(ε) ≤ Cε−2d/(2k−d)

for sufficiently small ε.

Proof. It is a standard result that the metric entropy of the unit ball of Hk(Ω) in Lemma 6.9 satisfies

Hent

(
Bk

1, ∥·∥L∞(Ω) , ε
)
≤ Centε

−d/k

for a positive constant Cent = C(k) and any ε < 1. See, for instance, Theorem 4.3.36 in [18], Theorem 3.3.2 in [9], the
proof of Lemma 3 in [44], and Appendix F in [49]. It follows from Equation (6.7) that

Hent

(
Bu

1, ∥·∥L∞(Ω) , ε
)
≤ CentC−d/kε−d/k (6.9)

for sufficiently small ε. According to Theorem 1.2 in [29], the estimate (6.9) implies that

β(ε) ≤ C′ε−2d/(2k−d)

for a positive constant C′ which does not depend on ε.

A combination of Propositions 6.8 and 6.10 yields an estimate for ϕu0 (ε). Define the function

ψu0 (ε) =
ϕu0 (ε)
ε2

and let ψ−1
u0

(n) = sup{ε > 0 : ψu0 (ε) ≥ n} denote its generalised inverse.

Theorem 6.11. Let k ≥ r > d/2. Suppose thatH(K,Ω) ≃ Hk(Ω), that Assumption 2.1 holds, and that c ≤ 0. If there
exists f0 ∈ Hr(Rd) ∩Cr(Rd) such that u0 = L

−1 f0|Ω, then there is a positive constant C, which does not depend on ε,
such that

ψ−1
u0

(n) ≤ Cn−min{r,k−d/2}/(2k)

for all sufficiently large n ≥ 1.

Proof. By Propositions 6.8 and 6.10,

ψu0 (ε) ≤ C0

(
ε−2(k−r)/r−2 + ε−2d/(2k−d)−2

)
≤ 2C0ε

−2k/min{r,k−d/2}

whenever ε is sufficiently small, where the positive constant C0 does not depend on ε. It follows from the definition of
ψ−1

u0
that

ψ−1
u0

(n) ≤ Cn−min{r,k−d/2}/(2k)

for C = (2C0)min{r,k−d/2}/(2k).
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6.2. Proofs of main results

We are now ready to prove the theorems in Section 3. Given an n-vector Z, we employ the interpolation operator
notation

IX(Z)(x) = Ku(x, X)⊺(Ku(X, X) + σ2
εIn)−1Z. (6.10)

That is, the ideal conditional mean in (2.8a) can be written as

mu|Y = mu − IX(mu(X)) + IX(Y). (6.11)

Proof of Theorem 3.2. By Theorems 6.1 and 6.5, uk,mu ∈ H(Ku,Ω) ⊂ Hk+2(Ω). Therefore it follows from Theorem 6.7
with p = 2 and g = ut − mu|Y that there is a constant C1 independent of X such that

∥ut − mu|Y∥L2(Ω) ≤ C1

(
hk+2

X,Ω ∥ut − mu|Y∥Hk+2(Ω) + hd/2
X,Ω ∥ut(X) −mu|Y(X)∥2

)
. (6.12)

The decomposition in (6.11) gives

∥ut − mu|Y∥Hk+2(Ω) ≤ ∥ut − IX(Y)∥Hk+2(Ω) + ∥mu − IX(mu(X))∥Hk+2(Ω) . (6.13)

The triangle inequality and Lemma 17 in [49], in combination with (6.4), yield

∥ut − IX(Y)∥Hk+2(Ω) ≤ ∥ut∥Hk+2(Ω) + ∥IX(Y)∥Hk+2(Ω) ≤ ∥ut∥Hk+2(Ω) +C−1
u ∥IX(Y)∥Ku

≤ (1 +C−1
u C′u) ∥ut∥Hk+2(Ω) +C−1

u σ−1
ε ∥εεε∥2

≤ 2C−1
u C′u ∥ut∥Hk+2(Ω) +C−1

u σ−1
ε ∥εεε∥2

(6.14)

where εεε = (ε1, . . . , εn) ∈ Rn is the noise vector and we used the fact that Cu ≤ C′u. The second term in (6.13) has the
bound

∥mu − IX(mu(X))∥Hk+2(Ω) ≤ 2C−1
u C′u ∥mu∥Hk+2(Ω) , (6.15)

which is obtained in the same way as (6.14) but with εεε set as the zero vector. From Theorem 22 in [49] and Theorem 6.11
with r = k and f0 = ft (i.e., u0 = ut and min{r, k − d/2} = k − d/2) we get

E
[
∥ut(X) −mu|Y(X)∥2

]
≤ C2

√
nψ−1

ut
(n) ≤ C2C3nd/(4k) (6.16)

for positive constants C2 and C3 which do not depend on X. Here we have enlarged the constant C3 to remove
the requirement that n be sufficiently large. Inserting the estimates (6.14)–(6.16) into (6.12) and using the bound
σ−1
ε E[∥εεε∥2] ≤

√
n, which follows from the Gaussianity of the noise terms, yields

E
[
∥ut − mu|Y∥L2(Ω)

]
≤ 2C1C−1

u C′uhk+2
X,Ω

(
∥ut∥Hk+2(Ω) + ∥mu∥Hk+2(Ω)

)
+C1C−1

u hk+2
X,Ωσ

−1
ε E[∥εεε∥2] +C1C2C3hd/2

X,Ωnd/(4k)

≤ 2C1C−1
u C′uhk+2

X,Ω

(
∥ut∥Hk+2(Ω) + ∥mu∥Hk+2(Ω)

)
+C1C−1

u hk+2
X,Ω

√
n +C1C2C3hd/2

X,Ωnd/(4k).

(6.17)

This concludes the proof of (3.4).

Proof of Theorem 3.4. The proof proceeds exactly as that of Theorem 3.2, except that now εεε = 0 and mu|Y(X) = ut(X)
because Y = ut(X). This means that the terms in (6.17) that arise from ∥εεε∥2 and (6.16) are now zero, so that we are left
with the claimed bound.

The following proposition allows us to make use of Assumption 2.2 on the error of the finite element discretisation.
Although this basic proposition must have appeared several times and in various forms in the literature on scalable
approximations for GP regression, we have not been able to locate a convenient reference for it.
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Proposition 6.12. Let R1 and R2 be any positive-semidefinite kernels, σ > 0, and Z ∈ Rn. If

sup
x,y∈Ω
|R1(x, y) − R2(x, y)| = δ

for some δ > 0, then the functions

m1
|Z(x) = R1(x, X)

(
R1(X, X) + σ2In

)−1
Z,

m2
|Z(x) = R2(x, X)

(
R2(X, X) + σ2In

)−1
Z

satisfy
sup
x∈Ω
|m1
|Z(x) − m2

|Z(x)| ≤ ∥Z∥2 (δ +Cσ−2)σ−2δn, (6.18)

where C = supx,y∈Ω |R2(x, y)|.

Proof. Write

|m1
|Z(x) − m2

|Z(x)| =
∣∣∣Z⊺[(R1(X, X) + σ2In)−1R1(x, X) − (R2(X, X) + σ2In)−1R2(x, X)]

∣∣∣
≤ ∥Z∥2

∥∥∥(R1(X, X) + σ2In)−1R1(x, X) − (R2(X, X) + σ2In)−1R2(x, X)
∥∥∥

2 .

Let R(x, y) = R1(x, y) − R2(x, y) so that supx,y∈Ω |R(x, y)| = δ and∥∥∥(R1(X,X) + σ2In)−1R1(x, X) − (R2(X, X) + σ2In)−1R2(x, X)
∥∥∥

2

=
∥∥∥(R2(X, X) + R(X, X) + σ2In)−1(R(x, X) + R2(x, X)) − (R2(X, X) + σ2In)−1R2(x, X)

∥∥∥
2

≤
∥∥∥[(R2(X, X) + R(X, X) + σ2In)−1 − (R2(X, X) + σ2In)−1]R2(x, X)

∥∥∥
2 +

∥∥∥(R2(X, X) + R(X, X) + σ2In)−1R(x, X)
∥∥∥

2

≤
√

nC
∥∥∥[(R2(X, X) + R(X, X) + σ2In)−1 − (R2(X, X) + σ2In)−1

∥∥∥
2

+
√

nδ
∥∥∥(R2(X, X) + R(X, X) + σ2In)−1

∥∥∥
2 .

Because the matrix R1(X, X) = R2(X, X) + R(X, X) is positive-semidefinite, the largest singular value of the matrix
(R2(X, X) + R(X, X) + σ2In)−1 is (σ2 + λmin(R1(X, X)))−1. Therefore

√
nδ

∥∥∥(R2(X, X) + R(X, X) + σ2In)−1
∥∥∥

2 =
√

nδ[σ2 + λmin(R1(X, X))]−1 ≤
√

nσ−2δ.

Finally, ∥∥∥(R2(X, X) + R(X,X) + σ2In)−1 − (R2(X, X) + σ2In)−1
∥∥∥

2

=
∥∥∥(R2(X, X) + R(X, X) + σ2In)−1R(X, X)(R2(X, X) + σ2In)−1

∥∥∥
2

≤ ∥R(X, X)∥2
∥∥∥(R2(X, X) + R(X, X) + σ2In)−1

∥∥∥
2

∥∥∥(R2(X, X) + σ2In)−1
∥∥∥

2

≤
√

nσ−4δ.

The claim follows by putting these estimates together.

The proof of Theorem 3.5 is a straightforward combination of Theorem 3.2 and Proposition 6.12.

Proof of Theorem 3.5. The triangle inequality yields

∥ut − mFE
u|Y∥L2(Ω)

≤ ∥ut − mu|Y∥L2(Ω) + ∥mu|Y − mFE
u|Y∥L2(Ω)

. (6.19)

Theorem 3.2 bounds the expectation of the first term as

E
[
∥ut − mu|Y∥L2(Ω)

]
≤ C1n−1/2+d/(4k) (6.20)
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for a constant C1 > 0 that is independent of X, while Proposition 6.12 and Assumption 2.2 give

∥mu|Y − mFE
u|Y∥L2(Ω)

≤ C2 ∥Y∥2 (n−q
FE + σ

−2
ε )σ−2

ε n−q
FEn

for a constant C2 > 0 that is independent of X. Since

E[∥Y∥2] ≤ ∥ut(X)∥2 + E[∥εεε∥2] ≤ (∥ut∥L∞(Ω) + σε)
√

n,

from Theorem 6.2 we obtain

E
[
∥mu|Y − mFE

u|Y∥L2(Ω)

]
≤ C3(n−q

FE + σ
2
ε)σ

−2
ε (∥ ft∥L∞(Ω) + σε)n

−q
FEn3/2 (6.21)

for a constant C3 > 0 that is independent of X. Taking expectation of (6.19) and using the bounds (6.20) and (6.21)
concludes the proof.

Proof of Theorem 3.7. By Theorem 6.5, the norm-equivalence assumption, and the inequality k1 + 2 ≥ r, it holds that
H(Ku,Ω) ⊂ H(Kd,Ω). From this inclusion, Theorem 6.6 and (6.4) it follows thatH(Kud,Ω) ≃ Hr(Ω). By Theorem 6.5
and our assumptions, the functions md, mu, and ut are in Hk2+2(Ω) and r ≥ k2 + 2. We can therefore apply Theorem 2
in [49] with

k = Kud, f = ut, τ−k = τ
+
k = r, τ f = k2 + 2, s = 0, and q = 2.

This yields the estimate

E
[
∥ut − md;u|Y∥L2(Ω)

]
≤ Chd/2

X,Ω

(
hk2+2−d/2

X,Ω ρr−k2−2
X,Ω +

√
nhr−d/2

X,Ω + nκ
)
= C

(
hk2+2

X,Ω ρ
r−k2−2
X,Ω +

√
n hr

X,Ω + nκ(k2,r)hd/2
X,Ω

)
,

where

κ(k2, r) = max
{

1
2
−

k2 + 2
2r

,
d

4(k2 + 2)

}
≤

1
2
, (6.22)

for a positive constant C that is independent of X. Theorem 2 in [49] requires that hX,Ω be sufficiently small. We
eliminate this assumption by enlarging C. This proves (3.8) while (3.9) follows from hX,Ω = O(n−1/d) and the fact that
the mesh ratio ρX,Ω is bounded for quasi-uniform points.

Proof of Theorem 3.8. The proof is identical to that of Theorem 3.5 expect that the bound (3.9) is used in place
of (3.5).

Acknowledgements

TK was supported by the Research Council of Finland grants 338567 (“Scalable, adaptive and reliable probabilistic
integration”) and 359183 (“Flagship of Advanced Mathematics for Sensing, Imaging and Modelling”). We thank the
associate editor and reviewers for comments and suggestions that improved the article.

References

[1] A. Abdulle, G. Garegnani, A probabilistic finite element method based on random meshes: Error estimators and Bayesian inverse problems,
Computer Methods in Applied Mechanics and Engineering 384 (2021) 113961.
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