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Taylor Moment Expansion for
Continuous-Discrete Gaussian Filtering

Zheng Zhao, Toni Karvonen, Roland Hostettler, Member, IEEE , and Simo Särkkä, Senior Member, IEEE

Abstract— The note is concerned with Gaussian filtering
in non-linear continuous-discrete state-space models. We
propose a novel Taylor moment expansion (TME) Gaussian
filter which approximates the moments of the stochas-
tic differential equation with a temporal Taylor expansion.
Differently from classical linearisation or Itô–Taylor ap-
proaches, the Taylor expansion is formed for the moment
functions directly and in time variable, not by using a Taylor
expansion on the non-linear functions in the model. We
analyse the theoretical properties, including the positive
definiteness of the covariance estimate and stability of the
TME filter. By numerical experiments, we demonstrate that
the proposed TME Gaussian filter significantly outperforms
the state-of-the-art methods in terms of estimation accu-
racy and numerical stability.

Index Terms— continuous-discrete state-space model,
Gaussian filtering, Kalman filtering, stochastic differential
equation, Taylor moment expansion

I. INTRODUCTION

In this note, we study Gaussian filtering of a continuous-
discrete state-space model

dxt = f(xt, t) dt+ L(xt, t) dWt, (1a)
yk = h(xk) + vk, (1b)

where xt ∈ RD is a D-dimensional Itô process, yk ∈ RZ is
the measurement at time tk, and Wt denotes an S-dimensional
Wiener process with diffusion matrix Q. We also assume the
non-linear drift and dispersion functions f(xt, t) and L(xt, t)
are sufficiently regular so that (1a) has a weakly unique solu-
tion [1], [2]. As we are mostly concerned with the continuous-
time part (1a), for simplicity, we model the measurement yk
in (1b) with a non-linear function h(xk) and an additive noise
vk ∼ N (0,Vk), where N denotes a Gaussian distribution.
Furthermore, we denote Γ(xt, t) = L(xt, t) Q LT(xt, t), and
Γij denotes the i-th row and j-th column entry of Γ(xt, t).
When D = 1 and S = 1, we use scalar notations xt, f(xt, t)
and Γ(xt, t).

The aim is to form Gaussian approximations to the filtering
density for any tk, k = 1, . . . , T as follows:

p(xk | y1:k) ≈ N (xk |mk,Pk). (2)
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Above, we have used the notation xk , xtk at time tk, and
y1:k = {y1, y2, . . . , yk}. Additionally, mk, Pk are the mean
and covariance of (2), respectively.

In order to obtain the exact posteriors on the left hand side of
(2), it would be necessary to compute the transition densities
p(xk | xk−1) for the continuous model (1a) (see, e.g., [3],
[4]). It turns out that the transition density is only analytically
tractable in limited cases, such as for linear stochastic differ-
ential equations (SDEs). In the Gaussian filtering framework,
we are interested in constructing a Gaussian approximation to
the transition density:

p(xk | xk−1) ≈ N (xk | E [xk | xk−1] ,Cov [xk | xk−1]),
(3)

which is also the approach that we employ here. Above,
E [xk | xk−1] and Cov [xk | xk−1] denote the conditional ex-
pectation and covariance of xk given xk−1, respectively.

One classical way to approximate the transition density (3)
is the Itô–Taylor expansion [5]–[7] which can be used to form
a discretised solution to the SDE by expanding Itô integrals
iteratively using Itô’s lemma. The Euler–Maruyama scheme is
the simplest instance of this kind of methods, and the mean
and covariance in (3) are computed as

E [xk | xk−1] ≈ xk−1 + f(xk−1, tk−1) ∆t,

Cov [xk | xk−1] ≈ Γ(xk−1, tk−1) ∆t.
(4)

However, the Euler–Maruyama scheme only works well when
the time interval ∆t is small enough. Other commonly used
choices are, for example, Milstein’s method and the strong
order 1.5 Itô–Taylor (Itô-1.5) method [4], [5]. However, be-
cause of the difficulty of the involved iterated Itô integrals, it
is not easy to construct higher order Itô–Taylor expansions [5]
and hence this approach is inherently low order in ∆t. This
motivates us to develop higher order weak approximations by
using the proposed Taylor moment expansion.

Another widely used approach is to approximate ODEs for
the first two moments of the Itô process [8]–[10]. The mean
and covariance of the Itô process (1a) for any t ∈ (tk−1, tk]
are characterised by

dmt

dt
= E [f(xt, t)] ,

dPt

dt
= E

[
f(xt, t) (xt −mt)

T
]

+ E
[
(xt −mt) fT(xt, t)

]
+ E [Γ(xt, t)] ,

(5)

where mt = E [xt] and Pt = E
[
(xt −mt) (xt −mt)

T
]

[4]. The initial values of mt and Pt are given at time tk−1.
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Notice that when using this scheme in Gaussian filtering, it
is not necessary to directly approximate the transition density
(3). By solving the ODEs, they directly give the prediction
step of filtering when the initial conditions are given by the
previous filtering posterior. Unfortunately, the ODEs are only
tractable for linear SDEs along with certain other isolated
special cases, because of the expectations in (5). To disentangle
the intractability problem of these ODEs, one practical solution
is to linearise f(xt, t) and L(xt, t) around mt, which leads to
the continuous-discrete extended Kalman filter (CD-EKF) [8].
Another solution is to assume that the densities are Gaussian,
in which case the expectations in the ODEs can be calculated
with Gaussian quadrature or sigma-point methods [11]–[13].
Finally, the ODEs are solved with numerical solvers, such as
Runge–Kutta (RK) methods. For simplicity of later discussion,
we use Linear-ODE and Gauss-ODE to refer to the methods
solving (5) using linearisation and Gaussian assumptions,
respectively.

The contributions of this note are as follows. (1) We develop
a novel Taylor moment expansion based Gaussian filter for
continuous-discrete state-space models. (2) We analyse the
positive definiteness of TME covariance estimate and the
stability of TME Gaussian filter. (3) We show by numerical
experiments that the proposed TME Gaussian filter outper-
forms the state-of-the-art methods in terms of both estimation
accuracy and numerical stability.

II. TAYLOR MOMENT EXPANSION FOR GAUSSIAN
FILTERING

As a Gaussian distribution is entirely characterised by its
mean and covariance, a reasonable approach to Gaussian
filtering is to use moment matching to form a Gaussian ap-
proximation to the transition density. The previously presented
Itô–Taylor and ODE methods are useful tools for this purpose.
In this note, we present another Taylor moment expansion
(TME) based approach, which allows us to derive higher order
approximations to the transition density [4], [14]–[16].

A. Taylor Moment Expansion

Let φ(xt) be an arbitrary twice-differentiable scalar function
of the process xt. By Itô’s lemma and taking the expectation
yields

dE [φ(xt)] = E [∇φ(xt) f(xt, t)] dt

+
1

2
E
[
tr
(
∇∇Tφ(xt) Γ(xt, t)

)]
dt,

(6)

where ∇ and ∇∇T give the Jacobian and Hessian of φ(xt),
respectively. With a proper choice of φ, this will lead to
the moment ODEs as shown in (5) [4]. The aim now is to
form a Taylor expansion of the function E [φ(xt)]. We notice
that the right-hand side of (6) can be reformulated with the
(generalized) infinitesimal generator

Ag =
∂g

∂t
+∇g f(xt, t) +

1

2
tr
(
∇∇TgΓ(xt, t)

)
,

=
∂g

∂t
+
∑
i

∂g

∂xi
fi(xt, t) +

1

2

∑
i,j

∂2g

∂xi∂xj
Γij ,

(7)

for any regular smooth function g, where xi is the i-th
component of xt (see, e.g., [1, Ch. 7] or [4, Ch. 9]). Thus
(6) becomes

dE [φ(xt)]

dt
= E [Aφ(xt)] , (8)

which requires that φ ∈ C2 is twice differentiable. We also
denote by Ar the r-th iteration of the generator. By taking
derivatives of (8) to M times, we have

dME [φ(xt)]

dtM
= E

[
AMφ(xt)

]
, (9)

which requires that φ ∈ C2M [4]. Notice that (9) above also
requires sufficient smoothness of f(x, t) and Γ(xt, t). We can
now form an M -th order Taylor expansion of the function
E [φ(xk)] at time tk and centred at time tk−1 as follows:

E [φ(xk)] ≈
M∑
r=0

1

r!

drE [φ(xk−1)]

dtr
∆tr

=

M∑
r=0

1

r!
E [Arφ(xk−1)] ∆tr,

(10)

where ∆t = tk − tk−1. Conditioning (10) on xk−1 gives

E [φ(xk) | xk−1] ≈
M∑
r=0

1

r!
Arφ(xk−1) ∆tr. (11)

In Gaussian filtering, we are only interested in func-
tions φ having certain polynomial forms. For the mean
and covariance, we introduce two sets of functions:
{φi = xi : i = 1, . . . , D} and {φij = xi xj : i, j = 1, . . . , D},
where xi is the i-th component of xk. Then, we have the mean
E [xk | xk−1] =

[
E [φ1 | xk−1] , . . . , E [φD | xk−1]

]T
and the covariance Cov [xi xj | xk−1] = E [φij | xk−1] −
E [φi | xk−1] E [φj | xk−1]. Using the approximation (11), we
can now form the Taylor moment expansion (TME) estimator
for the transition density as shown in Definition 1.

Definition 1 (Taylor Moment Expansion (TME) of Transition
Density). The M -th order Taylor expansion based estimates
of the mean aM , the second moment BM , and the covariance
ΣM of the transition density (3) are given by

aM , aM (xk−1,∆t)

=

M∑
r=0

1

r!
Arxk−1 ∆tr ≈ E [xk | xk−1] ,

BM , BM (xk−1,∆t)

=

M∑
r=0

1

r!
Ar
(
xk−1 xT

k−1

)
∆tr ≈ E

[
xk xT

k | xk−1

]
,

ΣM , ΣM (xk−1,∆t)

= BM − aM aTM ≈ Cov [xk | xk−1] ,
(12)

respectively. Here the application of the generator A on vector
or matrix input means that we apply the operator elementwise.

Remark 2. Note that if an M -th order TME approximation
is used, the covariance estimator ΣM in Definition 1 is a
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polynomial of degree 2M in ∆t, which comes from the product
aM aTM . To keep the order of ∆t consistent in mean and
covariance, ΣM needs to be truncated to degree M .

In addition, it is also important to recover the remainder
R(xk−1,∆t) of TME, such that (10) becomes

E [φ(xk)] =

M∑
r=0

1

r!
E [Arφ(xk−1)] ∆tr +R(xk−1,∆t).

By Taylor’s theorem, the remainder admits the form

R(xk−1,∆t) =∫ tk

tk−1

∫ uM

tk−1

· · ·
∫ u1

tk−1

E
[
AM+1φ(xs)

]
dsdu1 · · · duM ,

(13)

provided that φ and the SDE coefficients are sufficiently
smooth [14], [16]. The convergence properties of TME can
be analysed in the same way as any other Taylor expansion.

The difference between the TME and the aforementioned
ODE and Itô–Taylor schemes is mainly how the Gaussian
approximation to the continuous model is done. The Itô–Taylor
approach first discretises the SDE solution which gives the
discretised approximation x̂k, and then obtains the moment
E [φ(x̂k)] using the approximation. In ODE approach we need
to postulate certain hypothesis, such as Gaussian assumptions
or linearisation before solving the ODEs (5). In contrast, TME
gives the estimate of E [φ(xk)] directly, without forming the
discretised approximation x̂k or approximation to the ODEs.

B. TME Gaussian Filtering
Using Definition 1, we now formulate the proposed TME

Gaussian filter by utilising an M -th order TME estimate of the
transition density p(xk | xk−1) ≈ N (xk | aM ,ΣM ). Notice
that although we are using simplified notations aM , BM , and
ΣM , those terms are functions of xk−1 and ∆t.

Let us assume the filtering posterior from previous time step
tk−1 is p(xk−1 | y1:k−1) = N (xk−1 |mk−1,Pk−1). We first
perform prediction with respect to the continuous model (1a),
and thus the prediction density p(xk | y1:k−1) = N (xk |
m−k ,P

−
k ) is characterised by

E [xk | y1:k−1]

=

∫
xk

∫
p(xk | xk−1) p(xk−1 | y1:k−1) dxk−1 dxk

≈ E [aM ] = m−k , (14)

and also

Cov [xk | y1:k−1]

≈ E
[
ΣM + aM aTM

]
−m−k (m−k )T = P−k . (15)

Note that we are using P−k = E
[
ΣM + aM aTM

]
−m−k (m−k )T

instead of directly P−k = E [BM ] −m−k (m−k )T. Recall from
Remark 2 that they are not equal, as we truncate ΣM to
keep the power of ∆t consistent. By using P−k = E [BM ] −
m−k (m−k )T, it is difficult to perform such truncation. Further-
more, the prediction covariance P−k is not always positive
definite, which is an issue that is discussed in Section III-A.

The resulting filtering algorithm is the following, where we
also use the general discrete Gaussian filter update step [3].

Algorithm 3 (TME Gaussian Filter). Starting from initial
filtering condition x0 ∼ N (x0 | m0,P0), the equations of
TME Gaussian filter for k = 1, 2, . . . , T are as follows:
• Prediction:

m−k =

∫
aM N (xk−1 |mk−1,Pk−1) dxk−1,

P−k =

∫ (
ΣM + aM aTM

)
N (xk−1 |mk−1,Pk−1) dxk−1

−m−k (m−k )T. (16)

• Update:

mk = m−k + Kk (yk − µk),

Pk = P−k −Kk Sk KT
k, (17)

where µk = E[h(xk)], Sk =

E
[
(h(xk)− µk) (h(xk)− µk)

T
]
, and Kk =

E
[(

xk −m−k
)

(h(xk)− µk)
T
]

S−1
k . In this update

step, the expectations are taken with respect to the
predicted xk ∼ N (m−k ,P

−
k ).

The calculation of Gaussian integrals in Algorithm 3 is
intractable for many non-linear integrands (i.e., aM , BM ,
and ΣM ). Herein, we consider numerically approximating
them by using quadrature and sigma-point methods, such as
Gauss–Hermite [11], unscented transform [17], and spherical
cubature method [18]. It is also worth mentioning that as the
sigma-point approximation is an operation of linearly weighted
summation, the positive definiteness of P−k is preserved from
ΣM provided that the quadrature weights are positive. This
is true for Gauss–Hermite quadrature, spherical cubature, and
unscented transformation with suitable parameter selection. In
this note we assume that such a positive-weight integration
rule is used.

III. THEORETICAL ANALYSIS OF TAYLOR MOMENT
EXPANSION GAUSSIAN FILTER

In this section, we first study the positive definiteness of
the covariance estimates produced by the Taylor moment
expansion (TME) and then prove the stability of the TME
Gaussian filter for a class of non-linear state-space models.

A. Positive Definiteness of Taylor Moment Expansion
In the Gaussian filtering context, it is essential for the co-

variance estimate to stay positive definite (p.d.). Unfortunately,
this is not always true when using TME, as we truncate the
full Taylor expansion [19]. We now formulate the following
theorem to show conditions for the positive definiteness of the
TME covariance estimate.

Theorem 4. The M -th order TME covariance estimate ΣM

is positive definite for ∆t on an interval U ⊆ R+, if

PM (∆t) =

M∑
r=1

wr ∆tr > 0, (18)
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for all ∆t ∈ U , where wr = 1
r!λmin (Φxt,r), and λmin(·)

denotes the minimum eigenvalue of a square matrix. The
coefficients are

Φxt,r = Ar
(
xt x

T
t

)
−

r∑
s=0

(
r

s

)
Asxt (Ar−sxt)T, (19)

where
(
r
s

)
denotes the binomial coefficient.

Proof. By Cauchy product and Definition 1, we can formulate
the (u, v)-th entry of ΣM as

[ΣM ]uv =

M∑
r=0

1

r!

[
Ar(xuxv)−

r∑
s=0

(
r

s

)
AsxuAr−sxv

]
∆tr

and further rearrange it into matrix form

ΣM =

M∑
r=1

1

r!
Φxt,r∆t

r. (20)

Using Weyl’s inequality [20], we have λmin (ΣM ) ≥∑M
r=1

1
r!λmin (Φxt,r) ∆tr. Thus the positive definiteness of

ΣM is implied by the polynomial on the right in (20).

Equation (20) reveals that the covariance estimate ΣM is
a polynomial function of ∆t with coefficients formed by
{Φxt,r : r = 1, . . . ,M}. The idea behind Theorem 4 is to
construct a lower bound for the minimum eigenvalue of ΣM in
terms of the eigenvalues of the coefficients matrices Φxt,r. The
following Proposition 5 gives applications of using Theorem 4
for the positive definiteness of the second and third order of
TME estimates.

Proposition 5. Let Σ2 and Σ3 be the TME estimates of the
covariance with expansion order 2 and 3, respectively. Also
let us denote by f , f(xt, t) and Γ , Γ(xt, t). Then

1) Σ2 is p.d. for ∆t > 0 if (Γ∇f)T + Γ∇f and Γ
are positive semi-definite (p.s.d.), and one of Γ and
(Γ∇f)T + Γ∇f is p.d.

2) Σ3 is p.d. for ∆t > 0 if Φxt,3 is p.s.d. and
λmin(Φxt,2) > −2

√
6

3

√
λmin(Φxt,1)λmin(Φxt,3).

Proof. By Definition 1,

Σ2 = Φxt,1∆t+
1

2
Φxt,2∆t2

= Γ∆t+
1

2

(
(Γ∇f)T + Γ∇f

)
∆t2.

(21)

Thus ηT Σ2 η > 0 for any real non-zero vector η and ∆t > 0,
if λmin(Γ) > 0 and λmin((Γ∇f)T+Γ∇f) ≥ 0 or λmin(Γ) =
0 and λmin((Γ∇f)T + Γ∇f) > 0.

For Σ3, by Theorem 4, we have the polynomial

P3(∆t) = w1∆t+ w2∆t2 + w3∆t3. (22)

The polynomial P3(∆t) is positive and has no real
roots for ∆t > 0, if and only if w2 > −2

√
w1w3

and w3 ≥ 0, which is equivalent to λmin(Φxt,2) >
−2
√

6
3

√
λmin(Φxt,1)λmin(Φxt,3) and λmin(Φxt,3) ≥ 0. It

follows that Σ3 is p.d.

Remark 6. In the limit ∆t→ 0, the TME covariance estimate
will always be p.d., provided Γ is p.d.

Example 7. The TME variance estimate of SDE

dxt = tanhxt dt+ dWt, (23)

where Wt is a standard Wiener process, is always p.d. This
follows from Theorem 4 and observing that Φx,1 = 1 > 0,
Φx,2 = 1− tanh2 xt ≥ 0, and {Φx,r = 0: r ≥ 3}.

The coefficients Φxt,r, the expansion order M , and the
time interval ∆t jointly determine the positive definiteness of
TME covariance estimate. The properties of Φxt,r are more of
interest, as we usually have M and ∆t fixed. Next, we show
that Φxt,r is only concerned with the SDE coefficients.

Lemma 8. Consider the SDE (1a) with time-homogeneous
f(xt) and constant L. Let Φu,vx,r , [Φx,r]uv be the u-th column
and v-th row entry of Φx,r. We denote αur , αr(xu) =
Ar(xu), and partial derivative ∂iα

u
r , ∂αur /∂xi. Then a

general expression of Φu,vx,r≥1 is

Φu,vx,r =

D∑
i,j

r−1∑
s=0

(
r − 1

s

)(
∂iα

u
s ∂jα

v
r−s−1

)
Γij +AΦu,vx,r−1

=

r−1∑
s=0

As
r−s−1∑
l=0

(
r − s− 1

l

)
tr
(
(∇αus )T∇αvr−s−1−l Γ

)
(24)

starting from Φu,vx,0 = 0.

Proof. See Appendix I.

Lemma 8 gives an explicit form of Φxt,r, which is shown to
be the function of f , Γ, and their partial derivatives. It implies
that once M and ∆t are given, the positive definiteness of
ΣM fully depends on the SDE coefficients. The functions f
and Γ have to satisfy certain properties for ΣM to be positive
definite.

Example 9. Let us consider a one-dimensional Itô process

dxt = f(xt) dt+ LdWt, (25)

then by Lemma 8,

Φx,0 = 0,

Φx,1 = Γ,

Φx,2 = 2f ′Γ,

Φx,3 = 2(2(f ′)2 + 2ff ′′ + f ′′′Γ)Γ,

Φx,4 = ((9(f ′′)2 + 6ff ′′′′ + 16f ′′′f ′)Γ + 8(f ′)3

+ 6f2f ′′′ + 26ff ′′f ′ +
24

16
f ′′′′′Γ2)Γ,

...

(26)

where f ′, f ′′, . . . , f ′′′′′, . . . are the derivatives of f(x) of
orders 1, 2, . . . , 5, . . .. Also, Γ = L2Q, and Q is the diffusion
constant of the Wiener process Wt.

B. Stability of TME Gaussian Filter
It is important and useful that the filter is in some sense

stable. Some classical stability results for linear Kalman filters
can be found in [8], [21] while more recent results on the
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stability of different approximate Gaussian (Kalman) filters
for non-linear systems have been analysed in [22]–[24]. In this
section, we follow [24] and prove that the TME Gaussian filter
is stable in the mean-square sense if a number of assumptions
on the system and the sigma-point approximation, verifiable
before the filter is run, are satisfied. This means that we show
that

sup
k≥1

E
[
‖xk −mk‖22

]
<∞,

where the expectation is taken over all state and measurement
trajectories, and ‖·‖2 denotes the Euclidean norm.

For simplicity, in (1) we assume f(xt) is time-homogeneous
(not explicitly depending on time), Γ is a positive definite
constant, Vk = V for all k ≥ 1, and that the measurement
model is linear: h(xk) = H xk for some matrix H. Then the
generic continuous-discrete SDE (1) then has the discretised
form

xk = a(xk−1,∆t) + τ (xk−1,∆t),

yk = H xk + vk,
(27)

where τ (xk−1) , τ (xk−1,∆t) is a zero-mean random
variable whose covariance Cov[τ (xk−1)] = Σ(xk−1,∆t).
Notice that we denote by a(xk−1) , a(xk−1,∆t) and
Σ(xk−1) , Σ(xk−1,∆t) the exact mean and covariance
functions of xt, respectively. It follows that a = aM + RM ,
where RM (xk−1) , RM (xk−1,∆t) is the Taylor remainder
(13). The assumptions needed for the stability analysis of the
system (27) are collected below in Assumption 10. If A is a
matrix, ‖A‖ stands for the spectral norm.

Assumption 10. The following properties hold:
1) There are non-negative constants CM , λτ , and λP

such that supk≥1‖RM (xk−1)‖ ≤ CM almost surely,
supk≥1 E[tr(Σ(xk−1))] ≤ λτ , and supk≥1 E[tr(Pk)] ≤
λP .

2) There is C ≥ 0 such that

‖aM (x)−Sm,P(aM )‖2 ≤ ‖∇aM (x)‖2‖x−m‖22+C tr(P)

for any vectors x and m and any positive semi-definite
matrix P, where Sm,P(g) stands for the sigma-point
approximation of the Gaussian integral∫

g(x)N (x |m,P) dx.

3) There is λ ≥ 0 such that supk≥1‖I−KkH‖ ≤ λ almost
surely and

λ2
f , sup

k≥1
λ2 sup

x
‖∇aM (x)‖2 < 1/4.

The Assumption 10 postulates conditions on the sigma-
point approximations and systems. An example to satisfy the
assumptions is that the drift function f is smooth enough and
all of its partial derivatives up to certain orders are uniformly
bounded. More practical examples that satisfy Assumption 10
can be found in [24]. It is typically necessary that the mea-
surement model matrix H is a scaled identity matrix and
the discretised dynamics a in (27) defines an exponentially
stable system. Although these assumptions are quite restrictive,

stability results with more general assumptions are currently
not yet available in literature [24].

Theorem 11. Suppose that Assumption 10 is satisfied. Then
the TME Gaussian filter for system (27) has

E
[
‖xk −mk‖22

]
≤ (4λ2

f )k tr(P0) +
Ce

1− 4λ2
f

for all k ≥ 1, where Ce is defined in (29).

Proof. It is easy to see that [24, Proof of Theorem IV.3]

κ , sup
k≥1
‖Kk‖ ≤ λP ‖H‖‖V−1‖.

Denote Ak = I − KkH. Using the discretised system (27),
the filtering error can be written as

ek , xk −mk

= a(xk−1) + τ (xk−1)−m−k −Kk (yk −H m−k )

= Ak

[
a(xk−1)− Smk−1,Pk−1

(aM )
]

+ (I−Kk H) τ (xk−1)−Kk vk

= Ak

[
aM (xk−1)− Smk−1,Pk−1

(aM )
]

+ Ak RM (xk−1) + Ak τ (xk−1)−Kk vk.

The inequality (a1 + · · ·+ an)2 ≤ n(a2
1 + · · ·+ a2

n) gives

E
[
‖ek‖22

]
≤ 4E

[∥∥Ak

[
aM (xk−1)− Smk−1,Pk−1

(aM )
]∥∥2

2

]
+ 4E

[
‖Ak RM (xk−1)‖22

]
+ 4E

[
‖Ak τ (xk−1)‖22

]
+ 4E

[
‖Kk vk‖22

]
.

(28)

Assumption 10 yields the following bounds:

E
[∥∥Ak

[
aM (xk−1)−Smk−1,Pk−1

(aM )
]∥∥2

2

]
≤ λ2

fE
[
‖ek−1‖22

]
+ Cλ2λP ,

E
[
‖Ak RM (xk−1)‖22

]
≤ C2

Mλ
2,

E
[
‖Ak τ (xk−1)‖22

]
≤ λ2λτ ,

E
[
‖Kk vk‖22

]
≤ tr(V)κ2.

Upon insertion of these estimates into (28) we get the recursive
mean-square error inequality

E
[
‖ek‖22

]
≤ 4λ2

f E
[
‖ek−1‖22

]
+ Ce,

where

Ce = 4
(
λ2[CλP + C2

M + λτ ] + tr(V)κ2
)
. (29)

Because we have assumed that 4λ2
f < 1, the claim then

follows from the discrete Grönwall’s inequality (e.g., [24,
Theorem IV.2]).

IV. NUMERICAL EXPERIMENTS

To examine the effectiveness of the TME estimator in
Definition 1, we first conduct experiments on the moment
estimation of SDEs. After that, we examine and compare
the accuracy and numerical stability of the proposed TME
Gaussian filter against state-of-the-art methods.
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A. Moment Estimation of SDEs
We consider a non-linear SDE:

dxt = tanhxt dt+ dWt, (30)

where Wt is a standard Wiener process, with known initial
condition x0 = 0.5. The aim is to compare the estimates of
the moments of the transition densities. The true mean and
covariance are estimated using Monte Carlo (MC) sampling
with 106 independent trajectories. We simulated the samples
from the models using Euler–Maruyama with sufficiently
small time interval (10−5 s). The estimates were examined
in the time interval T = 0 s to T = 5 s.

We chose the following methods as described in Section I
to compare with the TME method:
• the ODE approach by solving (5) using Gaussian assump-

tion, 4th order Runge–Kutta solver, and 3rd order Gauss–
Hermite integration (Gauss-RK4);

• the ODE approach by solving (5) using linearisation, and
4th order Runge–Kutta solver (Linear-RK4);

• the Itô–Taylor strong order 1.5 based approach from [5],
[6] (Itô-1.5).

Fig. 1: The mean and variance estimates of model (30).

In Figure 1, we show the mean and variance estimates as
functions of time. We observe that the Itô-1.5 and (the second
order) TME methods coincide for the estimation of mean
function, and are closest to the Monte Carlo result. This is
because their formulations for this model are identical, and
exact to the true mean of (30). The Gauss-RK4 and Linear-
RK4 can only estimate the mean accurately within short time
intervals, while Gauss-RK4 is slightly better than Linear-RK4.

When estimating the variance of (30), only the TME method
succeeds to follow the Monte Carlo result closely. The variance
estimate yield by TME is ∆t+ (1− tanh2 x0)∆t2, which is
exact to this model (see, Example 7). The Gauss-RK4, Linear-
RK4, and Itô-1.5 all deviate from Monte Carlo for long time
intervals.

B. 3D Coordinated Turn Tracking
In this part, we conduct Gaussian filtering on a 3D co-

ordinated turn model. Performing filtering on this model is
considered challenging due to its non-linearities and high
dimensionality [6], [25]. The model is given by

dxt = f(xt) dt+ L dWt, (31a)

yk =


√
p2
x + p2

y + p2
z

tan−1(py/px)

tan−1(pz/
√
p2
x + p2

y)

+ εk, (31b)

where the state xt =
[
px vx py vy pz vz θ

]T
and

f(xt) =
[
vx −θvy vy θvx vz 0 0

]T
,

L = diag
[
0 σ1 0 σ1 0 σ1 σ2

]
.

(32)

In this model, we denote by px, py , and pz the position of
the target in Cartesian coordinates, and vx, vy , and vz are the
corresponding velocities. State θ governs the turning rate of
the target which controls the non-linearity of this model. In
addition, Wt is a standard Wiener process. The measurement
noise εk ∼ N (0,V) and V = diag

[
σ2
r σ2

θ σ2
φ

]
.

Name Description Method Integration

EKF-RK ODE type of
Gaussian
filter with
4th order

Runge–Kutta
solver [4], [13]

Solving (5) with
linearisation

(Linear-ODE)
Not needed

CKF-RK
Solving (5) with

Gaussian
assumption

(Gauss-ODE)

Spherical
cubature

UKF-RK Unscented
transform

GHKF-RK 3rd order
Gauss–Hermite

CKF-1.5 Itô-1.5
Gaussian

filter
[6]

Itô–Taylor
discretisation
with strong

order 1.5 [6]

Spherical
cubature

UKF-1.5 Unscented
transform

GHKF-1.5 3rd order
Gauss–Hermite

CKF-T* TME
Gaussian

filter
(Alg. 3)

∗-th order
TME

(Def. 1)

Spherical
cubature

UKF-T* Unscented
transform

GHKF-T* 3rd order
Gauss–Hermite

TABLE I: The list of the state-of-the-art methods compared in
3D coordinate turn tracking.

The parameters σ1, σ2, σ2
r , σ2

θ , and σ2
φ are the same as

in [6]. However, we choose the initial turning rate θ0 = 30°/s
which is significantly higher than the θ0 = 3 to 6°/s used
in [6]. These two θ0 settings are illustrated in Figure 2.

Fig. 2: Examples of trajectory simulation (t = 0 s to 60 s). The
left figure shows the setting of initial turning rate θ0 = 3°/s
[6], while on the right figure, we use θ0 = 30°/s.

The other parameters are the same as in [6]. The initial
condition is drawn from a normal distribution with mean
m0 = [ 1000 m 0 m/s 2650 m 150 m/s 200 m 10 m/s 30°/s ]T and covari-
ance P0 = diag[ 1002 1002 1002 1002 1002 1002 102 ]. We simulate
the ground-truth trajectories using Euler–Maruyama with small
enough time step ∆t× 10−5 s, where ∆t is the time interval
between two measurements. The total time length of the
trajectory is fixed to T = 210 s. To test the effectiveness
of filters, we select the time interval ∆t range from 0.5 s to
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9 s. We also use additional integration steps log2(M) in the
prediction steps. For the comparison of the filtering accuracy,
we run 100 Monte Carlo trials and calculate the root mean
square error (RMSE) of the position states, which is defined
as

RMSE =

√√√√ 100∑
i

T/∆t∑
j

∑
k=1,3,5

(xi,jk − x̂i,jk )2

3× 100× (T/∆t)
, (33)

where xi,j1 , xi,j3 , and xi,j5 are the ground truth positions at
time j∆t from i-th Monte Carlo trial, and the x̂i,j1 , x̂i,j3 ,
and x̂i,j5 are their corresponding filtering estimates. For the
comparison of numerical stability, we record the number of
divergences, which is defined by counting the manifestation
of non-positive definite covariances and unbounded (NaN)
estimates. The state-of-the-art Gaussian filters for comparison
are listed in Table I.

Fig. 3: The RMSE of filtering over 100 Monte Carlo runs. On
the rows, we use different integrations steps log2(M). On the
columns, we use the 2nd and 3rd TME expansion.

In Figure 3, the filtering RMSE of the position is shown. It
reveals that (second order) TME-2 filters are comparable to the
Itô-1.5 filters, as their performances are almost identical. The
(third order) TME-3 filters significantly outperform other fil-
ters across different ∆t and log2(M). More importantly, TME-
3 filters especially have less errors for large ∆t. On the other
hand, the ODE type of filters (i.e., EKF and CKF/UKF/GHKF-
RK) perform the worst and diverge for large ∆t.

We next examine the numerical stability by recording the
number of divergences in filtering as shown in Figure 4. First,
we find that the stability of ODE type of filters is the worst.
The UKF/CKF/GHKF-RK filters diverge for almost every ∆t.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

∆t(s)

EKF

CKF-1.5

UKF-1.5

GHKF-1.5

CKF-RK

UKF-RK

GHKF-RK

CKF-T2

UKF-T2

GHKF-T2

CKF-T3

UKF-T3

GHKF-T3

0 0 30 84 49 58 58 90 92 88 74 55 50 36 10 3 3

0 0 0 0 0 0 0 0 0 1 4 50 94 100 100 100 100

0 0 0 0 0 0 0 0 0 0 4 50 71 82 99 100 100

0 0 0 0 0 0 0 0 0 1 6 21 73 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

0 0 0 0 0 0 0 0 2 4 56 53 94 100 100 100 100

0 0 0 0 0 0 0 0 3 4 55 59 79 88 99 100 100

0 0 0 0 0 0 0 0 2 4 51 23 76 100 100 100 100

0 0 0 0 0 0 0 0 0 0 0 0 0 9 2 98 100

0 0 0 0 0 0 0 0 0 0 0 0 0 12 16 99 100

0 0 0 0 0 0 0 0 0 0 0 0 0 8 4 99 100

log(M) = 1

0

20

40

60

80

100

Fig. 4: Number of divergences of the filters. These numbers
are recorded once the non-positive definite covariance estimate
manifests or the estimate is unbounded (NaN errors).

The stability of Linear-ODE type of filter is also poor and
inconsistent. On the contrary, TME-3 filters are the most
stable, while Itô-1.5 filters are slightly better than of TME-
2.

Fig. 5: Averaged CPU time from 106 runs on an Xeon®

E3-1230v5 workstation. The error bars indicate the standard
deviation of the Monte Carlo runs.

To compare the actual computational efficiencies of filters,
we perform 106 independent runs of the prediction steps and
calculate the mean CPU time consumption. We focus on
comparing only the prediction step because that is the only
difference among the involved Gaussian filters. We uniformly
use the same cubature integration method for the Gaussian
integral evaluations. The result is illustrated in Figure 5. We
observe that the ODE type of filters (EKF and CKF-RK) are
the most efficient. For the time-discretisation based methods
(TME and Itô-1.5), the CKF-T2 and CKF-T4 are the least
and most time consumable, respectively. However, TME and
Itô-1.5 performs similarly, for example, the CKF-T4 is only
slightly higher than Itô-1.5 with 0.1 × 10−4 s. It does not
take significant computation resources by increasing the TME
expansion order.

V. CONCLUSION

We have proposed a novel Gaussian filter for non-linear
continuous-discrete models which forms a Gaussian approxi-
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mation to the transition density of the SDE by using a Taylor
moment expansion (TME). We derived the corresponding
TME Gaussian filter, and analysed the positive definiteness
of the TME covariance estimates and stability of the TME
Gaussian filter. The numerical experiments indicate that even
a second order TME Gaussian filter is in line with the state-of-
the-art. With higher expansion order, the proposed TME filter
substantially outperform the state-of-the-art methods, in terms
of both estimation accuracy and numerical stability.

APPENDIX I
PROOF OF LEMMA 8

Let βu,vr , βr(xu xv) = Ar(xu xv) denote the r-th iteration
of operator A on xuxv , and ∂iβu,vr = ∂βu,vr /∂xi. For r = 0
and 1, we readily find αu0 = xu, αu1 = fu, αv0 = xv , αv1 = fv ,
βu,v0 = xuxv = αu0α

v
0 , and βu,v1 = αu0α

v
1 + αv0α

u
1 + Γuv .

We can calculate Φu,vx,r by (19) and initially reveal Φu,vx,0 = 0,
Φu,vx,1 = Γuv . From this pattern above, we will first show βu,vr
has a general expression

βr =

r∑
s=0

(
r

s

)
αusα

v
r−s + Φu,vx,r , (34)

where Φu,vx,r is

Φu,vx,r =
∑
i,j

r−1∑
s=0

(
r − 1

s

)(
∂iα

u
s ∂jα

v
r−s
)

Γij +AΦu,vx,r−1,

(35)

It is apparent that (34) and (35) hold for r = 1. By Algo-
rithm 1, the iteration of βu,vr is

βu,vr+1 = A(βu,vr ) =
∑
i

∂βu,vr
∂xi

fi +
1

2

∑
i,j

∂2βu,vr
∂xi∂xj

Γij . (36)

With Equation (34), we continue Equation (36) to yield

βu,vr+1 =

r∑
s=0

(
r

s

)(
αus+1α

v
r−s + αusα

v
r−s+1

)
+
∑
i,j

(
r∑
s=0

(
r

s

)
∂iα

u
s∂jα

v
r−s

)
Γij +AΦu,vx,r

=

r+1∑
s=0

(
r + 1

s

)
αsαr−s+1 + Φu,vx,r+1 = βr+1.

(37)

Thus expressions (34) and (35) are proved by induction for
r ≥ 1. From Lemma 4, we now derive an iterated form of
Φx,r as

Φu,vx,r = βu,vr −
r∑
s=0

(
r

s

)
αusα

v
r−s

=
∑
i,j

r−1∑
s=0

(
r − 1

s

)(
∂iα

u
s ∂jα

v
r−s−1

)
Γij +AΦu,vx,r−1

=

r−1∑
s=0

(
r − 1

s

)
tr
(
(∇αus )T∇αvr−s−1 Γ

)
+AΦu,vx,r−1

=

r−1∑
s=0

As
r−s−1∑
l=0

(
r − s− 1

l

)
tr
(
(∇αus )T∇αvr−s−1−l Γ

)

starting from Φx,0 = 0.
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