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Improved Calibration of Numerical Integration
Error in Sigma-Point Filters

Jakub Prüher, Toni Karvonen, Chris J. Oates, Ondřej Straka and Simo Särkkä

Abstract—The sigma-point filters, such as the UKF, are popular
alternatives to the ubiquitous EKF. The classical quadrature
rules used in the sigma-point filters are motivated via polynomial
approximation of the integrand, however in the applied context
these assumptions cannot always be justified. As a result, quadra-
ture error can introduce bias into estimated moments, for which
there is no compensatory mechanism in the classical sigma-point
filters. This can lead in turn to estimates and predictions that are
poorly calibrated. In this article, we investigate the Bayes–Sard
quadrature method in the context of sigma-point filters, which
enables uncertainty due to quadrature error to be formalised
within a probabilistic model. Our first contribution is to derive
the well-known classical quadratures as special cases of the
Bayes–Sard quadrature method. Based on this, a general-purpose
moment transform is developed and utilised in the design of novel
sigma-point filter, which explicitly accounts for the additional
uncertainty due to quadrature error.

Index Terms—Kalman filters, Bayesian quadrature, quantifica-
tion of uncertainty, sigma-points, Gaussian processes.

I. INTRODUCTION

THIS article is concerned with quantification of uncertainty
associated with sigma-point approximations, which are

widely employed in nonlinear filtering algorithms, such as the
unscented Kalman filter (UKF). The goal of filtering algorithms
is to estimate the state of a dynamical stochastic system based
on all measurements obtained until the present. The applications
of filters are manifold, ranging from global positioning [1],
object tracking [2], [3], simultaneous localization and mapping
[4] to weather forecasting [5] and finance [6].

Instead of keeping track of the whole state posterior, the
sigma-point filters only work with mean and covariance of
the state and the measurement. For nonlinear systems and/or
measurements, the moments are defined by intractable integrals
that have to be approximated using numerical quadratures, also
known as the sigma-point rules (which is where the filters
get their name). The classical quadrature rules, such as the
Gauss–Hermite rule, are designed with the assumption that the
nonlinear integrand is well-approximated with a polynomial of
a given maximal degree. Since these assumptions are almost
never met in practice, there will always be a quadrature
error involved. Standard sigma-point filters do not attempt
to compensate for this source of error, and in practice this
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can lead to estimates and predictions that are biased and over-
confident [7], [8].

The Bayesian quadrature (BQ) has in recent years received
much attention in the probabilistic numerics community [9]–
[12]. The BQ approach posits that the integrand can be
modelled by a stochastic process defined on the domain of
integration. This model is subsequently refined by conditioning
on point-wise evaluations of the integrand which induces
a posterior distribution over the value of the integral. The
posterior mean of this distribution is point estimate of the
value of the integral while the posterior variance quantifies the
integration error.

Applications of the BQ in nonlinear filtering have appeared
previously in [13], [14] with encouraging results. These BQ-
based filters do not generally coincide with any classical sigma-
point filter, such as the UKF or Gauss–Hermite Kalman filter
(GHKF), and tend to be rather sensitive to specification of the
stochastic process model for the integrand. It has been shown
that classical sigma-point rules can be cast as degenerate BQ
rules [9], [13]. This is to say that the variance associated to the
integral vanishes, being thus of no use in modelling integration
error.

In this article we utilise the recently proposed Bayes–Sard
quadrature [15] for the design of novel sigma-point filters,
which can be viewed as probabilistic versions of the well-
known sigma-point filters. Namely, under certain conditions,
the Bayes–Sard quadrature allows us to recover the classical
sigma-point rules and at the same time endow the sigma-
point rule with non-degenerate probabilistic output. We thus
obtain versions of standard sigma-point filters that are, to some
extent, capable of accounting for numerical integration error in
filtering by inflating the error covariance. In some cases, such
covariance inflation is known to improve stability of nonlinear
Kalman filters; see for instance [16, Remark 1], [17, Section
3.3], and [18, Section V.C].

The rest of the article is structured as follows. In Section II,
we formally outline the nonlinear filtering problem and the
nature of sigma-point approximations. Section III identifies
the moment transformation problem as the central issue in
sigma-point filtering and describes the structure of sigma-point
moment transforms. The Bayes–Sard quadrature is formalised
in Section IV, which is later used in Section V to design
the Bayes–Sard quadrature moment transform. Section VII
concludes the article.

II. SIGMA-POINT FILTERING

This section is devoted to the sigma-point filters, which are
a subset of nonlinear filtering algorithms characterised by their
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reliance on a Gaussian approximation together with a numerical
quadrature method. Let the stochastic dynamical system and
the process by which its state is observed be described by the
state-space model

xk = f(xk−1) + qk−1, (1)
zk = h(xk) + rk, (2)

where the function f : Rdx → Rdx is the system dynamics,
h : Rdx → Rdz is the measurement model, xk ∈ Rdx is the
latent state vector and zk ∈ Rdz is the measurement vector.
Both the process noise qk−1 ∼ N(0, Q) and the measurement
noise rk ∼ N(0, R) are zero-mean white Gaussian sequences,
independent of each other and independent of the system initial
condition x0 ∼ N(mx

0 , Px
0).

The Bayesian formulation of the filtering problem can be
summarized by the following two general relations. The state
posterior is p(xk | z1:k ) ∝ p(zk |xk )p(xk | z1:k−1 ), where
the likelihood p(zk |xk ) is obtained from the measurement
model (2) and z1:k , {z1, . . . , zk}. The predictive density is
given by the Chapman–Kolmogorov equation p(xk | z1:k−1 ) =∫
p(xk |xk−1 )p(xk−1 | z1:k−1 ) dxk−1, where the transition

density p(xk |xk−1 ) is obtained from the system dynamics
(1).

A vast majority of the well-known filters, such as EKF,
UKF and GHKF, can be recovered from the Bayesian
formulation under a Gaussian approximation of the joint
density of the state and measurement. That is, when the
density p(xk, zk | z1:k−1 ) = p(zk |xk )p(xk | z1:k−1 ) is ap-
proximated by a Gaussian density of the form

N

([
xk
zk

] ∣∣∣∣∣
[
mx
k|k−1

mz
k|k−1

]
,

[
Px
k|k−1 Pxz

k|k−1
Pzx
k|k−1 Pz

k|k−1

])
, (3)

then the mean and covariance of the state posterior have
analytical form, given by1

mx
k|k = mx

k|k−1 + Gk

(
zk −mz

k|k−1

)
, (4)

Px
k|k = Px

k|k−1 −GkP
z
k|k−1G

>
k , (5)

where Gk = Pxz
k|k−1

(
Pz
k|k−1

)−1
is the Kalman gain. The

predictive moments of the state, mx
k|k−1 and Px

k|k−1, and the
moments of measurements, mz

k|k−1, Pz
k|k−1 and Pxz

k|k−1, are
defined as integrals of the form

Ex[g(x)] ,
∫

g(x)N(x |m, P ) dx. (6)

Table I shows which quantities have to be substituted for g(x),
x, m and P to obtain any of the above predictive moments.
Since the function g being integrated is nonlinear in each
case, these integrals cannot be typically computed analytically
and some type of approximation needs to be employed. Each
nonlinear filter is distinguished solely by the type of integral
approximation it uses. For example, the EKF employs the first
order Taylor expansion to linearise g in the vicinity of m,

1Note that, mx
k|k , Ex[xk | z1:k] and Px

k|k ,

Ex

[
(xk −mx

k|k)(xk −mx
k|k)
> | z1:k

]

Moment g(x) x m P

mx
k|k−1 f(xk−1) xk−1 mx

k−1|k−1 Px
k−1|k−1

Px
k|k−1 ∆f∆f> xk−1 mx

k−1|k−1 Px
k−1|k−1

mz
k|k−1 h(xk) xk mx

k|k−1 Px
k|k−1

Pz
k|k−1 ∆h∆h> xk mx

k|k−1 Px
k|k−1

Pxz
k|k−1 ∆x∆h> xk mx

k|k−1 Px
k|k−1

Table I: Quantities that need to be substituted into the Gaussian
integral (6) in order to obtain every predictive moment necessary to
compute the moments of the state posterior. The following shorthand
notation is used: ∆f = f(xk−1)−mx

k|k−1, ∆h = h(xk)−mz
k|k−1,

∆x = xk −mx
k|k−1.

which in turn facilitates analytic tractability of the moment
integrals. On the other hand, the sigma-point filters, such as
the UKF and the GHKF, leverage numerical quadrature for
approximation of the integral. Since quadratures are typically
designed to be used with standard Gaussian, the integrals of
the form (6) need to be converted by employing a stochastic
decoupling substitution x(n) = m + Lξ(n), which leads to an
approximation

Ex[g(x)] ≈
N∑
n=1

wng(m + Lξ(n)) =

N∑
n=1

wng̃(ξ(n)), (7)

where ξ(n) denotes the n-th unit sigma-point, wn ∈ R is the
n-th weight, N is the total number of sigma-points, L is a
matrix factor such that P = LL> and g̃(ξ) , g(m + Lξ).
Note that various quadrature rules are distinguished by the
different weights and sigma-points they prescribe to satisfy
various optimality criteria.

III. SIGMA-POINT MOMENT TRANSFORMS

From the above exposition, it is apparent that the central
issue in filtering is the design of the so-called moment
transformations, which generate approximations to the moments
of a random variable under a nonlinear transformation.

Let x ∈ RD be an input Gaussian random variable and
y ∈ RE an output random variable defined by

y = g(x), x ∼ N(m, P). (8)

If the transformation g is nonlinear, the joint density p(x, y)
will be non-Gaussian in general. However, there are many
applied situations where g is approximately linear in the region
where probability mass is concentrated. In such situations the
principal error term in the moment transform is numerical
quadrature error. This error is the focus of our present work and,
therefore, in what follows we proceed under the assumption
that the Gaussian approximation

N

([
x
y

] ∣∣∣∣ [mµ
]
,

[
P C

C> Π

])
(9)

of p(x, y) can be justified. In this setting the moment
transformation then reduces to computing the output mean µ,
covariance Π and cross-covariance C as accurately as possible,
when supplied with the input moments, m and P. This is a
specific instance of uncertainty propagation [19].
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In this article we focus on the sigma-point approximations,
exemplified by eq. (7), to the moment integrals in Table I.
The well-known classical approximations, such as the Gauss–
Hermite, the spherical-radial and the unscented transform, are
conventionally written in the form

µ ≈ µ̂ =

N∑
n=1

wng̃(ξ(n)), (10)

Π ≈ Π̂ =

N∑
n=1

wn
(
g̃(ξ(n))− µ̂

)(
g̃(ξ(n))− µ̂

)>
, (11)

C ≈ Ĉ = L

N∑
n=1

wnξ
(n)
(
g̃(ξ(n))− µ̂

)>
, (12)

which, under the assumption that
∑
wn = 1 and

∑
wnξ

(n) =
0, we will prefer to write using the matrix notation as

µ̂ = Y>w, (13a)

Π̂ = Y>WY − µ̂µ̂>, (13b)

Ĉ = LΞWcY, (13c)

where Ξ =
[
ξ(1) . . . ξ(N)

]
and the matrix of integrand

evaluations is given by [Y]ne , g̃e(ξ
(n)), where e indexes

outputs of g̃ and [ · ]ne denotes the matrix element at position
(n, e). The vector w contains the weights and W = Wc =
diag( w ) for any classical sigma-point moment transform. Each
moment transform uses a different set of sigma-points and
weights.

A. Unscented Transform

The unscented transform (UT) of D-dimensional input uses
N = 2D + 1 sigma-points, which exploit symmetry of the
Gaussian distribution, given, for d = 1, . . . , D, by

ξ(0) = 0, ξ(d) =
√
c ed, ξ(D+d) = −

√
c eD+d, (14)

where ed is the standard unit vector and c = D + κ for
a scaling parameter κ. The weights are defined as w0 =
κ
c , wd = wD+d = 1

2c . This selection of sigma-points and
weights yields a quadrature rule that integrates exactly all
polynomials of (total) degree at most three; the derivation is
essentially contained in the proof of Theorem 1. The spherical-
radial rule, which is used in the cubature Kalman filter (CKF)
[20], is equivalent to the UT with κ = 0; it therefore lacks the
central sigma-point.

B. Gauss–Hermite Rule

From non-singularity of the Vandermonde matrix [V]nm =
xm−1n for any distinct sigma-points x1, . . . , xp ∈ R it follows
that there are unique weights such that

∑p
n=1 wnx

m
n =∫

xmN(x | 0, 1) dx for every m ≤ p − 1 (i.e., the rule has
a degree of exactness p − 1). However, degree of exactness
2p−1 can be achieved with p sigma-points if these are selected
to be the roots of the p-th degree Hermite polynomial Hp.
The weights are then given by wn = p!

p2Hp−1(ξ(n))2
. This

is the Gauss–Hermite (GH) rule [21]–[24]. In multivariate
versions, the sigma-points are formed as Cartesian products of

the aforementioned one-dimensional points and the weights are
products of wn. The multivariate GH rule exactly integrates
functions in the space

Πmax
2p−1 , span

{
xα : α ∈ ND0 , max

d=1,...,D
αd ≤ 2p− 1

}
,

(15)
where xα =

∏D
d=1 x

αd

d denotes multivariate monomial. Be-
cause of the Cartesian product design, the number of points,
N = pD, in the GH rule grows exponentially with dimension,
which makes it practically unattractive for D > 5 [22]. The
problem can be partially mitigated by using sparse grids [25].

IV. BAYESIAN QUADRATURE

This section reviews the underlying philosophy of the
Bayesian quadrature as an alternative perspective on numerical
integration and describes the Bayes–Sard quadrature as a
necessary stepping stone on the way to building the Bayes–
Sard moment transform proposed in Section V. A general
formulation of the BQ is presented for integrals

Ex

[
g†(x)

]
=

∫
g†(x)p(x) dx (16)

with arbitrary density function p. Vector-valued integrands are
discussed in Section IV-B. The moment transform proposed
in Section V then specialises to the case p(x) = N(x |0, I ).
Throughout this section, the true integrand will be denoted by
g† to distinguish it from the stochastic model of the integrand.

From eq. (7) it is clear that the quadrature approximation
of the integral (6) is based on limited knowledge about
the behaviour of the integrand, because it only relies on
finitely many evaluations. The design of classical quadrature
rules typically involves formation of polynomial interpolant
passing through the observed function values, which is then
integrated instead of the intractable integrand. The polynomial
interpolation of the integrand consequently implies that the
classical rules are only able to integrate polynomial integrands
exactly. Another downside of the classical rules is that they are
unable to account for the functional uncertainty (interpolation
error), which occurs when the integrand is not a polynomial.

The Bayesian approach to quadrature [11], [26], [27]
aims to address these limitations by treating the numeri-
cal approximation of intractable integrals as a problem of
Bayesian statistical inference, where a prior for the integrand
is specified by a stochastic process model g(x) with user-
defined mean function m(x) = Eg[g(x)] and covariance (or
kernel) function k(x,x′) = Cg[g(x), g(x′)], where x′ denotes
the second argument (not a transpose). The dataset D ={

(x(n), g†(x(n)))
}N
n=1

comprises evaluations of the integrand
g†(x(n)) at pre-defined points x(n). Conditioning on D leads to
a posterior stochastic process, with mean mD(x) = Eg|D[g(x)]
and covariance kD(x,x′) = Cg|D[g(x), g(x′)], which in turn
induces a posterior marginal distribution on the value of the
integral Ex[g(x)], with the first two moments given by [28]

Eg|D[Ex[g(x)]] = Ex

[
Eg|D[g(x)]

]
, (17)

Vg|D[Ex[g(x)]] = Ex,x′
[
Cg|D[g(x), g(x′)]

]
. (18)
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The mean is a convenient point estimate while the full posterior
serves as a probabilistic model of the integration error. The
most common stochastic process model of the integrand is a
Gaussian process (GP), which has been studied extensively
[11], [29].

A. Bayes–Sard Gaussian Process Model

Let π be a linear function space spanned by Q ≤ N functions
φ1, . . . , φQ : RD → R. Modeling of the scalar integrand
g† : RD → R in Bayes–Sard quadrature (BSQ) begins by
considering a hierarchical GP prior given by

γ ∼ N(0,Σπ), γ ∈ RQ (19)

m(x) =

Q∑
q=1

γqφq(x), (20)

g(x) ∼ GP(m(x), k(x,x′;θ)), (21)

where the prior mean function m(x) : RD → R is composed of
basis functions φq(x) of Q-dimensional linear space π and the
prior covariance function (kernel) k(x,x′;θ) : RD ×RD → R
can be any symmetric positive-definite function parametrized
by the vector θ (see section IV-E for concrete example). The
dependence on θ will be tacitly assumed and explicitly denoted
only when required. Discussion about the particular choice
of the kernel and its effects is postponed to Section IV-E.
The above model differs from the one often used in GP-based
Bayesian quadrature, in that the prior mean function is non-zero
and its coefficients are random.

The next phase in modelling is to consider a flat prior limit
on the mean function coefficients, such that Σπ → ∞ [30,
Chapter 4]. In order for the GP posterior to be well-defined,
the set X = {x(1), . . . , x(N)} of sigma-points must meet
the following condition of π-unisolvency, which is related to
existence of interpolants formed out of linear combinations of
φ1, . . . , φq .

Definition 1 (π-unisolvency). Let π be a Q-dimensional linear
space spanned by {φ1, . . . , φq}. A point set X is said to be
π-unisolvent if and only if the N×Q alternant matrix [Φ]qn ,
φq(x

(n)) is of full-rank.

We further restrict the model to the case when N = Q,
which means the alternant matrix Φ is square and, due to
π-unisolvency of X , invertible.

With all the assumptions laid out, the final step is to condition
the GP on the set of sigma-points X and the corresponding
integrand evaluations, to arrive at the posterior moments of the
Bayes–Sard GP model given by [15] as

Eg|D[g(x)] = φ(x)>Φ−1y, (22)

Cg|D[g(x), g(x′)] = k(x,x′)− 2k(x)>Φ−>φ(x′)

+φ(x)>
[
Φ>K−1Φ

]−1
φ(x′), (23)

where [k(x)]n , k(x,x(n)), [φ(x)]q , φq(x) and [y]n ,
g†(x(n)), where [ · ]n denotes the n-th element of the given
vector. Note that the posterior mean now only depends on the
choice of the function space π and the kernel affects only the

posterior covariance. It is worth pointing out that all sigma-
point sets in the established classical filters are π-unisolvent.

B. Vector-Valued Integrands

Until now, we have only considered scalar-valued integrands.
The model specified by eqs. (22) and (23) can be straightfor-
wardly extended to vector-valued integrands g† : RD → RE
that comply with the specification of the moment transformation
problem in eq. (8). Noticing that we can decompose the
integrand as g†(x) =

[
g†1(x) . . . g†E(x)

]>
, the simplest

solution is to use eqs. (22) and (23) to model each coordinate
function independently, either using a common kernel parameter
for all outputs, which is accomplished by

ge(x) | D ∼ GP(mD(x), kD(x,x′;θ)), (24)

or using a different kernel parameter values for each output,
so that

ge(x) | D ∼ GP(mD(x), kD(x,x′;θe)) (25)

for all e = 1, . . . , E. In both cases, the GP posterior mean
function is given as

mD(x) , Eg|D[g(x)] = Y>Φ−1φ(x), (26)

where [Y]ne = g†e(x
(n)). For the single-parameter model (24)

the posterior covariance becomes

KD(x,x′) , Cg|D[g(x),g(x′)] = kD(x,x′;θ) IE (27)

and for the multi-parameter model (25), we get

KD(x,x′) = diag
( [
kD(x,x′;θ1) . . . kD(x,x′;θE)

] )
.

(28)
Both of these modelling choices assume that the outputs are
conditionally independent given the inputs. Alternatively, the
use of multi-output Gaussian processes [31], [32] would make
it possible to model correlations between coordinate functions
and use coordinate-dependent sigma-points at the expense of
increased computational cost.

C. Bayes–Sard Quadrature

The advantage of using a GP for modelling the integrand is
that as it gets transformed by the integral, which is a linear
operator, the resulting distribution over the value of the integral
is also Gaussian. The Bayes–Sard quadrature [15], [27], [33]
enables enforcing exactness conditions of the form

Eg|D[Ex[g(x)]] =

∫
g†(x)p(x) dx

for all functions g† : RD → RE such that g†e ∈ π for
each e = 1, . . . , E. As shown in Section IV-D, the classical
quadrature methods can be replicated by judicious choice of
the function space π. The posterior integral mean and variance
under the Bayes–Sard quadrature are straightforwardly derived
by plugging the Bayes–Sard GP model moments from eqs. (26)
and (28) into the general BQ expressions in eqs. (17) and (18).
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For the mean of the posterior distribution of the integral, we
have

Eg|D[Ex[g(x)]] = Ex[mD(x)] = Y>Φ−1φ̄, (29)

where
[
φ̄
]
q

= Ex[φq(x)] =
∫
φq(x)p(x) dx. Recognizing that

the vector of quadrature weights is w = Φ−1φ̄, we see that
the posterior mean of the integral

Eg|D[Ex[g(x)]] = Y>w =

N∑
n=1

wng†(x(n)), (30)

takes on the form of weighted sum from eq. (7). The integral
covariance becomes

Vg|D[Ex[g(x)]] = Ex,x′ [KD(x,x′)] = diag
( [
k̄1D . . . k̄ED

] )
(31)

where k̄eD , Ex,x′ [kD(x,x′;θe)] and

k̄eD = k̄ − 2k̄
>

Φ−>φ̄ + φ̄
>[

Φ>K−1Φ
]−1

φ̄. (32)

Since the single-parameter model in eq. (27) is a special case
of eq. (28), the posterior integral variance under this model
would be a trivial modification of eq. (31).

D. Relationship to Classical Sigma-Point Rules

As stated in the previous section, careful selection of π (via
the basis functions φq) allows for recovery of many well-known
classical quadrature rules used in nonlinear filtering. Below,
we show that the unscented transform and the Gauss–Hermite
rule are special cases of the BSQ whenever the space π is
spanned by suitably selected polynomial basis. Similar results
can be proved for many other sigma-point rules. Note that the
BSQ reports a non-zero integral variance even for g† whose
coordinate functions are in π (and hence integrated exactly).
This behaviour is desirable because, given only a finite set
of function values, one can never tell with certainty the true
nature of the integrand.

Theorem 1. Consider the standard Gaussian distribution,
p(x) = N(x |0, I ). Select the 2D + 1 dimensional function
space

π = span
{

1, x1, . . . , xD, x
2
1, . . . , x

2
D

}
(33)

and the N = 2D+1 unscented transform points (14). Then, the
Bayes–Sard weights w = Φ−1φ̄ that determine the posterior
mean (29) coincide with the unscented transform weights.

Proof: Because dim(π) = N , the Bayes–Sard weights w
solve the linear system Φw = φ̄. That is, they are the unique
weights such that

2D∑
n=0

wnv(ξ(n)) =

∫
v(x)N(x |0, I ) dx (34)

for every polynomial v ∈ π. In the following, let d = 1, . . . , D.
We have

∫
N(x |0, I ) dx = 1,

∫
xd N(x |0, I ) dx = 0 and∫

x2d N(x |0, I ) dx = 1. Consequently, eq. (34) is equivalent

to
∑2D
n=0 wn = 1,

∑2D
n=0 wnxn,d = 0 and

∑2D
n=0 wnx

2
n,d = 1.

Because ξd = −ξD+d, the second of these equations implies
that wd = wD+d, while the third one yields wd = wD+d = 1

2c .
Furthermore, w0 = κ

c due to the weights summing up to one.
We have thus solved the BSQ weights w = Φ−1φ̄ and see
that they are precisely UT weights in section III-A.

Theorem 2. Consider the standard Gaussian distribution,
p(x) = N(x |0, I ), and let p ≥ 1. Select the
pD dimensional function space π = Πmax

p−1 ,
span

{
xα : α ∈ ND0 , maxd=1,...,D αd ≤ p− 1

}
, and the

points that constitute the Cartesian product of the roots of the
p-th degree Hermite polynomial. Then, the Bayes–Sard weights
w = Φ−1φ̄ that determine the posterior mean (29) coincide
with the classical Gauss–Hermite weights from Section III-B.

Proof: Since the Bayes–Sard weights yield, by their
definition, a quadrature rule exact for functions in π and it
is known that, given the Gauss–Hermite points, the Gauss–
Hermite weights are the unique weights that determine a
quadrature rule exact for this very same function space (see
Section III-B), the result follows.

E. Choice of Kernel

As already noted, the posterior mean for the integral
produced by the BSQ depends only on π and the kernel controls
the posterior variance of the integral. The reasonableness of the
BSQ output depends on the reasonableness of the assumption
that g† is “well modelled” by the GP specified by the kernel
k. Consequently, selection of the kernel is important in order
to ensure that the integral variance is meaningful in modelling
the integration error. At the same time, the functional form
of the kernel is constrained by the requirement in BSQ to
analytically compute the integral of the kernel. To facilitate
analytic tractability of the Bayes–Sard moment transform,
introduced next, we use the radial basis function (RBF) kernel

k(x,x′) = α2
D∏
d=1

exp

(
− (xd − x′d)2

2`2d

)
(35)

throughout the remainder. The parameters θ of this kernel
consist of the scale parameter α > 0 and dimension-wise
lengthscale parameters `1, . . . , `D > 0. A particular modelling
assumption associated with this kernel is that the integrand
is infinitely differentiable. If this is not the case (i.e., there is
model misspecification) the proposed method still works but
the uncertainty quantification for the integral may be rendered
less meaningful. For certain classes of kernels it has been
shown that convergence rates to the true integral as N →∞
are not much affected by model misspecification [34].

V. BAYES–SARD MOMENT TRANSFORM

The simplest way to design a moment transform is to use
the BSQ directly for approximation of the moment integrals
in eqs. (13a) to (13c). However, this design does not reflect
integral uncertainty, which is the key advantage of Bayesian
quadrature, not to mention the fact that we would only obtain
the classical rules as a result. To resolve this issue, we employ
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the same general conceptual framework used in the design of
the GPQ moment transform in [14], which can account for the
variance of the mean integral (13a).

A. Incorporating Integration Error

First, it is important to realize that the output variable y
is now subject to an additional source of uncertainty in g
introduced by the model. The key idea is to account for all
sources of uncertainty in the computed moments, which can
be achieved with the following

µ = Ex

[
g†(x)

]
≈ µ̂ = Ex, g|D[g(x)] (36)

Π = Cx

[
g†(x),g†(x)

]
≈ Π̂ = Cx, g|D[g(x), g(x)]

(37)

C = Cx

[
x,g†(x)

]
≈ Ĉ = Cx, g|D[x, g(x)] (38)

Using the law of total expectation and covariance, the approxi-
mate moments of the output can be written as

µ̂ = Eg|D[Ex[g(x)]] = Ex

[
Eg|D[g(x)]

]
, (39)

Π̂ = Cg|D[Ex[g(x)]] + Eg|D[Cx[g(x),g(x)]], (40)

= Cx

[
Eg|D[g(x)]

]
+ Ex

[
Cg|D[g(x),g(x)]

]
, (41)

Ĉ = Ex

[
xEg|D[g(x)]

]
− Ex[x]Eg|D,x[g(x)]. (42)

The first equality exposes the fact that integral mean is obtained
by integrating the mean function of the integrand model. The
way the integral uncertainty is incorporated into the output
covariance is revealed by eq. (40). Note that since the model
of the integrand has conditionally independent outputs, the
covariance of the integral, Cg|D[Ex[g(x)]], and the model
covariance, Cg|D[g(x),g(x)], are diagonal matrices. When
either of the covariances approaches zero, eqs. (39) to (42)
approach their true values. From now on, we will work with
the output covariance in the form (41) because it is easier to
analyse and implement.

B. Derivation of Transformed Moments

In the following derivations, explicit conditioning on D in
the expectations is omitted to reduce notational clutter. We also
assume that the stochastic decoupling substitution has taken
place in the integrals, so that g̃(ξ) = g(m + Lξ).

Taking the expression for the mean function of the model in
eq. (26) and plugging it into eq. (39), the output mean of the
Bayes–Sard quadrature moment transform (BSQMT) becomes

µ̂ = Eξ[Eg[g̃(ξ)]] = Y>Φ−>Eξ[φ(ξ)] = Y>w, (43)

where w = Φ−>Eξ[φ(ξ)] are the mean weights. The output
covariance becomes

Π̂ = Eξ

[
Eg[g̃(ξ)]Eg[g̃(ξ)]

>]− µ̂µ̂> + Eξ[Cg[g̃(ξ), g̃(ξ)]]

= Y>WY − µ̂µ̂> + σ̄2IE (44)

where the expected model variance is

σ̄2 = Eξ[k(ξ, ξ)]− tr
[
D>Φ−> + DΦ−1 −WK

]
. (45)

Here D = Eξ

[
k(ξ)φ(ξ)>

]
and the covariance weights

are W = Φ−>Eξ

[
φ(ξ)φ(ξ)>

]
Φ−1. Finally, the covariance

between the input and output becomes

Ĉ = Eξ[(m + Lξ)Eg[g̃(ξ)]]− Eξ[m + Lξ]Eg,ξ[g̃(ξ)]

= LEξ[ξ φ(ξ)]Φ−1Y = LWcY (46)

where the cross-covariance weights are Wc = Eξ[ξ φ(ξ)]Φ−1.
It has now become evident that the output moments depend

on the expectations of the basis functions. In Section IV,
we have shown that the classical moment transforms can be
recovered when the basis functions are multivariate polynomials.
When this basis and the RBF kernel eq. (35) are used, the
expectations above are available in closed form. The complete
algorithm of the Bayes–Sard moment transform is summarized
in Alg. 1.

Algorithm 1: Bayes-Sard quadrature moment trans-
form
Input: The mean m and the covariance P of the input

variable x, the integrand g(x), the matrix of unit
sigma-points Ξ and the kernel parameters θ.

Output: Approximate mean µ̂ and covariance Π̂ of the
output variable y = g(x), and approximate
input-output covariance Ĉ.

Function BSQMT(g(x), m, P, Ξ, θ)

// form sigma-points

1 L← MatrixFactor(P)
2 X←m + LΞ

3 k̄ ← Eξ[k(ξ, ξ ;θ)]

4 φ̄← Eξ[φ(ξ)]

5 A← Eξ

[
φ(ξ)φ(ξ)>

]
6 B← Eξ

[
ξφ(ξ)>

]
7 for n← 1 to N do
8 [Y]n∗ ← g(x(n))

9 [Φ]n∗ ←
[
φ1(ξ(n)) . . . φN (ξ(n))

]
10 [D]n∗ ← Eξ

[
k(ξ, ξ(n) ;θ)φ(ξ)>

]
11 for m← 1 to N do
12 [K]nm ← k(ξ(n), ξ(m); θ)

13 end
14 end

// compute BSQ weights

15 w← Φ−>φ̄

16 W← Φ−>AΦ−1

17 Wc ← BΦ−1

// compute transformed moments

// using eqs. (43) to (46)

18 return µ̂, Π̂, Ĉ
end

Theorem 3. The BSQ output covariance Π̂ is positive semi-
definite.
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Proof: Using the expression for the BSQ mean weights
from Alg. 1, we can write the output covariance as Π̂ =

Y>Φ−>(A− φ̄φ̄
>

)Φ−1Y + σ̄2IE . Define Z = Φ−1Y and
Ã = A − φ̄φ̄

>, then Π = Z>ÃZ + σ̄2IE . We recognize
that Ã = V[φ(ξ)] = E

[
φ(ξ)φ(ξ)>

]
−E[φ(ξ)]E[φ(ξ)]

> � 0,
which follows from the properties of covariance matrices. This
implies that Z>ÃZ � 0 for any matrix Z. Because σ̄2 ≥ 0,
we have that Π̂ � 0.

C. Relationship to the Gaussian Process Quadrature MT

The recently proposed Gaussian process quadrature moment
transform (GPQMT) [14], together with the BSQMT, are both
instances of the general BQ framework. The GPQMT uses a
zero-mean GP prior model of the integrand as opposed to the
more sophisticated hierarchical prior in eqs. (19) and (21). As a
result, the GPQMT weights are affected by the choice of kernel
and its parameter values, which is not the case in the BSQMT,
where the kernel only affects the last term of the transformed
covariance and the weights depend only on the sigma-points and
the choice of the function space π. Consequently, this makes
BSQMT much less sensitive to misspecification of the kernel
parameters, which is a notorious problem plaguing GPQMT.
Discussion of the choice of kernel parameters can be found in
the original publication [14].

Compared to the zero-mean GP employed in GPQMT, the
Bayes–Sard GP is a stronger prior, which means it can provide
better fit to the integrand when conditioned on smaller datasets,
such as the UT sigma-points, which are especially attractive
in nonlinear filtering applications.

D. BSQ Moment Transform in Sigma-Point Filtering

As outlined in Section II, the filtering algorithms use the
moment transformations for computing the predictive moments
of the system state and measurement. Alg. 2 summarizes
the Bayes–Sard quadrature Kalman filter (BSQKF), which
employs the proposed BSQ moment transform for computing
the predictive moments from Table I. The BSQKF takes two
different kernel parameter values, θf and θh, because there are
two different functions that need to be integrated (see eqs. (1)
and (2)).

VI. NUMERICAL EXPERIMENT

In order to test the sigma-point filters based on the BSQ
moment transform, we consider the univariate non-stationary
growth model (UNGM), which is often used to benchmark
particle filters [35]. The system dynamics and the observation
model are given by

xk =
1

2
xk−1 +

25xk−1
1 + x2k−1

+ 8 cos(1.2 k) + qk−1, (47)

zk =
1

20
x2k−1 + rk, (48)

with the state noise qk−1 ∼ N(0, 10), measurement noise
rk ∼ N(0, 1) and initial conditions x0 = x0|0 ∼ N(0, 5).
Kernel scaling used in the BSQ with for the UT (κ = 2) and
the 7-th order GH points was set to α = 3 and the lengthscales

Algorithm 2: Bayes-Sard quadrature Kalman filter.

Input: Sequence of measurements
{
zk
}K
k=1

, initial
conditions mx

0|0, Px
0|0, kernel parameters θf

and θh, unit sigma-points Ξ
Output: Sequence of state estimates and covariances{

mx
k|k, Px

k|k
}K
k=1

for k ← 1 to K do
// predictive state moments

mx
k|k−1, Px

k|k−1 ←
BSQMT(f(xk−1), mx

k−1|k−1, Px
k−1|k−1, Ξ, θf)

Px
k|k−1 ← Px

k|k−1 + Q

// predictive measurement moments

mz
k|k−1, Pz

k|k−1, Pxz
k|k−1 ←

BSQMT(h(xk), mx
k|k−1, Px

k|k−1, Ξ, θh)

Pz
k|k−1 ← Pz

k|k−1 + R

// measurement update (filtering)

// using eqs. (4) and (5)

end

to ` = 0.3 and ` = 0.4, respectively. For the 5-th order GH
points the kernel parameters were set to α = 5 and ` = 0.6.

The RMSE was used to measure the tracking performance.
The inclination indication (INC) [36], given by

INC =
10

K

K∑
k=1

log10

(xk −mx
k|k)>(Px

k|k)−1(xk −mx
k|k)

(xk −mx
k|k)>Σ−1k (xk −mx

k|k)
,

(49)
where Σk is the mean-squared error matrix of the state, was
used to measure the credibility of the estimates. A perfectly
balanced estimate has INC = 0. For INC > 0, the estimate is
said to be optimistic, which is to say the covariance is smaller
than it should be, while negative values indicate pessimism.
We refer to [36] for other related credibility measures. We
simulated the model for K = 500 time steps and averaged
the performance scores over 100 simulations. The variance
of the average scores was estimated by bootstrapping. The
parentheses in Tables II and III contain the uncertainty as the
least significant digits of 2 standard deviations.

The BSQ filters with classical points were tested against
the well-known sigma-point filters as well as the GPQ filters
from [14]. As seen in Table II, the filters based on the BSQ
outperform the classical sigma-point filters in terms of RMSE.
Assuming the GH points are used, BSQKFs can outperform
the GPQ filters as well. In comparison with the classical filters,
the proposed BSQ filters also provide much more balanced
estimates as evidenced by the values of the INC in Table III.

VII. CONCLUSIONS AND DISCUSSION

In this article, we designed a general-purpose moment
transformation based on Bayes–Sard quadrature, which allows
for explicit modelling of numerical integration error through
the use of a stochastic process model. The hierarchical GP
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Classical GPQ BSQ

UT 10.81 (0.14) 10.37 (0.08) 9.70 (0.12)
GH-5 10.03 (0.14) 9.01 (0.11) 8.82 (0.08)
GH-7 9.74 (0.13) 8.80 (0.10) 8.61 (0.09)

Table II: Filter RMSE for the UNGM example.

Classical GPQ BSQ

UT 12.17 (0.06) 4.87 (0.01) 4.57 (0.03)
GH-5 10.33 (0.07) 5.26 (0.03) 1.85 (0.02)
GH-7 9.27 (0.07) 4.95 (0.03) 2.52 (0.03)

Table III: Filter INC for the UNGM example.

prior was shown to be key in developing probabilistic models
which lead to the classical quadrature rules used in the sigma-
point filters and whose variance is statistically meaningful. We
designed the BSQ Kalman filter by leveraging the proposed
BSQ moment transform for computation of the predictive
moments. Overall, the BSQ-based filters report more balanced
estimates and tend to err on the side of caution (the reported
estimates are more likely to be pessimistic).
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