Toni Karvonen


MAINPUBLICATIONSPRESENTATIONSCV

See also my Google Scholar profile.

Preprints

  1. T. Karvonen & Y. Suzuki (2024). Approximation in Hilbert spaces of the Gaussian and related analytic kernels. arXiv:2209.12473.
  2. T. Karvonen, F. Cirak & M. Girolami (2024). Error analysis for a statistical finite element method. arXiv:2201.07543.
  3. Y. Suzuki, N. Hyvönen & T. Karvonen (2024). Möbius-transformed trapezoidal rule. arXiv:2407.13650.
  4. T. Karvonen & A. Zhigljavsky (2024). Maximum mean discrepancies of Farey sequences. arXiv:2407.10214.
  5. Y. Suzuki & T. Karvonen (2024). Construction of optimal algorithms for function approximation in Gaussian Sobolev spaces. arXiv:2402.02917.
  6. M. Korte-Stapff, T. Karvonen & E. Moulines (2024). Smoothness estimation for Whittle-Matérn processes on closed Riemannian manifolds. arXiv:2401.00510.
  7. J. Wenger, N. Krämer, M. Pförtner, J. Schmidt, N. Bosch, N. Effenberger, J. Zenn, A. Gessner, T. Karvonen, F.-X. Briol, M. Mahsereci & P. Hennig (2021). ProbNum: Probabilistic numerics in Python. arXiv:2112.02100.
  8. T. Karvonen (2021). Estimation of the scale parameter for a misspecified Gaussian process model. arXiv:2110.02810.
  9. T. Karvonen (2021). On non-inclusion of certain functions in reproducing kernel Hilbert spaces. arXiv:2102.10628.

Journal articles

  1. C. J. Oates, T. Karvonen, A. L. Teckentrup, M. Strocchi & S. A. Niederer (2024+). Probabilistic Richardson extrapolation. Journal of the Royal Statistical Society, Series B (Statistical Methodology). To appear.
  2. M. Naslidnyk, M. Kanagawa, T. Karvonen & M. Mahsereci (2024+). Comparing scale parameter estimators for Gaussian process interpolation with the Brownian motion prior: Leave-one-out cross validation and maximum likelihood. SIAM/ASA Journal on Uncertainty Quantification. To appear.
  3. F. Tronarp & T. Karvonen (2024). Orthonormal expansions for translation-invariant kernels. Journal of Approximation Theory, 302:106055.
  4. T. Karvonen (2023). Asymptotic bounds for smoothness parameter estimates in Gaussian process interpolation. SIAM/ASA Journal on Uncertainty Quantification, 11(4):1225–1257.
  5. T. Karvonen, J. Cockayne, F. Tronarp & S. Särkkä (2023). A probabilistic Taylor expansion with Gaussian processes. Transactions on Machine Learning Research.
  6. T. Karvonen & C. J. Oates (2023). Maximum likelihood estimation in Gaussian process regression is ill-posed. Journal of Machine Learning Research, 24(120):1–47.
  7. T. Karvonen (2023). Small sample spaces for Gaussian processes. Bernoulli, 29(2):875–900.
  8. T. Karvonen (2022). Error bounds and the asymptotic setting in kernel-based approximation. Dolomites Research Notes on Approximation, 15(3):65–77.
  9. L. F. South, T. Karvonen, C. Nemeth, M. Girolami & C. J. Oates (2022). Semi-exact control functionals from Sard's method. Biometrika, 109(2):351–367.
  10. G. Santin, T. Karvonen & B. Haasdonk (2022). Sampling based approximation of linear functionals in reproducing kernel Hilbert spaces. BIT Numerical Mathematics, 62:279–310.
  11. Z. Zhao, T. Karvonen, R. Hostettler & S. Särkkä (2021). Taylor moment expansion for continuous-discrete Gaussian filtering and smoothing. IEEE Transactions on Automatic Control, 66(9):4460–4467.
  12. T. Karvonen, C. J. Oates & M. Girolami (2021). Integration in reproducing kernel Hilbert spaces of Gaussian kernels. Mathematics of Computation, 90(331):2209–2233.
  13. T. Karvonen, S. Särkkä & K. Tanaka (2021). Kernel-based interpolation at approximate Fekete points. Numerical Algorithms, 87(1):445–468.
  14. J. Prüher, T. Karvonen, C. J. Oates, O. Straka & S. Särkkä (2021). Improved calibration of numerical integration error in sigma-point filters. IEEE Transactions on Automatic Control, 66(3):1286–1292.
  15. T. Karvonen & S. Särkkä (2020). Worst-case optimal approximation with increasingly flat Gaussian kernels. Advances in Computational Mathematics, 46:21.
  16. T. Karvonen, S. Bonnabel, E. Moulines & S. Särkkä (2020). On stability of a class of filters for non-linear stochastic systems. SIAM Journal on Control and Optimization, 58(4):2023–2049.
  17. T. Karvonen, G. Wynne, F. Tronarp, C. J. Oates & S. Särkkä (2020). Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions. SIAM/ASA Journal on Uncertainty Quantification, 8(3):926–958.
  18. T. Karvonen, M. Kanagawa & S. Särkkä (2019). On the positivity and magnitudes of Bayesian quadrature weights. Statistics and Computing, 29(6):1317–1333.
  19. T. Karvonen, S. Särkkä & C. J. Oates (2019). Symmetry exploits for Bayesian cubature methods. Statistics and Computing, 29(6):1231–1248.
  20. T. Karvonen & S. Särkkä (2019). Gaussian kernel quadrature at scaled Gauss–Hermite nodes. BIT Numerical Mathematics, 59(4):877–902.
  21. F. Tronarp, T. Karvonen & S. Särkkä (2019). Student's t-filters for noise scale estimation. IEEE Signal Processing Letters, 26(2):352–356.
  22. T. Karvonen & S. Särkkä (2018). Fully symmetric kernel quadrature. SIAM Journal on Scientific Computing, 40(2):A697–A720.

Conference articles

  1. K. Li, D. Giles, T. Karvonen, S. Guillas & F.-X. Briol (2023). Multilevel Bayesian quadrature. In the 26th International Conference on Artificial Intelligence and Statistics, PMLR, 206:1845–1868.
  2. O. Teymur, C. N. Foley, P. G. Green, T. Karvonen & C. J. Oates (2021). Black box probabilistic numerics. In Advances in Neural Information Processing Systems 34, pp. 23452–23464.
  3. S. Särkkä, C. Merkatas & T. Karvonen (2021). Gaussian approximations of SDEs in Metropolis-adjusted Langevin algorithms. In the 31st IEEE International Workshop on Machine Learning for Signal Processing.
  4. T. Karvonen, F. Tronarp & S. Särkkä (2019). Asymptotics of maximum likelihood parameter estimation for Gaussian processes: the Ornstein–Uhlenbeck prior. In the 29th IEEE International Workshop on Machine Learning for Signal Processing.
  5. T. Karvonen, C. J. Oates & S. Särkkä (2018). A Bayes–Sard cubature method. In Advances in Neural Information Processing Systems 31, pp. 5882–5893.
  6. T. Karvonen, S. Bonnabel, E. Moulines & S. Särkkä (2018). Bounds on the covariance matrix of a class of Kalman–Bucy filters for systems with non-linear dynamics. In the 57th IEEE Conference on Decision and Control, pp. 7176–7181.
  7. F. Tronarp, T. Karvonen & S. Särkkä (2018). Mixture representation of the Matérn class with applications in state space approximations and Bayesian quadrature. In the 28th IEEE International Workshop on Machine Learning for Signal Processing.
  8. T. Karvonen & S. Särkkä (2017). Classical quadrature rules via Gaussian processes. In the 27th IEEE International Workshop on Machine Learning for Signal Processing.
  9. J. Prüher, F. Tronarp, T. Karvonen, S. Särkkä & O. Straka (2017). Student-t process quadratures for filtering of non-linear systems with heavy-tailed noise. In the 20th International Conference on Information Fusion. Tammy Blair Best Student Paper Award, first runner-up.
  10. T. Karvonen & S. Särkkä (2016). Approximate state-space Gaussian processes via spectral transformation. In the 26th IEEE International Workshop on Machine Learning for Signal Processing.
  11. T. Karvonen & S. Särkkä (2016). Fourier–Hermite series for stochastic stability analysis of non-linear Kalman filters. In the 19th International Conference on Information Fusion, pp. 1829–1836.

Theses

  1. T. Karvonen (2019). Kernel-Based and Bayesian Methods for Numerical Integration. Doctoral dissertation. Department of Electrical Engineering and Automation, Aalto University.
  2. T. Karvonen (2014). Stability of Linear and Non-Linear Kalman Filters. Master's thesis. Department of Mathematics and Statistics, University of Helsinki.
  3. T. Karvonen (2014). Mittojen disintegraatio. Bachelors's thesis. Department of Mathematics and Statistics, University of Helsinki.